Information About AViiON® Systems from Data General’s UNIX®

Development Group

o

1

l]
Po || op

In This Issue:
Taking Advantage of Symmetric
Multiprocessor Systems

[
J 1| JP2|--|IPY]
Contents
What'’s in This Brief........ccccceeeenucene 2
Measuring Performance 3
Reviewing SMP Concepts. 4
Design Goalscoueernenremsnncassenns 8

Maximizing Process Parallelism.. 8
Minimizing Context Switching13

Techniques for IPC and
Synchronizationcu...... 15
FYI—Sample xmem Routines......23
Shared Memory Test Results......28
FYI—Other IPC Techniques......... 30

In Technical Brief 012-003886 (A Second Look at
Multiprocessor SMPs), we talked about how symmetric
multiprocessor AViiON® systems provide users with
unique and powerful ways of increasing their data
processing throughput. In that technical brief, we
showed you the kinds of performance advantages that
can be obtained when you use multiprocessor AViiON
computer systems.

In that earlier technical brief, we said: “you don’t need
to change your application software to run it on an
AViiON multiprocessor system. You can run the exact
same applications on single-processor systems and
multiprocessor systems.”

That statement is true—you don’t need to change your
applications when you move them from a single-

processor AViiON system to a multiprocessor system. However, an
application that is designed to run on a single-processor system may not
take complete advantage of an SMP system’s multiprocessors.

This technical brief talks about the kinds of design and implementation
techniques that enable you to take complete advantage of multiprocessor
systems. Specifically, we'll talk about ways that you may be able to
improve application performance by designing applications that provide
opportunities for process parallelism. You can use these techniques when
you design new applications or when you make changes to existing

applications.

AViiON is a registered trademark of Data General Corporation.
DG/UX is a trademark of Data General Corporation.

FrameMaker is a registered trademark of Frame Technology Corporation.

UNIX is a registered trademark of UNIX System Laboratories, Inc.
©1992 Data General Corporation.

Produced on a Data General
AViiON AV4000 with FrameMaker® 3.1X.

012-004177-00

Page2 ¢,

What’s in This Technical Brief

An application
that runs for 6
hours to predict
what the weather
will be in 2 hours
is not particularly
useful.

This technical brief focuses on ways to reduce applications’ elapsed time as
you scale up the number of Job Processors (JPs) in your system. As an
application designer, you have access to a range of techniques that enable
you to build applications that take full advantage of multiple-JP SMP
systems, and we'll talk about those techniques.

When you are writing applications that will run on SMP systems, your
basic goal is to keep all of the Job Processors in the SMP systems
productively busy. We say productively busy, because a poorly designed
application can keep JPs busy doing the “wrong” things, such as switching
from one process’s context to another, or looping for long periods of time
while processes wait on locks.

Designing applications that take advantage of an SMP system requires an
understanding of two related issues:

Q interprocess communication—how to select the most efficient ways of
enabling the processes in your applications to exchange data.

Q process synchronization—how to select the most efficient ways of
controlling the interaction among the processes in your applications.

In this technical brief, we'll focus on a particular set of interprocess
communication and process synchronization techniques; shared memory
and semaphores. Before we begin that discussion, we’ll review some
terminology and some AViiON SMP concepts that form the foundation of
the discussions.

Taking Advantage of SMPs DG/UX Technical Brief

012-004177-00

June 16, 1992

¢y Page3

Measuring System Performance

There are two ways of measuring the performance of an SMP system,
throughput and elapsed time. Throughput is a measure of how many jobs
(processes) a system can execute in a given time period—perhaps in a
second. As you scale up from a single-JP DG/UX system to a dual-JP SMP
system, you automatically see a nearly two-to-one increase in process
throughput—the number of processes that the machine runs in a second.
For example, the throughput of a quad-JP system is nearly twice that of a
dual-JP system. The vertical bars in Figure 1 show the relative increases in
throughput as you scale up from a single-JP system to a quad-JP system.

Elapsed time is the time that it takes for an application to run. As you scale
up from a single-JP system to a multiple-JP system, you may not see an
equivalent decrease in an application’s elapsed time. That's because an
application designed to run on a single-JP system may not provide the
process parallelism that can take full advantage of a multiple-JP system.

The lines in Figure 1 (plotted against the right-hand axis) compare the
difference in elapsed time between applications that consist of parallel
processes and applications that don’t contain parallel processes.

B Elapsed Time With No]
-~ Pracess Parallelism ~
| —1 Elapsed Time
(Time to
— Elapsed Time With | Complete
- Process Parallelism — Individual
- —| Application)
Throughput | ~{ (Lines)
(Processes/
Second) [~]
(Bars) |- —
One Two Four
Number of JPs
Figure 1 Process Throughput and Elapsed Time
DG/UX Technical Brief Taking Advantage of SMPs

June 16, 1992 012-004177-00

Page4 ¢y

Some AViiON SMP Process Scheduling Concepts

An AViiON multiprocessor system is a Symmetric Multiprocessing (SMP)
system. The key word here is symmetric, which means that the multiple JPs
(the CPUs) in an AViiON SMP system are seen by user programs and the
DG/UX operating system as equivalent.

Processes, Virtual Processors, and Job Processors

Processes are programs in execution. On AViiON systems, processes run on
Virtual Processors (VPs), which are software abstractions of the computer’s
real, physical JPs (Figure 2). Because they are software abstractions, VPs
hide the implementation details of the underlying hardware from the
processes.

Process Process Process Process Process eess |Process
nPn

Medium-Term Scheduling
(Binding Processes to VPs)

VPO VP 1 VP 2 VP 3 seee VP V"

Low-Level Scheduling (Dispatching)
(Assigning VPs to JPs)

Job ees Job
Processor 0 Processor *J”

Figure 2 Processes, Virtual Processors, and Job Processors

Process States

On a DG/UX system, a process can be in one of several states. For our
purposes, we're interested in the following process states:

O Running
O Runnable
Q Sleeping

Taking Advantage of SMPs DG/UX Technical Brief

012-004177-00

June 16, 1992

€y Pages

Running

A running process is executing on a JP. The Medium Term Scheduler has
bound the process to a VP and the dispatcher has assigned the VP to a JP.
The process can be executing in either user space or in kernel space.

Note: While it’s technically correct to say that “processes are bound to VPs,
which run on JPs,” most people say that “processes run on JPs.”
We'll start using that simpler terminology here.

Runnable

A runnable process is waiting for a JP to become available. The process is
bound to a VP and is eligible to run when a JP is available.

The dispatcher maintains a VP scheduling queue that lists all of the
runnable processes. In the scheduling queue, the runnable processes are
arranged by priority—the highest priority runnable process is at the head
of the list.

The Medium Term Scheduler (MTS) is responsible for providing priority
information for user processes. Kernel processes, such as the MTS itself, are
permanently bound to VPs, and usually have higher dispatcher priorities
than user processes.

The MTS provides several heuristics that support fair time-sharing
scheduling policies. The MTS assigns and keeps track of processes’ on-JP
time slices, and can adjust time slices for interactive (I/O intensive) and
compute-bound processes.

Sleeping

A sleeping process is waiting for an event to occur—the process is sleeping
on the event. The distinction between a sleeping process and a runnable
process is that a sleeping process is not waiting for a JP to become
available.

Processes can go to sleep for many reasons. For example, a sleeping
process can be waiting for an I/O operation or waiting for a resource
(perhaps a data buffer) to become available.

In terms of JP resources, sleeping is relatively inexpensive. The kernel does

A sleeping a context switching operation when it takes the process off a JP. After that,
process that a sleeping process doesn’t use JP resources, it just uses a slot in a system-
becomes wide process table that the kernel maintains. This is in contrast to a process
runnable may not§ that is doing a busy/wait operation, which uses JP resources while the
start executing process runs in a loop.
immediately
When an event occurs, the kernel wakes up all of the processes that are waiting
on that particular event. That's a key point—if more than one process is
waiting on the same event, all of the waiting processes are awakened and
DG/UX Technical Brief Taking Advantage of SMPs

June 16, 1992

012-004177-00

Page 6 ¢y

placed into the VP scheduling queue as runnable. Therefore, a sleeping
process that becomes runnable when an event occurs may not be the next
process to start running when a JP becomes available—it depends on the
process’s priority relative to the other runnable processes.

Figure 3 shows an example of how these different process states can
interact. The top of the figure represents a global time line, showing the
state of all the processes running on a dual-JP system. Running processes
are shown in black. From the timeline, we've isolated part of an application
that has four processes.

| T 1 || T 1 1 L1 1 | Wl 1 | W |

[m m] T - w i]

] e e [= [—
] [—]]]

DHHE:

C = Context Switch
T = Time Slice Out

Processes

P1 ILUIRICANS Sleep | Runnable

& running | 7] c IEGTITTON | Fuming
po[Fumbe CIIMPIEIRY Seor [Rumabie |G

Runnable C| S|Running|S{Running C Runnable

P4

Time

Figure 3 Sleeping, Runnable, and Running Processes on Dual Processors

The figure shows several interesting things about processes and process

management. For example:

0 Processes are considered to be running while they are executing in user
space, making a system call, or performing a context switch.

0 When a process’s time slice runs out, the process becomes runnable (P2).
At that time, other processes at the same priority level can execute (P4
starts running when P2’s time slice runs out).

Q@ The time to perform system calls is different from call to call (compare P1
and P3)

0 A system call need not result in a context switch (P4).

Taking Advantage of SMPs DG/UX Technical Brief
012-004177-00 June 16, 1992

& Page7

System Calls, Mode Switching, and Context Switching

A system call causes a process to switch modes—from running in user
space (user mode) to running in kernel space (kernel mode), then back to
user space (Figure 4).

A mode switch is not the same thing as a context switch—a process can
continue running on a JP while it switches modes. By contrast, in a context
switch, the kernel takes a process off a JP.

CE

[J]

7]

3

User Space :)1

" Kernel Space = _‘z:’)

L 2

£ £

® 7]

L) [}

O el

(o] o]

* I
LIIIIIlIIllIIIIIIILI.

Time
Figure 4 Mode Switching Overhead of a System Call

The kernel (driven by the kernel’s Medium Term Scheduler) performs a
context switch when it decides that it should take a process off a JP to run
another process. A context switch requires that the kernel push a process’s
state information onto a stack. By popping the process’s state information
off the stack, the kernel can start running the process at the point it was
interrupted.

Context switch operations can be relatively expensive users of JP resources.
A typical context switching operation may take from 150-to-200
microseconds.! In the time that it takes to perform a context switch, a
process could be executing as many as 1500-t0-2000 instructions.

Mode switching is far less expensive than context switching. A round-trip
mode switching operation requires about 25 microseconds to complete (not
counting the time that it takes to execute the system call’s code). Therefore,
any time that you avoid a system call, a process could run as many as 250
instructions.

1. On a 25Mhz 88100-based AViiON system.

DG/UX Technical Brief Taking Advantage of SMPs
June 16, 1992 012-004177-00

Page 8 ¢y

Design Goals for SMP Applications

Based on the information in the previous sections, we can make some
observations about how to design applications that will take advantage of
SMP systems.

On page 2, we said that the general goal for taking advantage of an SMP
system, is to “... keep all of the JPs in the SMP productively busy.” The keys
to achieving that goal are to:

O maximize opportunities for parallelism— by partitioning applications
into cooperating processes;

O minimize process context switching—by providing an optimum ratio of
processes to JPs;

O minimize contention for resources—by using appropriate interprocess
communication and synchronization techniques.

The next three sections talk about techniques that you can use to achieve
these three goals. Bear in mind that these three objectives are very much
inter-related, and an application won’t perform as well as it could unless
all three objectives are met. For example, it's not enough to simply
partition an application into some arbitrary number of processes. For best
performance, your application must strike a balance between the number
of processes and JPs. If there are many more processes than JPs, an
application can spend too much time doing context switch operations. If
there are too few processes, all of the JPs won’t be productively busy.

Maximizing Opportunities for Process Parallelism

The boundaries
of an existing
application may
not provide the
best way of
partitioning the
application.

An application that takes advantage of an SMP system is one that provides
cooperating processes that an SMP system can run in parallel.

One key to providing parallel processes is to find the natural boundaries in
an application, based on what kind of work needs to be done. Then, you
can determine which parts of an application should have their own
processes and which parts can be grouped together in a process.

When you partition an application into processes, you should recognize that
the logical or functional boundaries of an application may not provide the
most efficient way of creating processes. This is especially true if you're
working with an existing application that was designed to run on a single
processor system. For example, some database management systems
provide one process for each client; the more clients, the more processes,
with the potential for more context switches. In cases like this, you should
consider partitioning the application horizontally (across similar functions)
rather than vertically.

Taking Advantage of SMPs DG/UX Technical Brief

012-004177-00

June 16, 1992

€ Page9

Another key to achieving the goal of parallelism is to design your
applications so that they minimize the time that the processes in the
application must run sequentially. By sequentially, we mean that the

The amountthat|] process must run to completion before a follow-on process can start. The
you can speed amount that you can speed up an application is limited by the time that it
upan takes to run the longest process in the application, no matter how many
application is processors are available to run the application.
limited by the
application’s Figure 5 shows an example of how minimizing the sequential layout of
longest processes pays off when you run the processes on a machine with multiple
sequential JPs
process.
I
Assume that we have an application with four cooperating processes: P1,
P2, P3, and P4. (By cooperating, we mean that process P2 uses data from
process P1, P3 uses data from P2, and so on.) This is typical of processes
that support the different phases of a compilation, or processes that
analyze the same stream of data in many different ways.
3 5 8 4
100%
Sequential P1 | P2 I P3 | P4 20 units
PUL iy
80% — el 4L L i 16.8Units—16 % Less Time
Sequential o P2 |7 : ¢ i % i ! (OnabDualJP System)
ci] P3 I
EEEEEEEE Y N
40%—_21]:222:25;:253:;;;;;
Sequential : e B e A
9 | P2 R
A P3 ;! 12 Units—40 % Less Time
Co I - : ¢ (On aDual JP System)
L S S A S R S S S R R S S R R R B
5 10 15 20
Time to Complete Application
Figure 5 Sequential and Parallel Processes
In Figure 5, we’ve assigned arbitrary execution times to each process; 3, 5,
8, and 4 units respectively. Assume that this is pure execution time,
without considering time waiting for I/O operations. Assume also that a
time unit is much greater than a process’s context switching time.
DG/UX Technical Brief Taking Advantage of SMPs

June 16, 1992

012-004177-00

Page 10 ¢,

Therefore, the total time required to run the application is 20 time units,
assuming that each process runs 100% sequentially—that each process in
the application runs to completion before the next process can get its data
and start running. The other cases show what happens when a cooperating
process can start when 80% and 40% of its predecessor process is complete.

It’s easy to see how reducing the time that processes must run sequentially
increases opportunities for parallelism. For example, if each process in the
application runs sequentially for 80% of its execution time before the
following process can start, there’s 20% of each process’s execution time
available for performance increases from parallelism.

While the actual on-JP execution times of the four processes is the same for
all three cases, the wall-clock time (elapsed time) for downstream processes
can be longer. The shading in process P4 of the 40% sequential case
indicates time during which the process has to wait for data from process
P3, and does not fully utilize the services of a JP. During this time, the
process could be swapped off a JP to enable a higher priority process to
run.

Figure 6 shows the opportunities that the example application has to take
advantage of two JPs. The 80% version has three dual-JP time slots
(marked with background shading). The 40% version has four
opportunities to use two JPs.

Taking Advantage of SMPs DG/UX Technical Brief
012-004177-00 June 16, 1992

@y Page 11

20 units

100%

Sequential

80%

Sequential

40%

Sequential

Time to Complete Application

parallelism) you may be able to achieve more opportunities for parallelism

sequential design. The 40% sequential design takes good advantage of dual
by reordering the application’s processes.

The bar chart at the bottom of the figure shows JP utilization for the 40%
JPs. However, neither the 80% version or 40% versions provide

opportunities to use more than two JPs, because only two processes are
If you have a situation like this (a multiple process application with poor

able to run in parallel (unless there are multiple instances of the

application running).

Figure 6 Opportunities to use Dual JPs

Taking Advantage of SMPs

DG/UX Technical Brief
June 16, 1992

012-004177-00

Page 12 ¢y

Figure 8 shows what happens when we change the order of the first three
processes in the example. Ordering the processes this way starts to take

advantage of three and four JPs. (The bar chart at the bottom of the figure

shows JP utilization for the 40% sequential design.)

100%

Sequential

40%

80%
Sequential

Sequential

Time to Complete Application

n
for 40% Sequential

atio

’
v
’
’

JP Utiliz.

Figure 7 Effect of Reordering Processes

When you design some applications, you may find that it's possible to use

then pass the data off to other processes, which work on the data
independently. The first (main) process splits up the data, then collects and

one process to divide the application’s data into separate pieces. You can

combines the results from each data-processing process.

DG/UX Technical Brief

Taking Advantage of SMPs

012-004177-00

June 16, 1992

¢y Page 13

Figure 8 shows an example of this technique. Here, process P1 starts three
other processes, which then go to sleep. As soon as process P1 starts
generating data that the other processes can use, process P1 wakes them up
and they start working on the data.

P1 passes dafa .. - P1 CO”eCfS qata
to analysis from analysis
processes processes

N NN N N N N N N N N A N I N >

Time to Complete Application

Figure 8 Creating Parallel Processes for a Quad JP SMP

This technique of splitting data is used often in applications that process
graphical data. For example, you can split the RGB bands of a graphical
data file, process each band’s data separately, then collect and post-process
the data.

Minimizing Process Context Switching

Because DG/UX is a multi-programming system, you can’t avoid context
switches completely. Ideally though, you’d like each process in your
application to run on a JP until the process’s time slice expires. When a
time slice expires, the Medium Term Scheduler looks at the run queue to
see if there are other processes that need to run.

To achieve this run-to-completion goal with a real world application is
probably not possible (unless the application is compute-bound). However,
a focus on the goal of keeping processes running on JPs for their entire
time slice can help you minimize the number of context switches in an
application.

DG/UX Technical Brief Taking Advantage of SMPs
June 16, 1992 012-004177-00

Page 14 ¢,

Ideally, you'd
like each
process in your
application to
run until the
process’s time
slice expires

The general way to minimize context switching operations is to partition
an application into the number of processes that balance JP utilization and
context switches. Some more specific ways of achieving a balance between
JP utilization and context switches are listed below.

]

Q

Try to balance the workload among the application’s processes—don’t let
one process do all of the work.

Try to design processes that can run for relatively long periods of time.
Too many short duration processes can cause excessive context switches.
For example, rather than writing small amounts of data to a file, you
might be able to batch the data and write it all at once.

When you have a very short duration process that has to wait for some

1/0, consider keeping the process running by using a busy/wait instead
of allowing a context switch. (By short duration, we mean a process that
runs for a period of time less than it takes to do a context switch.)

Avoid unnecessary system calls. By taking system calls out of loops or by
using library functions, you can enable a process to spend more time
running in user space and save the time that it takes a process to switch
modes.

Try to increase the probability that a resource will be available when a
process tries to access the resource. Instead of having a process check to
see if a resource is available, use one of the interprocess communication
techniques (such as semaphores or message queues) that puts a process
to sleep if a resource is unavailable, and wakes it up when the resource
becomes available.

Recognize that it’s useful to design single-purpose processes if the work
that the process has to do is relatively infrequent. An example is a
process that listens for mouse input.

Try to minimize disk I/O operations. Relative to JP time, disk I/O is very
time consuming. For example, some applications use files as resource-

locking mechanisms. You can minimize disk 1/O by replacing file locks
with semaphores (described later). Or, you could use memory mapping
(mmap) operations and shared memory to avoid file-based system calls.

Taking Advantage of SMPs DG/UX Technical Brief

012-004177-00

June 16, 1992

&y Page 15

Techniques for Interprocess Communication and
Synchronization

The third goal for taking advantage of SMP systems is to minimize
contention for resources, by using appropriate interprocess communication
and synchronization techniques.

The DG/UX operating system provides several interprocess
communication (IPC) facilities (Table 1) that you can use to exchange and
share data among processes, and to synchronize processes.

Table 1 IPC Techniques

To Share/Exchange Data To Synchronize Processes
Q Shared memory 0 Semaphores and xmem
instructions
0 Message queues
QO Signals

QO Pipes and sockets

O Shared files O Files used as locks

Table 2 on the next page summarizes the pros and cons of these techniques.

With these IPC techniques, you can implement the same interprocess
communication and synchronization models. The trick is to select the most
cost-effective techniques for your particular application or mix of
applications—cost-effective in the context of a technique’s use of system
time and resources.

In this technical brief, we're going to focus on the shared memory
technique. Unlike the other data sharing/exchanging facilities, shared
memory does not provide automatic process synchronization. Therefore,
we’ll talk about semaphores and xmem instructions, which you can use to
synchronize processes that are sharing memory.

DG/UX Technical Brief Taking Advantage of SMPs

June 16, 1992

012-004177-00

Page 16 ¢y

Table 2 Comparing IPC Techniques

Technique What Does It Do? Pros Cons

Shared Enables processes to B Best performance, doesn’t | B Requires code to

memory map areas of virtual use kernel resources or synchronize processes and
memory into their system calls (after memory regulate data flow
address spaces. Trans- | segments are set up) I Cannot communicate
fers arbitrary amounts | g Good for sharing large across network
of unformatted data. amounts of data

1 Supports sharing among
multiple processes

Semaphores | Supports the synchroni- | B Very flexible 1 Cannot communicate
zation of processes. synchronization features across a network
Often used in conjunc- | g Very inexpensive when
tion with shared mem- | .ombined with xmem
ory. routines

Messages Enables processes to 1 Convenient—easy to code | B Requires two data-copy
send and receive mes- I Automatic synchronization | operations
sages among arbitrary | ang self regulated data flow | N Limits on amount of data
processes via queues. 1 Security—supports private | that can be transferred
Transfers data bi-direc- y~—supports priva .

. . message queues 1 Cannot communicate
tionally in datagrams.
across a network.

Pipes Provides explicit com- I Convenient—easy to code. | § Requires two data-copy
munication path I Automatic synchronization | operations
between two cooperat- | and self regulated data flow | I Cannot communicate
igt;’;?ccﬁsrzi'i:;zﬁﬁ?;s I Signalled when cooperating | across a network.

y process has failed. 1 Works only between a
streams. :
parent and its descendant.

Sockets Provides communica- I Can communicate among 1 Requires two data-copy
tion path between processes on a network operations.
(potentially) unrelated | g Automatic synchronization
processes, across anet- | anq self regulated data flow
work. Transfers data bi- . .

A . 1 Signalled when cooperating
directionally in streams .
process has failed.
or datagrams.

Signals Way of synchronizing I Provided automatically by | B Expensive—uses
processes. Informs a kernel significant kernel resources
process that an excep- I Difficult to code—
tional event has maintaining process
occurred. synchronization is error

prone

Files Send and receive data 1 Very portable 1 No automatic
via shared files. I Easy to use synchronization

I NFS support over network | I Slow
1 Contention for locked files
Taking Advantage of SMPs DG/UX Technical Brief
012-004177-00 June 16, 1992

€y Page 17

Shared Memory

In terms of performance, especially if several processes are sharing or
exchanging large amounts of data, shared memory is almost always your
best choice. The shared memory technique is the fastest and the most
general of the IPC techniques. Shared memory enables processes to map
the same memory pages into their virtual address spaces.

Once you've set up the shared memory segments, processes can read and
write data from and to the segments, without using system calls.

Sharing memory requires only one copy of shared data—using shared
memory doesn’t require the extra data-copy operation that is needed by
other IPC techniques. To pass data through a message queue, for example,
requires that data be copied from a process’s address space to the kernel
(into a message queue) and then to the other process’s address space. With
shared memory, processes simply read and write data from the shared
segment of memory. Therefore, the performance advantage of shared
memory becomes more evident as the amount of shared data increases.

Because shared memory provides a very general interface, it requires that
you establish the rules of how processes are going to use a shared memory
segment. Also, shared memory provides no process-synchronization
primitives—you must establish the rules and write the code that supports
synchronization. This isn’t as bad as it sounds, because semaphores
(outlined in the next section) are a natural complement to shared memory.

The system calls that support shared memory are listed below.

0 shmget—creates a new shared memory segment and sets up the
segment’s attributes, or gets the identifier of a shared memory segment

0 shmctl—sets or gets shared memory-segment attributes or destroy a
shared memory segment

O shmat—attaches a shared memory segment to the virtual address space
of a process

0 shmdt—detaches a shared memory segment from a process’s address
space

DG/UX Technical Brief Taking Advantage of SMPs
June 16, 1992 012-004177-00

Page 18 ¢,

Semaphores and xmem Routines

Semaphores are data structures that are used primarily to synchronize
processes that are sharing a resource or service, such as shared memory. By
examining the value of a semaphore (or set of semaphores), a consumer
process can tell whether it can obtain the resource or service.

Semaphore system calls, by themselves, provide a robust way of handling
interprocess synchronization. However, for situations that require
maximum performance, you can combine the use of semaphores with
assembly language routines that use the AViiON 88K processor’s xmem
instruction. By writing small xmem assembly language routines, you can
avoid much of the overhead of making semaphore system calls to access
shared memory.

Semaphores

The point of using semaphores is to avoid wasting JP resources by having
processes continually checking to see if a resource is available. The
semaphore facility wakes up processes that are waiting for a semaphore
value to change.

The value of a semaphore represents the number of a particular resource
that is available. The simplest (binary) semaphores have values of one or
zero. If the semaphore’s value is zero, the resource isn’t available. The
resource is locked and a process trying to access the resource will go to
sleep (or do something else). When the resource becomes available, the
semaphore’s value goes to one, and processes waiting for the resource will
wake up.

Taking Advantage of SMPs DG/UX Technical Brief
012-004177-00 June 16, 1992

€y Page 19

You can initialize semaphores to selected values. For example, if you have
four instances of a resource, you can initialize a semaphore to four. The
first four processes that access the resource decrement the semaphore’s
value. When a fifth process tries to access the resource, the decrement
operation causes the semaphore value to go negative, and the process goes
to sleep—waiting for one of the first four processes to finish its work with
the resource.

The semaphore facility keeps track of how many processes are waiting for
different semaphore events to occur. The facility also keeps track of how
many processes are waiting for a semaphore to go to zero, or go to a
positive number from zero. Semaphores also provide an option that
enables the operating system to undo semaphore operations if a process
terminates.

The system calls that support semaphore operations are listed below.

0 semget—<creates a new semaphore (or set of semaphores) and sets up
their attributes, or gets the identifier of an existing semaphore.

0 semctl—performs one of several semaphore commands, such as
returning the semaphore’s value, returning the PID of the last process
that operated on the semaphore, and returning the number of processes
that are sleeping on the semaphore.

Q semop—performs P (decrement), V (increment), or wait-for-zero
operations on a semaphore or set of semaphores.

DG/UX Technical Brief Taking Advantage of SMPs

June 16, 1992

012-004177-00

Page 20 ¢,

Using xmem Routines and Semaphores to
Control Access to a Resource

If your goal is to maximize the performance of shared memory operations,
you can consider using the AViiON 88K processor’s assembly-language
xmem instructions in conjunction with semaphores.

The advantage of using xmem routines in conjunction with semaphores is
that you can avoid the overhead of making semaphore system calls if the
shared memory segment (or other resource) that you want to access is
available.

The disadvantage of using xmem routines is that they perform machine-
dependent test and set operations, and programs that use them are not
directly portable to non-88K platforms. However, other platforms have
similar test and set instructions. Furthermore, assembly language routines
that use the xmem instructions to speed access to shared memory are
typically very small, simple, and easy to isolate.

Obtaining a Resource

Figure 9 shows how to use a xmem routines and semaphore system calls to
obtain a resource. Because the goal is to obtain and release a resource
without using system calls (when there is no contention for the resource),
the logic is a bit trickier than you might expect.

The technique uses two locations in shared memory; one location as a
resource lock, the other location as a contention flag.

The binary resource lock is set to one when a process has obtained the
resource. The lock is set to zero when the resource is available. The

Samples of contention flag does two things: it enables the process to avoid a system

xmem routines call when the process releases the resource, and it enables the “release

are provided in resource” routines to know when another process is waiting for the

the “FYI”section | resource. (We talk about the contention flag in the next section.)

on page 23.
The first step in obtaining a resource is to use an xmem instruction to
perform a test and set operation on the lock location’s value. If the test is
successful, the process gets the lock (sets the lock to one), and can safely
access memory without using system calls (the shaded path in the figure).
If the test operation on the lock fails, the process knows that the resource is
being used. Because the xmem instruction has no facility to put a process
to sleep if the test operation fails, the process makes a semop system call to
set a semaphore, then sets the contention flag.

Taking Advantage of SMPs DG/UX Technical Brief

012-004177-00 June 16, 1992

¢y Page 21

It's possible that the process holding the resource lock released the lock
during the semaphore system call. Therefore, we test the lock again. If the
lock is available, we get it and access the shared resource.

If the resource is still locked, we use a semop system call to put the process
to sleep and wait for the semaphore to go zero. The routine that releases
the resource is responsible for resetting the semaphore.

Test and Set Resource Main Memory
Lock With xmem Instruction
(No System Call)

/

semop System Call to AccessShared
Set Semaphore Segment

Set Contention
Flag (xmem)

Test and Set Resource
Lock With xmem Instruction

Fast Path
i (No System Calls)

%1 Shared Memory
Segment

Yes
Get Lock? —

No

semop System Call to
Wait on Semaphore

Figure 9 Obtaining a Resource

DG/UX Technical Brief Taking Advantage of SMPs
June 16, 1992 012-004177-00

Page 22 ,

Releasing a Resource

In the last section, we mentioned the contention flag, but didn’t say much
about it. The key to releasing an uncontended resource, without making a

system call, is to use a contention flag in conjunction with the resource
lock.

A process sets the contention flag if it isn’t able to access a resource—if the
resource’s lock is set. When a process finishes accessing a resource, it resets
the resource lock and tests the contention flag (Figure 10). If the contention
flag is set, the process does a semop system call to wake up processes
sleeping on the resource’s semaphore. If the contention flag isn’t set, there
are no processes waiting for the resource, and there’s no need to do the
semaphore operation.

Finish Accessing)
Shared Segment Main Memory

Reset Resource Lock

Test Contention Flag MIM’
(xmem)

Reset Contention

Shared Memor
Flag (xmem) Segment y
Set Semaphore to

Zero (System Call)

Figure 10 Releasing a Resource

Note - A process that uses xmem routines with semaphores should include
signal-catching routines that advance semaphores and release any locks if
the process terminates unexpectedly.

Taking Advantage of SMPs DG/UX Technical Brief
012-004177-00 June 16, 1992

¢y Page 23

FYl—Sample xmem Routines

The following set of sample routines were developed at DG RTP for use
with semaphores and shared memory. These routines support unsequenced
locks. Support for sequenced locks requires somewhat more complex code.

Unsequenced locks are pending locks. If a process tries to obtain a lock that
is held by another process, the requesting process will be pended until the
lock is released. If several processes are waiting for the same lock, all
processes that are waiting on the lock will be awakened when the lock is
released, and the operating system’s scheduler will determine which
process to run. Therefore, this lock does not guarantee fairness, and a low
priority process can starve if a lock has heavy contention. This
implementation is biased toward the case where there is little or no
contention for the lock. In this case, no system calls are needed, and
processes can perform a lock or unlock operation in about 10 instructions.

The routines, which are shown in the following sections, are:
O lock_def.h—header definitions
a lock_util.c—C routines

Q lock_mgr.s—assembly language routines

lock_def.h

The lock_def.h file defines an unsequenced lock type, which contains the
variables held, contended, and semid.

A value of zero for held indicates that the lock is not being held, and a
process can obtain it immediately. A value of one indicates that another
process holds the lock.

The contended value is relevant only when held has a value of one. If the
value of contended is zero, no other process are waiting for the lock. A
value of one means that other processes are waiting for the lock.

The semid variable is an integer that contains the identification number of
the semaphore on which processes will wait if they cannot obtain the lock
immediately.

typedef struct

{

unsigned long held;
unsigned long contended;
int semid;

}

unsequenced_lock_type ;

typedef unsequenced lock type * unsequenced_lock ptr type ;

DG/UX Technical Brief Taking Advantage of SMPs

June 16, 1992

012-004177-00

Page 24 ¢,

lock_util.c

The module lock_util.c contains C language routines for implementing
unsequenced locks.

All code that uses a lock should be within the pair of functions
initialize_unsequenced_lock and deinitialize_unsequenced_lock.

The functions wait_for_unsequenced_lock and
wakeup_unsequenced_lock are internal to the implementation of the locks
and should not be called directly by users.

The obtain (lock) and release (unlock) functions for unsequenced locks are
in the module lock_mgr.s (page 26).

/*< */
/* lock util.c */
/% */

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <errno.h>
#include “lock_def.h”

/*.function */

void initialize unsequenced_lock (lock ptr)

unsequenced_lock ptr type lock ptr; /* READ WRITE */

/%

/* This function initializes an unsequenced lock. This function
/* must be called before any lock operations (obtain, release)
/* are applied against the lock.

/%

/* The caller is responsible for allocating the storage for the
/* lock instance. This function simply initializes that

/* storage.

/*

{

lock_ptr->held = 0;

lock _ptr->contended = 0;

lock_ptr->semid = semget (IPC_PRIVATE, 1, 0777);

if (lock_ptr->semid == -1)
{
printf (“*Semget failed in lock initialize with errno %d.\n”, errno);
}

}

/*.End_Function initialize unsequenced lock */

/*.function */
int deinitialize_unsequenced_lock (lock ptr)

unsequenced_lock ptr type lock ptr; /* READ WRITE */

Taking Advantage of SMPs DG/UX Technical Brief
012-004177-00 June 16, 1992

¢y Page 25

/%

/* This function performs the inverse of the

/* initialize_unsequenced lock routine. Any resources allocated
/* for use in implementing the lock functions are freed.

/* Note that this function does NOT reclaim the memory

/* occupied by the lock. Management of the memory is the

/* responsibility of the caller.

/%

if (semctl(lock ptr->semid, 0, IPC _RMID, 0))
{
printf (“Semctl failed in lock deinitialize with errno %d.\n”, errno);
}

}

/*.End_Function deinitialize_unsequenced lock */

/*.function */

void wait_for_unsequenced lock (lock ptr)

unsequenced_lock ptr_type lock ptr; /* READ ONLY */

/%

/* This function waits for an unsequenced lock to be released.
/* When the lock is released, this function tries again to
/* obtain the lock, and returns only when the lock has been
/* successfully obtained.

/%

/* Note that this function may pend waiting for the lock to
/* become available.

/%

{

struct sembuf sembuf [1];

union semun semun;

while (!obtain_unsequenced_lock no_wait (lock ptr))

{

semun.val = 1;

if (semctl(lock ptr->semid, 0, SETVAL, semun) == -1)
{
printf(“Lock wait semctl failed with errno %d.\n”, errno);
}

lock_ptr—>contended = 1;

if (obtain_unsequenced_lock no_wait (lock ptr))
{
break;
}

sembuf [0] .sem num = O0;

sembuf [0] .sem op = 0;

sembuf [0] .sem flg = O0;

if (semop(lock ptr->semid, sembuf, 1) == -1)
{
printf(“Lock wait semop failed with errno %d.\n”, errno);

}

DG/UX Technical Brief Taking Advantage of SMPs
June 16, 1992 012-004177-00

Page 26 ¢,

/*.End_Function wait_for unsequenced_lock */

/*.function */

void wakeup unsequenced lock (lock ptr)

unsequenced lock ptr type lock ptr; /* READ ONLY */

/%

/* This function is part of the internal implementation of

/* unsequenced locks. It is called when a lock is released

/* and there are processes waiting for the lock. This function
/* awakens those waiting processes.

/%

{

union semun semun;

lock_ptr->contended = 0;

semun.val = 0;

if (semctl(lock_ptr->semid, 0, SETVAL, semun) == -1)
{
printf (“Lock wakeup semctl failed with errno %d.\n”, errno);
}

}

/*.End_Function wakeup_unsequenced lock */

/*.End_Module lock util.c */

lock_mgr.s

The module lock_mgr.s contains the assembly language functions
obtain_unsequenced_lock, release_unsequenced_lock, and
obtain_unsequenced_lock_no_wait.

;*.function *;

; void _obtain_unsequenced lock (lock ptr)

;junsequenced lock ptr_type lock ptr; /* READ WRITE */

;‘k

¥ This function obtains an unsequenced lock. If the lock is
Hd not immediately available, the calling process is pended
;* until the lock is available.

’x

r

_obtain unsequenced lock:

or r3,r0,1 ; Get a constant 1

xmem r3,r2,r0 ; Try to obtain the lock
bend ne0, r3,wait for lock ; Did we obtain the lock?
Jjmp rl ; Yes. Return to the caller.

wait_for_ lock:
br _wait_ for unsequenced lock ; go wait for the lock

;*.End_Function _obtain_unsequenced lock *;

Taking Advantage of SMPs DG/UX Technical Brief
012-004177-00 June 16, 1992

€y Page 27

;*.function *;

; void _release_unsequenced_lock (lock ptr)

;junsequenced lock ptr type lock _ptr; /* READ WRITE */

p*

Hhd This function releases an unsequenced lock that was previously
i obtained. If any processes are waiting on the lock, they are
;¥ awakened.

*

_release _unsequenced lock:

st r0,r2,0 ; Clear the ‘held’ flag

1d r3,r2,4 ; Get the contended flag
bend ne0, r3, wakeup waiters ; Is anybody waiting?

jmp rl ; No. Return to the caller.

wakeup waiters:
br _wakeup_unsequenced lock ;i Go wakeup waiters

;*.End_Function _release_unsequenced lock *;

;*.function *;

; int _obtain unsequenced lock no wait (lock ptr)

;junsequenced_lock ptr type lock_ptr; /* READ WRITE */

,-*

P x This function obtains an unsequenced lock if it can, but does
i not pend if some other process holds the lock.

.

r

* Return Value:

. %

r

;* Srval (“1”) The lock was successfully obtained. The calling
Had process holds the lock.

%

’

H %¥rval (*0”) The lock was not obtained because some other

¥ process holds the lock.

*

~

_obtain_unsequenced lock no_wait:

or r3,r0,1 ; Get a constant 1

xmem r3,r2,r0 ; Try to obtain the lock
cmp r3,r3,r0 ; Compare with 0

jmp.n rl ; Return to the caller
extu r2,r3,1l<eqgq> ; Return equal bit

;i*.End_Function _obtain unsequenced lock _no wait *;
;*.End_Module lock mgr.s *;

DG/UX Technical Brief Taking Advantage of SMPs
June 16, 1992 012-004177-00

Page 28 ¢,

Semaphores and xmem Routines—Test Results

We developed a program to test the hypothesis that the use of xmem
routines and semaphores is an efficient way of synchronizing processes
that are exchanging data.

The test program timed how long it took for one and two pairs of
processes to exchange “N” bytes of data 1,000 times, using shared memory.
The test was run on a 25 Mhz quad-processor AViiON AV5240 with 400
Mbytes of memory, running at init level 1.

The amount of data exchanged (“N”) was 1K, 2K, 4K, and 16K. For each
combination of process-pairs and amount of data, we made one run using
semaphores to synchronize the processes and one run using semaphores
plus xmem routines to synchronize the processes.

Table 3 shows the time (in seconds) to complete 1,000 one-way transfers at
each of four transfer sizes. The times are wall clock times, measured with
the time command. In all cases, the use of semaphores plus xmem routines
offers a performance advantage over the use of just semaphores. We've put
in parenthesis the time (in seconds) that semaphore plus xmem was faster
than using semaphores alone.

Table 3 Data From Semaphore Tests

Number of Process Pairs

1 2

Semaphores

1.6

3.0

Semaphores + xmem

1.5(0.1)

27(0.3)

Semaphore

3.2

5.7

Semaphores + xmem

4.9 (0.8

Semaphore

7.5

114

Semaphores + xmem

4.7 (2.8)

6.3 (5.1)

Semaphore 28.1 435
Semaphores + xmem 19.2(8.9) 33.9 (9.6)
Taking Advantage of SMPs DG/UX Technical Brief
012-004177-00 June 16, 1992

@y Page 29

Because the times in the table are wall clock times, they include the time
that it takes to start the processes, the time to transfer the data, and the
time to synchronize the processes. The times in parentheses isolate the
difference in synchronization times between the two techniques.

Figure 11 shows graphically the percentage or time that the use of
semaphores and xmem routines was better than using semaphores alone.
On the average, the time to exchange the data was 24% better for
semaphores plus xmem routines.

Percentage That Semaphore Plus xmem Synchronization is
Better Than Semaphores Alone

For each transfer size, data is for
LU At one and two process pairs.

80

60
40

20

1 KByte Transfers ~ 2KByte Transfers 4 KByte Transfers 16 KByte Transfers

Figure 11 Comparison of Semaphores and Semaphores Plus xmem Routine

Remember that the performance increases that are highlighted by this test
are based on the assumption that there is little contention for the shared
memory resource. The assumption is that you will generally get the lock
(and access the resource). In cases where there is potentially heavy
contention for a resource, the use of semaphores by themselves may offer
performance advantages.

DG/UX Technical Brief Taking Advantage of SMPs
June 16, 1992 012-004177-00

Page 30 ¢y

FYI—Other Interprocess Communication Techniques

For comparison, this section talks about some of the other interprocess
communication techniques that were mentioned earlier in this technical
brief. These techniques include:

O signals
U message queues

Q pipes and sockets

Signals

Signals are asynchronous software interrupts that tell a process that an
error or exceptional event has occurred. When a process receives a signal,
the process has the option of taking some action other than its normal
execution path.

Although you can use signals to synchronize data-sharing processes, they
were not designed for use in a synchronization role. Compared to
semaphores, signals are expensive users of kernel resources.

Message Queues

Message queues are a bi-directional facility that enables processes to
exchange packets of data (messages) by sending and receiving messages to
and from a kernel buffer (a message queue). To borrow from network
terminology, message queues support datagram connections.

The performance of message queues isn’t as good as that of shared
memory because message queues require two data-copy operations—one
to send a message to the queue, the other to send the message from the
queue to the receiving process’s address space. However, compared to
shared memory, message queues can be a good choice if programming
convenience outweighs performance, and you are infrequently passing
relatively small amounts of data. Regardless, message queues are a
significantly more efficient way of exchanging data than using files in the
file system.

Message queues are not designed to work across different machines. To
pass data across networks requires that you use sockets, which are
described in the next section.

Taking Advantage of SMPs DG/UX Technical Brief

012-004177-00

June 16, 1992

@y Page 31

Pipes and Sockets

Pipes and sockets are designed to transfer arbitrary amounts of data
among processes. Unlike message queues, which transfer data in packets,
pipes and sockets work with streams of data. Borrowing again from
network terminology, pipes support streams connections, while sockets can
support both streams and datagram connections.

Pipes support transfers of data among process on a single machine. Sockets
support transfers of data across a network.

The performance of pipes and sockets isn’t as good as that of shared
memory because pipes and sockets require two data-copy operations: from
the address space of the sending process to a kernel buffer, then from the
kernel into the receiving process’s address space. However, pipes and
sockets can be a good choice if you are passing relatively small amounts of
unformatted data and programming convenience outweighs performance.

Pipes

There are two kinds of pipes: unnamed and named. Unnamed pipes
provide a communication path between related processes—the process that
created the pipe and its descendants. Named pipes support communication
among unrelated processes. Unlike unnamed pipes, named pipes have a
pathname; a name in a file system’s name space.

In the DG/UX 5.4 operating system, pipes are implemented with the
Streams facility instead of using the file system as in earlier versions of the
operating system. That means that pipes are now bi-directional and that
each end of the pipe is a Streams interface.

Pipes automatically synchronize processes. A process can sleep while
waiting for data to come into the pipe. Likewise, a process can sleep while
waiting for a pipe to empty.

Another advantage of pipes over message queues is that processes using
the pipe are signalled if the process at the other end of the pipe terminates.
The kernel detects that a process in a pipe-pair has exited and sends to the
other a SIGPIPE signal.

Sockets

Sockets, originally a BSD extension to UNIX, are a standard part of the
DG/UX operating system. Sockets provide processes with a general way of
using network protocols to communicate across networks. They can be
used to pass streams of data or to pass datagrams (packets of data).

Sockets allow you to write client and server programs that are independent
of the type of network that the programs use to communicate. Sockets
support network independence by enabling you to specify the type of

DG/UX Technical Brief Taking Advantage of SMPs

June 16, 1992

012-004177-00

Page 32 ¢y

network protocol (the socket’s domain) that you want a process to use. As
examples, sockets in the Unix domain enable processes to communicate
locally within a machine. Sockets in the TCP/IP domain enable the same
processes to communicate across a network. This allows a process such as
an X windows client to run on the same machine as the server process, or
use a network domain, such as TCP/IP, to access a server on a different
machine.

Sockets are implemented in layers (Figure 12). The socket layer accepts
system calls from a user process and sends them to the protocol layer. The
protocol layer contains code that implements the functions of a particular
network. The protocol layer typically supports sub-layers. For example, a
TCP/IP protocol layer implements TCP’s virtual circuits at one level and
the IP’s handling of datagrams at a lower level. The device driver layer is
machine dependent, and provides support for physical protocols, such as
Ethernet.

Client Machine Server Machine

User Process

User Process

User Space

Kernel Space
Socket Socket
$ $
Network Network
Protocol Protocol

4

Device Driver

¢

Device Driver

g..

Figure 12 Layered Implementation of Sockets

For More Information

Among the articles that discuss multiprocessor systems in more detail are:

DG/UX" Technical Brief: A Second Look at Multiprocessor SMPs
(012-003886-02), July 31, 1991, Data General Corporation

Taking Advantage of SMPs DG/UX Technical Brief

012-004177-00

June 16, 1992

