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computer systems.

In that earlier technical brief, we said: “you don’t need

to change your application software to run it on an

AViiON multiprocessor system. You can run the exact

same applications on single-processor systems and

multiprocessor systems.”

That statement is true—you don’t need to change your

applications when you move them from a single-

processor AViiON system to a multiprocessor system. However, an

application that is designed to run on a single-processor system may not

take complete advantage of an SMP system’s multiprocessors.

This technical brief talks about the kinds of design and implementation

techniques that enable you to take complete advantage of multiprocessor

systems. Specifically, we’ll talk about ways that you may be able to

improve application performance by designing applications that provide

opportunities for process parallelism. You can use these techniques when

you design new applications or when you make changes to existing

applications.
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What’s in This Technical Brief

An application

that runs for 6

hours to predict

what the weather

will be in 2 hours

is not particularly

useful.

This technical brief focuses on ways to reduce applications’ elapsed time as

you scale up the number of Job Processors (JPs) in your system. As an

application designer, you have access to a range of techniques that enable

you to build applications that take full advantage of multiple-JP SMP

systems, and we'll talk about those techniques.

When you are writing applications that will run on SMP systems, your

basic goal is to keep all of the Job Processors in the SMP systems

productively busy. We say productively busy, because a poorly designed

application can keep JPs busy doing the “wrong” things, such as switching

from one process’s context to another, or looping for long periods of time

while processes wait on locks.

Designing applications that take advantage of an SMP system requires an

understanding of two related issues:

OQ interprocess communication—how to select the most efficient ways of

enabling the processes in your applications to exchange data.

C) process synchronization—how to select the most efficient ways of

controlling the interaction among the processes in your applications.
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Measuring System Performance

There are two ways of measuring the performance of an SMP system,

throughput and elapsed time. Throughput is a measure of how many jobs

(processes) a system can execute in a given time period—perhaps in a

second. As you scale up from a single-JP DG/UX system to a dual-JP SMP

system, you automatically see a nearly two-to-one increase in process

throughput—the number of processes that the machine runs in a second.

For example, the throughput of a quad-JP system is nearly twice that of a

dual-JP system. The vertical bars in Figure 1 show the relative increases in

throughput as you scale up from a single-JP system to a quad-JP system.

Elapsed time is the time that it takes for an application to run. As you scale

up from a single-JP system to a multiple-JP system, you may not see an

equivalent decrease in an application’s elapsed time. That’s because an

application designed to run on a single-JP system may not provide the

process parallelism that can take full advantage of a multiple-JP system.

The lines in Figure 1 (plotted against the right-hand axis) compare the

difference in elapsed time between applications that consist of parallel

processes and applications that don’t contain parallel processes.
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Figure 1 Process Throughput and Elapsed Time
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some AVIiON SMP Process Scheduling Concepts

An AViiON multiprocessor system is a Symmetric Multiprocessing (SMP)

system. The key word here is symmetric, which means that the multiple JPs

(the CPUs) in an AViiON SMP system are seen by user programs and the

DG/UX operating system as equivalent.

Processes, Virtual Processors, and Job Processors

Processes are programs in execution. On AViiON systems, processes run on

Virtual Processors (VPs), which are software abstractions of the computer’s

real, physical JPs (Figure 2). Because they are software abstractions, VPs

hide the implementation details of the underlying hardware from the

processes.

Process Process] |Process| |Process| {Process eeee Process
3 4 “p”

Medium-Term Scheduling

(Binding Processes to VPs)

VP 0 VP 1 VP 2 VP 3 coer VP “Vv”

Low-Level Scheduling (Dispatching)

(Assigning VPs to JPs)

Job cee. Job

Processor 0 Processor “J”

Figure 2 Processes, Virtual Processors, and Job Processors

Process States

On a DG/UX system, a process can be in one of several states. For our

purposes, we’re interested in the following process states:

Q Running

QO Runnable

QO Sleeping

Taking Advantage of SMPs DG/UX Technical Brief
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Running

A running process is executing on a JP. The Medium Term Scheduler has

bound the process to a VP and the dispatcher has assigned the VP to a JP.

The process can be executing in either user space or in kernel space.

Note: While it’s technically correct to say that “processes are bound to VPs,

which run on JPs,” most people say that “processes run on JPs.”

We’ll start using that simpler terminology here.

Runnable

A runnable process is waiting for a JP to become available. The process is

bound to a VP and is eligible to run when a JP is available.

The dispatcher maintains a VP scheduling queue that lists all of the

runnable processes. In the scheduling queue, the runnable processes are

arranged by priority—the highest priority runnable process is at the head

of the list.

The Medium Term Scheduler (MTS) is responsible for providing priority

information for user processes. Kernel processes, such as the MTS itself, are

permanently bound to VPs, and usually have higher dispatcher priorities

than user processes.

The MTS provides several heuristics that support fair time-sharing

scheduling policies. The MTS assigns and keeps track of processes’ on-JP

time slices, and can adjust time slices for interactive (I/O intensive) and

compute-bound processes.

Sleeping

A sleeping process is waiting for an event to occur—the process is sleeping

on the event. The distinction between a sleeping process and a runnable

process is that a sleeping process is not waiting for a JP to become

available.

Processes can go to sleep for many reasons. For example, a sleeping

process can be waiting for an I/O operation or waiting for a resource

(perhaps a data buffer) to become available.

In terms of JP resources, sleeping is relatively inexpensive. The kernel does

A sleeping a context switching operation when it takes the process off a JP. After that,

process that a sleeping process doesn’t use JP resources, it just uses a slot in a system-

becomes wide process table that the kernel maintains. This is in contrast to a process

runnable may not§_ that is doing a busy/wait operation, which uses JP resources while the

start executing process runs in a loop.
immediately

When an event occurs, the kernel wakes up all of the processes that are waiting

on that particular event. That’s a key point—if more than one process is

waiting on the same event, all of the waiting processes are awakened and

DG/UX Technical Brief Taking Advantage of SMPs

June 16, 1992 012-004177-00



Page6 @

placed into the VP scheduling queue as runnable. Therefore, a sleeping

process that becomes runnable when an event occurs may not be the next

process to start running when a JP becomes available—it depends on the

process’s priority relative to the other runnable processes.

e,
ofa +
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otetete.

ere ate,ora a eo ete ee ones «

C = Context Switch

; T = Time Slice Out =.
Processes Oo aeeesssesescrnrnrernrrnrrnm

Runnable ge

P4] Runnable

Figure 3 Sleeping, Runnable, and Running Processes on Dual Processors

The figure shows several interesting things about processes and process

management. For example:

1 Processes are considered to be running while they are executing in user

space, making a system call, or performing a context switch.

Q When a process’s time slice runs out, the process becomes runnable (P2).

At that time, other processes at the same priority level can execute (P4

starts running when P2’s time slice runs out).

) The time to perform system calls is different from call to call (compare P1

and P3)

1 A system call need not result in a context switch (P4).

Taking Advantage of SMPs DG/UX Technical Brief
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system Calls, Mode Switching, and Context Switching

A system call causes a process to switch modes—from running in user

space (user mode) to running in kernel space (kernel mode), then back to

user space (Figure 4).

A mode switch is not the same thing as a context switch—a process can

continue running on a JP while it switches modes. By contrast, in a context

switch, the kernel takes a process off a JP.
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Time

Figure 4 Mode Switching Overhead of a System Call

The kernel (driven by the kernel’s Medium Term Scheduler) performs a

context switch when it decides that it should take a process off a JP to run

another process. A context switch requires that the kernel push a process’s

state information onto a stack. By popping the process’s state information

off the stack, the kernel can start running the process at the point it was

interrupted.

Context switch operations can be relatively expensive users of JP resources.

A typical context switching operation may take from 150-to-200

microseconds.! In the time that it takes to perform a context switch, a

process could be executing as many as 1500-to-2000 instructions.

Mode switching is far less expensive than context switching. A round-trip

mode switching operation requires about 25 microseconds to complete (not

counting the time that it takes to execute the system call’s code). Therefore,

any time that you avoid a system call, a process could run as many as 250

instructions.

1. Ona 25Mhz 88100-based AViiON system.
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Design Goals for SMP Applications

Based on the information in the previous sections, we can make some

observations about how to design applications that will take advantage of

SMP systems.

On page 2, we said that the general goal for taking advantage of an SMP

system, is to “... keep all of the JPs in the SMP productively busy.” The keys

to achieving that goal are to:

Q maximize opportunities for parallelism— by partitioning applications

into cooperating processes;

QO minimize process context switching—by providing an optimum ratio of

processes to JPs;

(i minimize contention for resources—by using appropriate interprocess

communication and synchronization techniques.

The next three sections talk about techniques that you can use to achieve

these three goals. Bear in mind that these three objectives are very much

inter-related, and an application won’t perform as well as it could unless

all three objectives are met. For example, it’s not enough to simply

partition an application into some arbitrary number of processes. For best

performance, your application must strike a balance between the number

of processes and JPs. If there are many more processes than JPs, an

application can spend too much time doing context switch operations. If

there are too few processes, all of the JPs won’t be productively busy.

Maximizing Opportunities for Process Parallelism

The boundaries

of an existing

application may

not provide the

An application that takes advantage of an SMP system is one that provides

cooperating processes that an SMP system can run in parallel.

One key to providing parallel processes is to find the natural boundaries in

an application, based on what kind of work needs to be done. Then, you

can determine which parts of an application should have their own

processes and which parts can be grouped together in a process.

When you partition an application into processes, you should recognize that

best way of the logical or functional boundaries of an application may not provide the

partitioning the most efficient way of creating processes. This is especially true if you’re

application. working with an existing application that was designed to run on a single
processor system. For example, some database management systems

provide one process for each client; the more clients, the more processes,

with the potential for more context switches. In cases like this, you should

consider partitioning the application horizontally (across similar functions)

rather than vertically.

Taking Advantage of SMPs DG/UX Technical Brief
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Another key to achieving the goal of parallelism is to design your

applications so that they minimize the time that the processes in the

application must run sequentially. By sequentially, we mean that the

process must run to completion before a follow-on process can start. The

amount that you can speed up an application is limited by the time that it

takes to run the longest process in the application, no matter how many

processors are available to run the application.

Figure 5 shows an example of how minimizing the sequential layout of

processes pays off when you run the processes on a machine with multiple

JPs.

Assume that we have an application with four cooperating processes: P1,

P2, P3, and P4. (By cooperating, we mean that process P2 uses data from

process P1, P3 uses data from P2, and so on.) This is typical of processes

that support the different phases of a compilation, or processes that

analyze the same stream of data in many different ways.
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Figure 5 Sequential and Parallel Processes

In Figure 5, we’ve assigned arbitrary execution times to each process; 3, 5,

8, and 4 units respectively. Assume that this is pure execution time,

without considering time waiting for I/O operations. Assume also that a

time unit is much greater than a process’s context switching time.

DG/UX Technical Brief

June 16, 1992

Taking Advantage of SMPs

012-004177-00



Page 10 4,

Therefore, the total time required to run the application is 20 time units,

assuming that each process runs 100% sequentially—that each process in

the application runs to completion before the next process can get its data

and start running. The other cases show what happens when a cooperating

process can start when 80% and 40% of its predecessor process is complete.

It’s easy to see how reducing the time that processes must run sequentially

increases opportunities for parallelism. For example, if each process in the

application runs sequentially for 80% of its execution time before the

following process can start, there’s 20% of each process’s execution time

available for performance increases from parallelism.

While the actual on-JP execution times of the four processes is the same for

all three cases, the wall-clock time (elapsed time) for downstream processes

can be longer. The shading in process P4 of the 40% sequential case

indicates time during which the process has to wait for data from process

P3, and does not fully utilize the services of a JP. During this time, the

process could be swapped off a JP to enable a higher priority process to

run.

Figure 6 shows the opportunities that the example application has to take

advantage of two JPs. The 80% version has three dual-JP time slots

(marked with background shading). The 40% version has four

opportunities to use two JPs.

Taking Advantage of SMPs DG/UX Technical Brief
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Figure 6 Opportunities to use Dual ]Ps

The bar chart at the bottom of the figure shows JP utilization for the 40%

sequential design. The 40% sequential design takes good advantage of dual

JPs. However, neither the 80% version or 40% versions provide

opportunities to use more than two JPs, because only two processes are

able to run in parallel (unless there are multiple instances of the

application running).

If you have a situation like this (a multiple process application with poor

parallelism) you may be able to achieve more opportunities for parallelism

by reordering the application’s processes.
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Figure 8 shows what happens when we change the order of the first three

processes in the example. Ordering the processes this way starts to take

advantage of three and four JPs. (The bar chart at the bottom of the figure

shows JP utilization for the 40% sequential design.)
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DG/UX Technical Brief

independently. The first (main) process splits up the data, then collects and

combines the results from each data-processing process.

one process to divide the application’s data into separate pieces. You can

When you design some applications, you may find that it’s possible to use

then pass the data off to other processes, which work on the data

Taking Advantage of SMPs
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Figure 8 shows an example of this technique. Here, process P1 starts three

other processes, which then go to sleep. As soon as process P1 starts

generating data that the other processes can use, process P1 wakes them up

and they start working on the data.

P1 passes data — P1 collects data

toanalysis =| LS from analysis
processes CY ENE processes

SOULE

ORR SE OO aE

SO a tot NN I et i a oat ae ee ot ae ae Oe Oe ae oe ae
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CLEAN AAA RRAR AAR ARERR
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Figure 8 Creating Parallel Processes for a Quad JP SMP

This technique of splitting data is used often in applications that process

graphical data. For example, you can split the RGB bands of a graphical

data file, process each band’s data separately, then collect and post-process

the data.

Minimizing Process Context Switching

Because DG/UX is a multi-programming system, you can’t avoid context

switches completely. Ideally though, you'd like each process in your

application to run on a JP until the process’s time slice expires. When a

time slice expires, the Medium Term Scheduler looks at the run queue to

see if there are other processes that need to run.

To achieve this run-to-completion goal with a real world application is

probably not possible (unless the application is compute-bound). However,

a focus on the goal of keeping processes running on JPs for their entire

time slice can help you minimize the number of context switches in an

application.

DG/UX Technical Brief Taking Advantage of SMPs
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The general way to minimize context switching operations is to partition

an application into the number of processes that balance JP utilization and

context switches. Some more specific ways of achieving a balance between

JP utilization and context switches are listed below.

Q ‘Try to balance the workload among the application’s processes—don’t let

one process do all of the work.

Q ‘Try to design processes that can run for relatively long periods of time.

Too many short duration processes can cause excessive context switches.

For example, rather than writing small amounts of data to a file, you

might be able to batch the data and write it all at once.

Q When you have a very short duration process that has to wait for some

Ideally, you'd I/O, consider keeping the process running by using a busy/wait instead

like each of allowing a context switch. (By short duration, we mean a process that

process in your runs for a period of time less than it takes to do a context switch.)

application to
run until the QO Avoid unnecessary system calls. By taking system calls out of loops or by

process’s time using library functions, you can enable a process to spend more time

slice expires running in user space and save the time that it takes a process to switch

modes.

Q ‘Try to increase the probability that a resource will be available when a

process tries to access the resource. Instead of having a process check to

see if a resource is available, use one of the interprocess communication

techniques (such as semaphores or message queues) that puts a process

to sleep if a resource is unavailable, and wakes it up when the resource

becomes available.

QO Recognize that it’s useful to design single-purpose processes if the work

that the process has to do is relatively infrequent. An example is a

process that listens for mouse input.

Q ‘Try to minimize disk I/O operations. Relative to JP time, disk I/O is very

time consuming. For example, some applications use files as resource-

locking mechanisms. You can minimize disk I/O by replacing file locks

with semaphores (described later). Or, you could use memory mapping

(mmap) operations and shared memory to avoid file-based system calls.

Taking Advantage of SMPs DG/UX Technical Brief
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Techniques for Interprocess Communication and

Synchronization

The third goal for taking advantage of SMP systems is to minimize

contention for resources, by using appropriate interprocess communication

and synchronization techniques.

The DG/UX operating system provides several interprocess

communication (IPC) facilities (Table 1) that you can use to exchange and

share data among processes, and to synchronize processes.

Table 1 IPC Techniques

To Share/Exchange Data To Synchronize Processes

QO Shared memory 1) Semaphores and xmem

instructions
O) Message queues

QO Pipes and sockets 4 Signals

Q Shared files Files used as locks

Table 2 on the next page summarizes the pros and cons of these techniques.

With these IPC techniques, you can implement the same interprocess

communication and synchronization models. The trick is to select the most

cost-effective techniques for your particular application or mix of

applications—cost-effective in the context of a technique’s use of system

time and resources.

In this technical brief, we're going to focus on the shared memory

technique. Unlike the other data sharing/exchanging facilities, shared

memory does not provide automatic process synchronization. Therefore,

we'll talk about semaphores and xmem instructions, which you can use to

synchronize processes that are sharing memory.
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Table 2 Comparing IPC Techniques

Technique What Does It Do? Pros Cons

Shared Enables processes to f Best performance, doesn’t I Requires code to

memory map areas of virtual use kernel resources or synchronize processes and

memory into their system calls (after memory regulate data flow

address spaces. Trans- | segments are set up) § Cannot communicate
fers arbitrary amounts | § Good for sharing large across network
of unformatted data. amounts of data

— Supports sharing among

multiple processes

Semaphores | Supports the synchroni- | If Very flexible # Cannot communicate

zation of processes. synchronization features across a network

Often used in conjunc- | g Very inexpensive when
tion with shared mem- combined with xmem

Ory: routines

Messages Enables processes to i Convenient—easy to code _ | & Requires two data-copy

send and receive mes- I Automatic synchronization | operations

Sages among arbitrary and self regulated data flow | & Limits on amount of data

Processes via queues: f Security—supports private | that can be transferred
Transfers data bi-direc- .

; . message queues H Cannot communicate
tionally in datagrams.

across a network.

Pipes Provides explicit com- f Convenient—easy to code. | I Requires two data-copy

munication path § Automatic synchronization | Operations
between two ST nate. and self regulated data flow | & Cannot communicate

mB Proce ees. ransfers § Signalled when cooperating | across a network.
data bi-directionally in .

process has failed. E Works only between a
streams. :

parent and its descendant.

sockets Provides communica- — Can communicate among I Requires two data-copy

tion path between processes on a network operations.

(potentially) unrelated f Automatic synchronization
Processes, across anet- | and self regulated data flow
work. Transfers data bi- ;
ss ; # Signalled when cooperating

directionally in streams .
process has failed.

or datagrams.

Signals Way of synchronizing i Provided automatically by | & Expensive—uses

processes. Informs a kernel significant kernel resources

process that an excep- E Difficult to code—
tional event has maintaining process
occurred. synchronization is error

prone

Files send and receive data i Very portable i No automatic

via shared files. I Easy to use synchronization

I NFS support over network | # Slow

f Contention for locked files
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shared Memory

In terms of performance, especially if several processes are sharing or

exchanging large amounts of data, shared memory is almost always your

best choice. The shared memory technique is the fastest and the most

general of the IPC techniques. Shared memory enables processes to map

the same memory pages into their virtual address spaces.

Once you've set up the shared memory segments, processes can read and

write data from and to the segments, without using system calls.

Sharing memory requires only one copy of shared data—using shared

memory doesn’t require the extra data-copy operation that is needed by

other IPC techniques. To pass data through a message queue, for example,

requires that data be copied from a process’s address space to the kernel

(into a message queue) and then to the other process’s address space. With

shared memory, processes simply read and write data from the shared

segment of memory. Therefore, the performance advantage of shared

memory becomes more evident as the amount of shared data increases.

Because shared memory provides a very general interface, it requires that

you establish the rules of how processes are going to use a shared memory

segment. Also, shared memory provides no process-synchronization

primitives—you must establish the rules and write the code that supports

synchronization. This isn’t as bad as it sounds, because semaphores

(outlined in the next section) are a natural complement to shared memory.

The system calls that support shared memory are listed below.

OQ shmget—creates a new shared memory segment and sets up the

segment’s attributes, or gets the identifier of a shared memory segment

4) shmctl—sets or gets shared memory-segment attributes or destroy a

shared memory segment

(1 shmat—attaches a shared memory segment to the virtual address space

of a process

4) shmdt—detaches a shared memory segment from a process’s address

space
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semaphores and xmem Routines

Semaphores are data structures that are used primarily to synchronize

processes that are sharing a resource or service, such as shared memory. By

examining the value of a semaphore (or set of semaphores), a consumer

process can tell whether it can obtain the resource or service.

Semaphore system calls, by themselves, provide a robust way of handling

interprocess synchronization. However, for situations that require

maximum performance, you can combine the use of semaphores with

assembly language routines that use the AViiON 88K processor’s xmem

instruction. By writing small xmem assembly language routines, you can

avoid much of the overhead of making semaphore system calls to access

shared memory.

Semaphores

The point of using semaphores is to avoid wasting JP resources by having

processes continually checking to see if a resource is available. The

semaphore facility wakes up processes that are waiting for a semaphore

value to change.

Taking Advantage of SMPs DG/UX Technical Brief

012-004177-00 June 16, 1992



q, Page 19

You can initialize semaphores to selected values. For example, if you have

four instances of a resource, you can initialize a semaphore to four. The

first four processes that access the resource decrement the semaphore’s

value. When a fifth process tries to access the resource, the decrement

operation causes the semaphore value to go negative, and the process goes

to sleep—waiting for one of the first four processes to finish its work with

the resource.

The semaphore facility keeps track of how many processes are waiting for

different semaphore events to occur. The facility also keeps track of how

many processes are waiting for a semaphore to go to zero, or go to a

positive number from zero. Semaphores also provide an option that

enables the operating system to undo semaphore operations if a process

terminates.

The system calls that support semaphore operations are listed below.

() semget—creates a new semaphore (or set of semaphores) and sets up

their attributes, or gets the identifier of an existing semaphore.

1) semctl—performs one of several semaphore commands, such as

returning the semaphore’s value, returning the PID of the last process

that operated on the semaphore, and returning the number of processes

that are sleeping on the semaphore.

() semop—performs P (decrement), V (increment), or wait-for-zero

operations on a semaphore or set of semaphores.
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Using xmem Routines and Semaphores to

Control Access to a Resource

If your goal is to maximize the performance of shared memory operations,

you can consider using the AViiON 88K processor’s assembly-language

xmem instructions in conjunction with semaphores.

The advantage of using xmem routines in conjunction with semaphores is

that you can avoid the overhead of making semaphore system calls if the

shared memory segment (or other resource) that you want to access is

available.

The disadvantage of using xmem routines is that they perform machine-

dependent test and set operations, and programs that use them are not

directly portable to non-88K platforms. However, other platforms have

similar test and set instructions. Furthermore, assembly language routines

that use the xmem instructions to speed access to shared memory are

typically very small, simple, and easy to isolate.

Obtaining a Resource

Figure 9 shows how to use a xmem routines and semaphore system calls to

obtain a resource. Because the goal is to obtain and release a resource

without using system calls (when there is no contention for the resource),

the logic is a bit trickier than you might expect.

The technique uses two locations in shared memory; one location as a

resource lock, the other location as a contention flag.

The binary resource lock is set to one when a process has obtained the

resource. The lock is set to zero when the resource is available. The

Samples of contention flag does two things: it enables the process to avoid a system

xmem routines call when the process releases the resource, and it enables the “release

are provided in resource” routines to know when another process is waiting for the

the “FYI” section resource. (We talk about the contention flag in the next section.)
on page 23.

The first step in obtaining a resource is to use an xmem instruction to

perform a test and set operation on the lock location’s value. If the test is

successful, the process gets the lock (sets the lock to one), and can safely

access memory without using system calls (the shaded path in the figure).

If the test operation on the lock fails, the process knows that the resource is

being used. Because the xmem instruction has no facility to put a process

to sleep if the test operation fails, the process makes a semop system call to

set a semaphore, then sets the contention flag.
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It’s possible that the process holding the resource lock released the lock

during the semaphore system call. Therefore, we test the lock again. If the

lock is available, we get it and access the shared resource.

If the resource is still locked, we use a semop system call to put the process

to sleep and wait for the semaphore to go zero. The routine that releases

the resource is responsible for resetting the semaphore.

Test and Set Resource Main Memory

Lock With xmem Instruction

(No System Call)

Lock} Contention

semop System Call to Access Shared a“
Set Semaphore Segment

Y
Set Contention

# Fast Path

Flag (xmem) = (No System Calls)

Test and Set Resource ee Shared Memory

Lock With xmem Instruction Segment

Yes

Get Lock? ——P-

No

semop System Call to

Wait on Semaphore

Figure 9 Obtaining a Resource
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Releasing a Resource

In the last section, we mentioned the contention flag, but didn’t say much

about it. The key to releasing an uncontended resource, without making a

system call, is to use a contention flag in conjunction with the resource

lock.

A process sets the contention flag if it isn’t able to access a resource—if the

resource’s lock is set. When a process finishes accessing a resource, it resets

the resource lock and tests the contention flag (Figure 10). If the contention

flag is set, the process does a semop system call to wake up processes

sleeping on the resource’s semaphore. If the contention flag isn’t set, there

are no processes waiting for the resource, and there’s no need to do the

semaphore operation.

Finish Accessing

Shared Segment

Reset Resource Lock

(xmem) ee ee

Main Memory

Lock} Contention |
Flag ___

“6"ea7a"s"aTe“a"eTa“a"aTe "eT ae
wretatanerantata a a enaren ns

awe a sass en see ae

Test Contention Flag ee
e

(xmem)

Reset Contention

Flag (xmem)
Shared Memory

Segment

Y
Set Semaphore to

Zero (System Call)

oe

Ee

RE

oe

re.
ops

aes

BR oe
%

RB

Be

os

Eee na ot ewe eee enn eee
SB ccrencce nnn recente oe

Figure 10 Releasing a Resource

Note — A process that uses xmem routines with semaphores should include

signal-catching routines that advance semaphores and release any locks if

the process terminates unexpectedly.
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FYI—Sample xmem Routines

The following set of sample routines were developed at DG RTP for use

with semaphores and shared memory. These routines support unsequenced

locks. Support for sequenced locks requires somewhat more complex code.

Unsequenced locks are pending locks. If a process tries to obtain a lock that

is held by another process, the requesting process will be pended until the

lock is released. If several processes are waiting for the same lock, all

processes that are waiting on the lock will be awakened when the lock is

released, and the operating system’s scheduler will determine which

process to run. Therefore, this lock does not guarantee fairness, and a low

priority process can starve if a lock has heavy contention. This

implementation is biased toward the case where there is little or no

contention for the lock. In this case, no system calls are needed, and

processes can perform a lock or unlock operation in about 10 instructions.

The routines, which are shown in the following sections, are:

9 lock_def.h—header definitions

4 lock_util.c—C routines

1 lock_mgr.s—assembly language routines

lock_def.h

The lock_def.h file defines an unsequenced lock type, which contains the

variables held, contended, and semid.

A value of zero for held indicates that the lock is not being held, and a

process can obtain it immediately. A value of one indicates that another

process holds the lock.

The contended value is relevant only when held has a value of one. If the

value of contended is zero, no other process are waiting for the lock. A

value of one means that other processes are waiting for the lock.

The semid variable is an integer that contains the identification number of

the semaphore on which processes will wait if they cannot obtain the lock

immediately.

typedef struct

{

unsigned long held;

unsigned long contended;

int semid;

} unsequenced lock type ;

typedef unsequenced lock type * unsequenced lock ptr type ;
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lock_util.c

The module lock_util.c contains C language routines for implementing

unsequenced locks.

All code that uses a lock should be within the pair of functions

initialize_unsequenced_lock and deinitialize_unsequenced_lock.

The functions wait_for_unsequenced_lock and

wakeup_unsequenced_lock are internal to the implementation of the locks

and should not be called directly by users.

The obtain (lock) and release (unlock) functions for unsequenced locks are

in the module lock_mgr.s (page 26).

[*< * /

/* lock _util.c */

[*> xf

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

#include <errno.h>

#include “lock def.h”

/*.function */

void initialize unsequenced lock (lock ptr)

unsequenced lock ptr type lock ptr; /* READ WRITE */

/* |

[* This function initializes an unsequenced lock. This function

/* must be called before any lock operations (obtain, release)

[x are applied against the lock.

/*

/* The caller is responsible for allocating the storage for the

/* lock instance. This function simply initializes that

/* storage.

/*

lock ptr->held = 0;

lock _ptr->contended = 0;

lock _ptr->semid = semget (IPC PRIVATE, 1, 0777);

if (lock ptr->semid == -1)

{

printf (“Semget failed in lock initialize with errno %d.\n”, errno);

}

}

/*.End Function initialize unsequenced lock */

/*.function */

int deinitialize unsequenced_lock (lock ptr)

unsequenced lock ptr type lock ptr; /* READ WRITE */
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/*

/* This function performs the inverse of the

/* initialize unsequenced lock routine. Any resources allocated

/* for use in implementing the lock functions are freed.

/* Note that this function does NOT reclaim the memory

/* occupied by the lock. Management of the memory is the

{x responsibility of the caller.

/*

if (semctl (lock ptr->semid, 0, IPC _RMID, 0))

{

printf (“Semctl failed in lock deinitialize with errno %d.\n”, errno);

}

}

/*.End Function deinitialize unsequenced lock */

/*.function */

void wait for unsequenced lock (lock ptr)

unsequenced lock ptr type lock ptr; /* READ ONLY */

/*

/* This function waits for an unsequenced lock to be released.

[* When the lock is released, this function tries again to

{/* obtain the lock, and returns only when the lock has been

/* successfully obtained.

/*

/* Note that this function may pend waiting for the lock to

{x become available.

{x

{

struct sembuf sembuf [1];

union semun semun;

while (!obtain_unsequenced_ lock no wait (lock ptr))

{

semun.val = 1;

if (semctl (lock ptr->semid, 0, SETVAL, semun) == -1)

{

printf (“Lock wait semctl failed with errno %d.\n”, errno);

}

lock ptr->contended = 1;

if (obtain_unsequenced_lock_no wait (lock ptr))

{

break;

}

sembuf [0].sem_num = 0;

sembuf[0].sem_op = 0;

sembuf[0].sem_flg = 0;

if (semop(lock ptr->semid, sembuf, 1) == -1)

{

printf (“Lock wait semop failed with errno %d.\n”, errno);

}
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/* End Function wait for unsequenced lock */

/*.function */

void wakeup _unsequenced lock (lock ptr)

unsequenced lock ptr type lock ptr; /* READ ONLY */

/*

/* This function is part of the internal implementation of

/* unsequenced locks. It is called when a lock is released

/* and there are processes waiting for the lock. This function

/* awakens those waiting processes.
/*

{

union semun semun;

lock_ptr->contended = 0;

semun.val = 0;

if(semctl (lock ptr->semid, 0, SETVAL, semun) == -1)

{

printf (“Lock wakeup semctl failed with errno %d.\n”, errno);

}

}

/*.End Function wakeup unsequenced lock */

/*.End Module lock util.c */

lock_mgr.s

The module lock_mgr.s contains the assembly language functions

obtain_unsequenced_lock, release_unsequenced_lock, and

obtain_unsequenced_lock_no_wait.

7*.function *;

; void obtain_unsequenced lock (lock ptr)

yunsequenced lock ptr type lock ptr; /* READ WRITE */

*

* This function obtains an unsequenced lock. If the lock is

;* not immediately available, the calling process is pended

* until the lock is available.

*

_obtain unsegquenced lock:

or r3,xr0,1 ; Get a constant 1

xmem r3,r2,r0 ; Try to obtain the lock

bend ne0Q,r3,wait for lock 7 Did we obtain the lock?

jmp rl ; Yes. Return to the caller.

wait for lock:

br _wait for unsequenced_ lock ; go wait for the lock

7*.End Function obtain unsequenced lock *;
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7*. function *;

; void release unsegquenced lock (lock ptr)

yunsequenced lock ptr type lock ptr; /* READ WRITE */

3*

;* This function releases an unsequenced lock that was previously

7* obtained. If any processes are waiting on the lock, they are

7* awakened.

*x

_release unsequenced lock:

st r0,r2,0 ; Clear the ‘held’ flag

ld r3,r2,4 ; Get the contended flag

bend ne0,r3,wakeup waiters ; Is anybody waiting?

jmp rl ; No. Return to the caller.

wakeup waiters:

br _wakeup_unsequenced_ lock 7; Go wakeup waiters

;*.End Function release unsequenced lock *;

7*.function *;

7; int obtain _unsequenced lock no wait (lock ptr)

yunsequenced lock ptr type lock ptr; /* READ WRITE */

7x

7* This function obtains an unsequenced lock if it can, but does

7* not pend if some other process holds the lock.

7%

7* Return Value:

3%

;* o6rval(“1”) The lock was successfully obtained. The calling

;* process holds the lock.

=%*
f

7;* %rval({“0”) The lock was not obtained because some other

7* process holds the lock.

*
“5

_obtain unsequenced lock no wait:

or r3,xr0,1 ; Get a constant 1

xmem r3,r2,x0 , Try to obtain the lock

cmp r3,r3,r0 ; Compare with 0

jmp.n rl ; Return to the caller

extu r2,r3,1<eq> ; Return equal bit

7*.End Function obtain unsequenced lock no wait *;

;*.End Module lock _mgr.s *;
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semaphores and xmem Routines—Test Results

We developed a program io test the hypothesis that the use of xmem

routines and semaphores is an efficient way of synchronizing processes

that are exchanging data.

The test program timed how long it took for one and two pairs of

processes to exchange “N” bytes of data 1,000 times, using shared memory.

The test was run on a 25 Mhz quad-processor AViiON AV5240 with 400

Mbytes of memory, running at init level 1.

The amount of data exchanged (“N”) was 1K, 2K, 4K, and 16K. For each

combination of process-pairs and amount of data, we made one run using

semaphores to synchronize the processes and one run using semaphores

plus xmem routines to synchronize the processes.

Table 3 shows the time (in seconds) to complete 1,000 one-way transfers at

each of four transfer sizes. The times are wall clock times, measured with

the time command. In all cases, the use of semaphores plus xmem routines

offers a performance advantage over the use of just semaphores. We’ve put

in parenthesis the time (in seconds) that semaphore plus xmem was faster

than using semaphores alone.

Table 3 Data From Semaphore Tests

Number of Process Pairs

semaphores 1.6 3.0

Semaphores + xmem 1.5 (0.1) 2.7 (0.3)

Semaphore 3.2 9.7

Semaphores + xmem 2.9 (0.7) 4.9 (0.8)

semaphore

Semaphores + xmem

semaphore 28.1 43.5

semaphores + xmem 19.2 (8.9) 33.9 (9.6)
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Because the times in the table are wall clock times, they include the time

that it takes to start the processes, the time to transfer the data, and the

time to synchronize the processes. The times in parentheses isolate the

difference in synchronization times between the two techniques.

Figure 11 shows graphically the percentage or time that the use of

semaphores and xmem routines was better than using semaphores alone.

On the average, the time to exchange the data was 24% better for

semaphores plus xmem routines.

Percentage That Semaphore Plus xmem Synchronization is

Better Than Semaphores Alone

For each transfer size, data is for

one and two process pairs.
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SS process-pair
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Figure 11 Comparison of Semaphores and Semaphores Plus xmem Routine

Remember that the performance increases that are highlighted by this test

are based on the assumption that there is little contention for the shared

memory resource. The assumption is that you will generally get the lock

(and access the resource). In cases where there is potentially heavy

contention for a resource, the use of semaphores by themselves may offer

performance advantages.
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F Y!—Other Interprocess Communication Techniques

For comparison, this section talks about some of the other interprocess

communication techniques that were mentioned earlier in this technical

brief. These techniques include:

QO signals

(1 message queues

QO pipes and sockets

Signals

signals are asynchronous software interrupts that tell a process that an

error or exceptional event has occurred. When a process receives a signal,

the process has the option of taking some action other than its normal

execution path.

Although you can use signals to synchronize data-sharing processes, they

were not designed for use in a synchronization role. Compared to

semaphores, signals are expensive users of kernel resources.

Message Queues

Message queues are a bi-directional facility that enables processes to

exchange packets of data (messages) by sending and receiving messages to

and from a kernel buffer (a message queue). To borrow from network

terminology, message queues support datagram connections.

The performance of message queues isn’t as good as that of shared

memory because message queues require two data-copy operations—one

to send a message to the queue, the other to send the message from the

queue to the receiving process’s address space. However, compared to

shared memory, message queues can be a good choice if programming

convenience outweighs performance, and you are infrequently passing

relatively small amounts of data. Regardless, message queues are a

significantly more efficient way of exchanging data than using files in the

file system.

Message queues are not designed to work across different machines. To

pass data across networks requires that you use sockets, which are

described in the next section.
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Pipes and Sockets

Pipes and sockets are designed to transfer arbitrary amounts of data

among processes. Unlike message queues, which transfer data in packets,

pipes and sockets work with streams of data. Borrowing again from

network terminology, pipes support streams connections, while sockets can

support both streams and datagram connections.

Pipes support transfers of data among process on a single machine. Sockets

support transfers of data across a network.

The performance of pipes and sockets isn’t as good as that of shared

memory because pipes and sockets require two data-copy operations: from

the address space of the sending process to a kernel buffer, then from the

kernel into the receiving process’s address space. However, pipes and

sockets can be a good choice if you are passing relatively small amounts of

unformatted data and programming convenience outweighs performance.

Pipes

There are two kinds of pipes: unnamed and named. Unnamed pipes

provide a communication path between related processes—the process that

created the pipe and its descendants. Named pipes support communication

among unrelated processes. Unlike unnamed pipes, named pipes have a

pathname; a name in a file system’s name space.

In the DG/UX 5.4 operating system, pipes are implemented with the

Streams facility instead of using the file system as in earlier versions of the

operating system. That means that pipes are now bi-directional and that

each end of the pipe is a Streams interface.

Pipes automatically synchronize processes. A process can sleep while

waiting for data to come into the pipe. Likewise, a process can sleep while

waiting for a pipe to empty.

Another advantage of pipes over message queues is that processes using

the pipe are signalled if the process at the other end of the pipe terminates.

The kernel detects that a process in a pipe-pair has exited and sends to the

other a SIGPIPE signal.

Sockets

sockets, originally a BSD extension to UNIX, are a standard part of the

DG/UX operating system. Sockets provide processes with a general way of

using network protocols to communicate across networks. They can be

used to pass streams of data or to pass datagrams (packets of data).

sockets allow you to write client and server programs that are independent

of the type of network that the programs use to communicate. Sockets

support network independence by enabling you to specify the type of
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network protocol (the socket’s domain) that you want a process to use. As

examples, sockets in the Unix domain enable processes to communicate

locally within a machine. Sockets in the TCP/IP domain enable the same

processes to communicate across a network. This allows a process such as

an X windows client to run on the same machine as the server process, or

use a network domain, such as TCP/IP, to access a server on a different

machine.

Sockets are implemented in layers (Figure 12). The socket layer accepts

system calls from a user process and sends them to the protocol layer. The

protocol layer contains code that implements the functions of a particular

network. The protocol layer typically supports sub-layers. For example, a

TCP/IP protocol layer implements TCP’s virtual circuits at one level and

the IP’s handling of datagrams at a lower level. The device driver layer is

machine dependent, and provides support for physical protocols, such as

Ethernet.

Client Machine Server Machine

User Process User Process

Socket Socket

Network Network

Protocol Protocol

Device Driver aa Device Driver

TE

Figure 12 Layered Implementation of Sockets

For More Information

Among the articles that discuss multiprocessor systems in more detail are:

DG/UXTM Technical Brief: A Second Look at Multtprocessor SMPs

(012-003886-02), July 31, 1991, Data General Corporation

Taking Advantage of SMPs

012-004177-00
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