¢y DataGeneral

Customer Documentation

AViiON" 300 and 400 Series Stations:
Programming System Control and I/O Registers






AViiON "300 and 400 Series Stations:
Programming System Control and
I/O Registers

014-001800-05

Ordering No. 014-001800

Copyright © Data General Corporation, 1989, 1990
All Rights Reserved

Printed in the United States of America

Rev. 05, June 1990



Notice

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE BY DGC
PERSONNEL, CUSTOMERS, AND PROSPECTIVE CUSTOMERS. THE INFORMATION
CONTAINED HEREIN SHALL NOT BE REPRODUCED IN WHOLE OR IN PART WITHOUT
DGC’S PRIOR WRITTEN APPROVAL.

DGC reserves the right to make changes in specifications and other information contained in this
document without prior notice, and the reader should in all cases consult DGC to determine whether any
such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS
AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE
WRITTEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRESENTATION OR
OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT NOT
LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE,
SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE
DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY
LIABILITY OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST
PROFITS) ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE INFORMATION
CONTAINED IN IT, EVEN IF DGC HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN
OF THE POSSIBILITY OF SUCH DAMAGES.

CEO, DASHER, DATAPREP, DESKTOP GENERATION, ECLIPSE, ECLIPSE MV/4000,
ECLIPSE MV/6000, ECLIPSE MV/8000, GENAP, INFOS, microNOVA, NOVA,
PRESENT, PROXI, SWAT, and TRENDVIEW are U.S. registered trademarks of

Data General Corporation; and AOSMAGIC, AOS/VSMAGIC, AROSE/PC, ArrayPlus,
AViiON, BaseLink, BusiGEN, BusiPEN, BusiTEXT, CEO Connection,

CEO Connection/LAN, CEO Drawing Board, CEO DXA, CEO Light, CEO MAILI,

CEO Object Office, CEO PXA, CEO Wordview, CEOwrite, COBOL/SMART,
COMPUCALC, CSMAGIC, DASHER/One, DASHER/286, DASHER/286-12c,
DASHER/386, DASHER/386-16c, DASHER/386-25, DASHER/386sx, DASHER/LN,
DATA GENERAL/One, DESKTOP/UX, DG/500, DG/AROSE, DGConnect, DG/DBUS,
DG/Fontstyles, DG/GATE, DG/GEO, DG/HEO, DG/L, DG/LIBRARY, DG/UX, DG/XAP,
ECLIPSE MV/1000, ECLIPSE MV/1400, ECLIPSE MV/2000, ECLIPSE MV/2500,
ECLIPSE MV/5000, ECLIPSE MV/5500, ECLIPSE MV/7800, ECLIPSE MV/9500,
ECLIPSE MV/10000, ECLIPSE MV/15000, ECLIPSE MV/18000, ECLIPSE MV/20000,
ECLIPSE MV/40000, FORMA-TEXT, GATEKEEPER, GDC/1000, GDC/2400,
microECLIPSE, microMV, MV/UX, PC Liaison, RASS, REV-UP, SLATE,

SPARE MAIL, SUPPORT MANAGER, TEO, TEO/3D, TEO/Electronics, TURBO/4,
UNITE, WALKABOUT, WALKABOUT/SX, and XODIAC are trademarks of

Data General Corporation.

AT is a U.S. registered trademark of International Business Machines Corporation.
Brooktree is a registered trademark of Brooktree Corporation.

RAMDAC is a trademark of Brooktree Corporation.

Timekeeper and Zeropower are trademarks of SGS-Thomson Microelectronics.

X Window System is a trademark of the Massachusetts Institute of Technology.

AViiON™ 300 and 400 Series Stations:
Programming System Control and I/O Registers
014-001800-05
014-001842-05 (Japan only)

Revision History:

Original Release - April 1989
First Revision - June 1989
Second Revision - July 1989

Third Revision - September 1989
Fourth Revision - March 1990
Fifth Revision - June 1990

A vertical bar in the margin of a page indicates substantive technical change
from the previous revision.




Preface

This manual describes the AViiON™ 300 and 400 series station architecture and their
system control and input/output (I/O) registers. This manual is written for systems
and applications designers familiar with assembly language and C programming and
conventions. The manual does not assume that you are familiar with a particular
operating system or have specific knowledge about AViiON products.

This manual contains the following chapters:

Chapter 1 System Board Architecture

This chapter describes the system board architecture, including the CPU, main
memory, system buses, system control logic, graphics subsystems, and integrated 1/0
subsystem.

Chapter 2 Programming the System Board

This chapter describes address mapping, bus arbitration, how to address the system
board resources, and how to program the time-of-boot clock, nonvolatile RAM,
programmable interval timer and time-of-day clock. The chapter concludes with
descriptions of the boot PROM and the System Control Monitor (SCM).

Chapter 3 Interrupts, System Errors and Bus Faults

This chapter describes interrupts, system errors and bus faults; where they originate,
how the system board handles them, and what registers are involved in interrupts.
Chapter 4 Programming the Monochrome Graphics Subsystem

This chapter describes the 300 series station monochrome graphics subsystem and how
to program the subsystem.

Chapter 5 Programming the Color Graphics Subsystem

This chapter describes the color graphics subsystem and how to program the
subsystem. It also describes the optional Z-buffer gate array and its registers.
Chapter 6 Programming the Keyboard Interface

This chapter describes the keyboard port and how to program it.

Chapter 7 Programming the Serial Ports and Parallel Port

This chapter describes the serial ports and parallel ports, and how to program the
ports. The serial ports include the mouse port.

Chapter 8 Programming the Local Area Network Interface

This chapter describes the local area network (LAN) interface and how to program it.

014-001800 iii



Preface

Chapter 9 Programming the Small Computer System Interface

This chapter describes the small computer system interface (SCSI) and how to
program it.

Appendix A  Workstation Address Map

This appendix lists each accessible register in the workstation with its address.

Appendix B Workstation Power-Up Flowchart

This appendix graphically presents the power-up procedure the workstation performs.

Appendix C  Boot File Format

This appendix describes the format necessary for booting successfully using non-Data
General magnetic media.

Appendix D 1/0 Connections and Specifications

This appendix lists the workstation connections and provides some related
specifications.

Symbols and Conventions

The following conventions and symbols are used in this manual:

Symbol Means
0x In C programming examples, the combination of “0” and “x”

indicates the values that follow are in hexadecimal. Note that the
address and register values in this manual are given in
hexadecimal unless indicated otherwise.

IRQ_CIO Indicates a signal is a logical true (1) when asserted low. This

IRQ_CIO* manual uses the overbar in figures and the asterisk (*) in text
and tables.

.PRINTER BOLDFACE CAPITAL letters indicate a System Control Monitor
system call.

Id Boldface lowercase letters indicate an assembly language
instruction.

SCM> The default System Control Monitor prompt on single processor
systems.

Jp#n/SCM> The default System Control Monitor prompt on multiple processor

systems, where n is the number of the attached job processor.

* A signal name or mnemonic followed by an asterisk (*) indicates
that the signal is true when asserted low (0).

All addresses are in hexadecimal unless otherwise noted.

All data is in binary unless otherwise noted.

iv 014-001800



Preface

Related Documents

This section lists manuals that provide more information about your AViiON computer
system. For a complete list of AViiON 300 and 400 series documentation, see the
“Documentation Set” following the Index.

Documents Available from Data General

MC88100 RISC Microprocessor User’s Manual (014-001809)

Describes the Motorola 88100 Central Processing Unit (CPU), including the
registers, addressing modes, internal and bus timing, and assembly-language
instruction set.

MC88200 Cache/Memory Management Unit User’s Manual (014-001808)

Describes the Motorola 88200 Cache/Memory Management Unit (CMMU),
including the CMMU registers, the cache and cache coherency, memory
management and user/supervisor space, the Processor bus (Pbus) and the
Memory bus (Mbus).

Using the AViiONt System Control Monitor (SCM) (014-001802)

Describes how technical users can use the commands and menus of the
firmware monitor program to bring up software, control their system
environment, and debug programs.

88open Binary Compatibility Standard (069-701043)
Describes the binary standards for developing portable 88K code using the C
programming language.

Other Organizations’ Documents

The following documents are available from other organizations.

mPD72120 Advanced Graphics Display Controller User’s Manual

Describes the mPD72120 graphics controller and how to program it. This
document is available from NEC Electronics, Inc.

AIC-6250 High-Performance SCSI Protocol Chip

Describes the AIC-6250 SCSI controller and how to program it. This
document is available from Adaptec, Inc.

AM?7990 Local Area Network Controller (LANCE) Technical Manual

Describes the AM 7990 LAN controller and how to program it. This document
is available from Advanced Micro Devices, Inc.

Brooktreer Product Databook

Contact Brooktree Corporation to obtain this manual.

014-001800 \")



Preface

Memory Products Databook

Describes the MK48T02B 2Kx8 Zeropower/Timekeeper RAM and how to
program it. This document is available from SGS-Thompson Microelectronics.

SCN2661 Enhanced Programmable Communications Interface (EPCI) Product
Specification

Describes the SCC2692 universal synchronous/asynchronous data
communications controller and how to program it. This document is available
from Signetics, Inc.

SCC2692 Dual Asynchronous Receiver Transmitter (DUART) Product Specification

Describes the SCN2661 DUART and how to program it. This document is
available from Signetics, Inc.

The VMEbus Specification

Describes Motorola’s Versa Modula Europa bus (VMEbus), and how to
program using the VMEbus. This document is available from Motorola Corp.

Z8536 CIO Counter/Timer and Parallel I/0 Unit

Describes the Z8536 CIO and how to program it. This document is available
from Zilog, Inc.

Vi 014-001800



Preface

Contacting Data General

Data General wants to assist you in any way it can to help you use its products.
Please feel free to contact the company as outlined below.

Manuals

If you require additional manuals, please use the enclosed TIPS order form
(United States only) or contact your local Data General sales representative.

If you have comments on this manual, please use the prepaid Comment Form that
appears at the back. We want to know what you like and dislike about this manual.

Telephone Assistance

If you are unable to solve a problem using any manual you received with your system,
and you are within the United States or Canada, contact the Data General Service
Center by calling 1-800-DG-HELPS for toll-free telephone support. The center will
put you in touch with a member of Data General’s telephone assistance staff who can
answer your questions.

Free telephone assistance is available with your warranty and with most Data General
service options. Lines are open from 8:30 a.m. to 8:30 p.m., Eastern Time, Monday
through Friday.

For telephone assistance outside the United States or Canada, ask your Data General
sales representative for the appropriate telephone number.

Joining Our Users Group

Please consider joining the largest independent organization of Data General users, the
North American Data General Users Group (NADGUG). In addition to making
valuable contacts, members receive FOCUS monthly magazine, a conference discount,
access to the Software Library and Electronic Bulletin Board, an annual Member
Directory, Regional and Special Interest Groups, and much more. For more
information about membership in the North American Data General Users Group, call
1-800-877-4787 or 1-512-345-5316.

End of Preface

014-001800 vii






Contents

Chapter 1 - System Board Architecture

Workstation Architecture and Configuration .............. ... oo i, 1-2
System Board Architecture and Configuration ............. ... ... ... ... ... 1-3
The CPU Set .. ittt e e e ettt e e 1-5
The CPU .ottt e e et e et et e 1-5
The Cache/Memory Management Unit (CMMU) ...................... 1-6
MEIMOTY .« oottt ettt et et e e e 1-9
Main MEMOTY . . . oottt it e i e 1-9
Main-Memory Interface ....... ... . o i 1-10
Battery Backed Up (BBU) SRAM and PROM . ............. .. ... ... 1-10
The System Control Logic ...t i i 1-11
The Mbus and the Sbus . ... ... i i i i 1-12
The MDUS ...t e et e e e 1-12
The SbUS ..ot vt e e e e 1-13
The Mbus/Sbus Interface ............o i 1-13
The Graphics Subsystem ......... ...t 1-14
Monochrome Graphics .. ...... ..ot 1-14
Color GraphiCs . .....vvt ittt i i i i e 1-14
Z-Buffer Controller . ....... .ottt e 1-15
The I/O SubSyStem . .. ..ottt i e e 1-15
Keyboard Port . .....ooii i e 1-15
11 o3 F-T I ) o A 1-15
Serial POITS ...ttt e ittt e 1-15
Parallel POIt . ..... ..t i i i i 1-15
Small Computer Systems Interface (SCSI) Port .............. .. ....... 1-15
Local Area Network (LAN) Interface .............. .. o, 1-16
The VMEDbus Interface (400 Series Only) .......... ... 1-16
REGISIEIS .« . vttt ettt 1-18
Timers Available to System Programmers . ... ..........ciuiuiuereenneennn, 1-19
Interrupts and the Interrupt Logic .. ....... ... i i i 1-19

Chapter 2 - Programming the System Board

Programming the CPU ... ... i i i it it 2-2
Addressing MemOTIy ... ...ttt i it 2-3
Data Transfers to/from Memory ...........oiiitiiitiineinnenean.. 2-3
AdAress Map . oo vttt e e e e 2-4
Mbus and SDUS . ... vovt ittt e 2-5
Mbus and Sbus Arbitration . ............c..oviiiuiit it 2-5
Master and Slave DeviCes . .........uiiiiiniiiii i 2-6
Data ALZNMENt . ..ot v i it i e e s 2-6
Addressing System Board Resources and System Memory .................... 2-7
Addressing VME Controllers (400 Series Only) ..., 2-9

014-001800 ix



Contents

Addressing System Board Resources from a VME Controller (400 Series Only) . 2-12

Programming the System Control Registers .. ............. ... ... .ot 2-16
The Time-of-Boot (TOB) Clock and Nonvolatile RAM (NOVRAM) .......... 2-23
Programming the CIO . ... ... .. i i e e e e 2-25
The Boot PROM .. ...t i e e 2-26

Power-Up and Boot Code ..........o it 2-26
The System Control Monitor (SCM) ... ... i i 2-27

Chapter 3 - Interrupts, System Errors, and Bus Faults

Types Of INTEITUPLS . . .o vt i e e e e i e e e 3-2
Condition-Specific Interrupts .......... ..ot 3-2
Multiple-Use Interrupts (400 Series Only) .......... ... v, 3-2

How the CPU Is Interrupted . ..........outuinininininiini i 3-3

Handling INterrupts . . .. oo vttt i e i e 3-4

Programming the CPU Interrupt Registers ............ .. ... ... ... 3-6
300 Series CPU Interrupt Registers . ..., 3-7
400 Series CPU Interrupt Registers . ........ ... i, 3-12

Programming the VME Interrupt Registers ........... ... ... ... ... .. ... ... 3-22
IRQ[7-0] Level INtErTUPLS . ..o v vttt e e 3-24

SYStEM EITOTS .o oottt ittt e e e e e 3-27

Bus Faults .. ...ttt i 3-28

Chapter 4 - Programming the Monochrome Graphics

Subsystem
Features of the Monochrome Graphics Subsystem .. ........... ... ... ... ..., 4-2
Components of the Monochrome Graphics Subsystem ....................... 4-3
Mbus INterface . . ... .ov vttt 4-4
Monochrome Graphics Controller . ......... ... ... i 4-4
Display Memory Bus. ... 4-4
Display Memory Bus Control ...t 4-4
Frame Buffer ... ... ... i e 4-5
Parallel-to-Serial Shift Register .. ........ ..ot .. 4-5
D/A Converter and Video Output Driver ............. ..o, 4-5
How This Implementation Differs from NEC Specifications ................... 4-6
Horizontal Front and Back Porches ................ ... .. ... i, 4-6
Reading Data from the Frame Buffer ............... ... ... ... ... ... 4-6
Addressing theRegisters and Frame Buffer ........................... 4-6
WOrd COUNL ..ttt it e e e i e e 4-6
Programming the Monochrome Graphics Subsystem ......................... 4-7
Drawing Commands . ..........uiuiniitiitnt i 4-7
Graphics Controller Interrupts ..o 4-8
Programming the Monochrome Graphics Registers ..................... 4-9
Initializing the Registers ........ ... .. i 4-11
Programming the Frame Buffer ............... ... ... . i it 4-18

X 014-001800



Contents

Chapter 5 - Programming the Color Graphics Subsystem

Features of the Color Graphics Subsystem . ......... .. it 5-1
Components of the Color Graphics Subsystem ............... ... ...t 5-2
The Color Graphics Controller ......... ... ..ttt .. 5-3

The Frame Buffer ...... ... .. . 5-4
RAMDAC .ot e e e 5-5

The CloCK GENErator ... ...ttt vttt eieennenns 5-5

The Z-Buffer . ........c.iuinin i i 5-5
Programming CONVENUONS .. ... ..vu ittt vttt annenenens 5-6
Handshaking .. .......couiiiii i i i 5-7
Context Switching . ..... ... ot i e 5-8
Accessing Color Graphics ReSOUICes . .........oviiniiniiinneenenenan 5-9
Fixed-Point Numbers . ... ... ...ttt 5-13
INterrUPtS . o ot e e e e 5-13
ReGIStEIS . . it e e e e 5-14
Global RegiSters . . .. v\ttt 5-15

. Command and Status Registers ........... .. .o, 5-20
Color graphics Commands ..ottt 5-35
Programming the Frame Buffer (8-bit) ........... ... ... i, 5-56
Accessing the Frame Buffer . .......... ... ... ... o o il 5-57
Frame Buffer Access Restrictions ............. i, 5-57
Programming the Lookup Table ......... ... ..o iiiiiiiiiiiiiinianey 5-58
Automatic LUT Load (ALL) Function . ...t 5-58
Blnking ... e 5-59
Double-Buffering ......... ... 5-59
Accessing the RAMDAC ... ... .. it 5-64
Initializing the Registers ........ ... .o, 5-66
Programming the Z-Buffer Controller . ......... ... .. ... ... it 5-72
Components of the Z-Buffer ............ ... ... .. . i, 5-72
Programming the Z-Buffer Registers ............. ... ... ... ... ..., 5-74

Chapter 6 - Programming the Keyboard Interface and

Speaker
OVIVIBW .+ o ittt ettt e e e e 6-1
Components of the Keyboard Interface ............... ... ... .o .. 6-2
UA R ottt e e 6-2
Clock and Timing Logic . ... .. i i i i i 6-2
Keyboard Speaker . ... ... ...t e 6-2
Keyboard COnMECtOr . . ...ttt et ettt et e e et 6-3
Programming the Keyboard Interface ............ ... ... i, 6-3
Clock and Data Lines ... ..ottt 6-4
Data Format . ... ... ...ttt et 6-4
REgISterS . oo e e e 6-5
Keyboard Scan Codes . . ... oot tiiii it e e 6-10
INEerruDLS . . oot e 6-20
Receiving Data from the Keyboard .............. ... ... .. o, 6-20
Transmitting Data to the Keyboard ............ ... .. ... it 6-22
Programming the Speaker ............ ..ottt 6-24

014-001800 xi



Contents

Chapter 7 - Programming the Serial Ports and Parallel Port

Overview of the Serial and Parallel Ports .......... ... ... i, 7-1
Components of the Serial and Parallel Ports ............. ... ... .. ... . ..., 7-2
DUART ittt e e e e 7-3
Parallel POrt . ........oiiiiti it e e 7-3
Programming the Serial Ports . ....... ... i i 7-4
Initializing the Serial Ports ......... .. ... . i i 7-4
Resetting the Serial Ports ........ ... .. . i 7-4
INterrupts . . .ot e e e 7-4
Programming the Mouse Port ........... ... . i 7-19
Initializing the Mouse Port . ........ .. i 7-19
Data Protocol .. ...ttt e 7-19
Tracking Software . ... e 7-20
Programming Hints . ......... ... i i 7-20
SENSILIVILY « o o vttt e e 7-20
Programming the Parallel Port ............. .. . i 7-21
REgISIEIS . o . ittt e 7-21
Interrupts and Transmitting Data .. ...... ..., 7-21
Programming the Data Strobe and Data Select Signals ................. 7-22

Chapter 8 - Programming the Local Area Network

Interface
Components of the LAN Interface .......... ... ... ... .. i 8-2
Sbus INterface . . ... vt e 8-2
Address Extension LoOgiC ... 8-3
Ethernet Controller . .......... it e 8-3
Serial Interface ... ...t e 8-3
AUI Connector and Cable . ...ttt 8-3
Medium Attachment Unit (MAU) ...... ... . i 8-3
Ethernet Frame Transfers ........... ... . i 8-4
Incoming Frame Path . ........ ... . i i 8-4
Outgoing Frame Path ........ ... ... . i i 8-4
Programming the LAN Interface ........... ... i i i 8-5
Programming the Ethernet Controller Registers ........................ 8-5
Allocating Memory to the LAN Interface .............. ... ... ... ..., 8-14
LAN Interface Data Structures ..............ccoviiiii i 8-15
Software EnvironNment . ............o.eitiitint e nnn, 8-16
Initializing the LAN Interface ........... ... . ... 8-16
Resetting the LAN Interface ............ . ... ... 8-17
LAN Interface Interrupts ........ ...ttt 8-17

xii 014-001800



Contents

Chapter 9 - Programming the Small Computer System
Interface Port

Overview Oof the SCSI POrt ... ..o i i i e e e 9-1
Components of the SCSI POrt ...ttt 9-2
SCSI Slave INterface . . ..o vt vttt i i e e 9-2
SCSI Protocol Controller ... ........c.uutiiininninn e, 9-2
DMA Controller . ... ... ..ttt i i e 9-3
Programming the SCSI Controller ......... ... .. i, 9-3
Resetting and Initializing the SCSI Controller . ........................ 9-17
SCSI Controller INEITUPLS . .« vttt ittt i e eae s 9-17
Programming the DMA Controller .......... ... . i, 9-18
Manipulating Pointers and COUNEETS .. .....ovvtvinineiinintneaneieeennnas 9-26
Implementing a Selection Time-Out Function ............. ... ... ...t 9-26
DMA Controller INterrupts .. ... ...ttt i, 9-27

Appendix A - Address Map

Appendix B - Power-Up Flowchart

Appendix C - Boot File Format

Appendix D - System Board Connectors

Index

Documentation Set

014-001800 xiii






e e T N
AN L B W N =

_ O 00 30N BAW N -

- O

11
W N =

[ L UL 11
"N H W N = [N

[ U
00 3 O\ L B W N

[« W= e Ne N e e e N )\ LN L L L W E N N W W W [ SEESERE SIS SIS SIS SIS

Tables

Workstation Configurations .. ...........vuiiiiiiiir i, 1-2
CPU Clock Frequencies and Periods ........... ... oo, 1-6
Memory Read and Write Cycles ... ..., 1-10
Mbus Signals . ......oii i e e 1-12
Sbus Signals . ......... i e e 1-13
VMEDbuUs Signals . . ..o vt e 1-17
System Memory Space .. ... ...t e e 2-4
Sbus Master PriOrities . .. .. o.vvv v vttt et 2-5
Address Modifiers (VME Space) ..........cootiiiiiineiiien.n. 2-11
Address Modifiers (Transfer Type) ...... ..ot .. 2-11
Memory Map of the System Control Registers ...................... 2-16
Memory Map for the Time-of-Boot Clock Registers ................. 2-23
NOVRAM Addresses .. ...vvniiitttiit e 2-24
CIO Register AdAresses .. ..ottt 2-25
SCM System Calls ... ..ottt 2-27
Environment Control Word (ECW) Contents ................covuvu.. 2-30
SCM SUDIOULINES . . . oot v ettt it e i 2-31
Memory Map of the Interrupt Registers ............. ... .. ... ... ... 3-6
Memory Map of the VME Interrupt Registers ...................... 3-22
System Error Conditions and Responses ........................... 3-27
Monochrome Graphics Controller Commands .. .......... ..o, 4-7
Address Map for the Monochrome Graphics Controller Registers ........ 4-9
Frame Buffer Size ....... ... . 5-4
Base Addresses of the Color Graphics Controllers .................... 5-9
Color Graphics Registers . ... ..ottt i, 5-11
Color Graphics Command Bits ........... ... ... o i 5-34
Color Graphics Register Set Address Map . ............. .. ..oouint. 5-74
Keyboard Signals .. ......o.iuininiiiiiiiiii i 6-3
Keyboard Clock and Data Lines .............. ... ..., 6-4
Keyboard Data Format ..............iuiniiitinininin e, 6-4
Keyboard Register Addresses ..............ouiitiriintininnnnnanns 6-5
Keyboard ReSpONSEs . ........ouiuiuiiiii it 6-6
CommMandS . ..ot e e 6-7
Scan Code Sets 2 and 3 ... ..ot 6-12
Speaker Register AdAresses . .........vvviiintii e, 6-24

014-001800 XV



|
BHW N =

>» P T YIRT
L L) [L).I_- [ SIS [ S

slvlvlvivivlvivivlelv)
Hrd\OOO\’IOI\LhAwNo—k

oo
[
[N
W N = O

D-14

XVi

Tables

Serial Port Register Addresses ...........ouiiiiiiiiiiiiiiiin.. 7-5
Baud Rate Generator Characteristics . ..............civiiiiiinine.... 7-8
Mouse Data Protocol . . ...t i e 7-19
Addresses of Parallel Port Registers . ............ ... ... . ..., 7-21
Required LAN Register Configurations . .......... ... .. ... oo, 8-13
Conceptual CMMU Page Descriptor Produced by the LAN Interface ... 8-15
Memory Map of the Protocol Controller Registers .................... 9-4
Memory Map of the DMA Controller Registers ..................... 9-18
300 Series Station Address Map ..........c.oiiiiiiiiiiiii i A-1
400 Series Station Address Map ........ ...t A-8
Connectors on the System Board ............. ... ..o, D-1
Serial Connector Signals (300 Series) .............ciiiiiiunenn. D-6
Serial Connector Signals (400 Series) .............coviiuiuvnenon.. D-6
Parallel Connector Signals (300 Series) .............ccoviiiieieen, D-7
Parallel Connector Signals (400 Series) ...............covuvinenn.. D-7
Keyboard Signals ........ ...ttt D-8
Speaker Signals ........ .. i e e D-8
Mouse Signals . ..... ..o e e D-8
Power Connector (300 Series) . .......cuuiitimreiieennnenenennn. D-9
SCSI Connector (300 SEries) .. ..vvvvttirnt it D-10
SCSI Connector (400 Series) .. ...ovvtvittnrint e D-10
LAN Interface Connector Signals . ............ . ..ot D-11
VMEbus Connector J1 ...ttt D-13
VMEDbus Connector J2 ...ttt D-14

014-001800



L U L U
O 00 3 AN L bW

et ek ek ek e e e ek b

NN N B WD =

tth\JNNNNN

v
oo

O

U U UL i [ e B
N AN N B W W N = N H WD -

[= 2N Wi« \WiKe whn L Lt i 1 0 F o e W W W W w [\

HW N -

Figures

System Board Architecture — 300 Series .......... .. ... o i 1-3
System Board Architecture — 400 Series ............ ... ..o i, 1-4
CPU Set and Main MemMOIY . . ..ot vit i i i 1-5
Mbus Snooping and Cache Coherency ............. ..., 1-7
CMMU Data BloCK ...t v it 1-8
Main MemOTY . ..ottt e e e e 1-9
System Control Logic ...... ... i 1-11
Address Decoding . ........t it e 1-16
VMEbus Grant Daisy-Chain . ....... ... ..o i 1-18
Big-Endian Byte Ordering . . .. ... ... i i 2-2
How the CPU Addresses System Memory ...........covvviiivieonn.. 2-7
Decoding Addresses from the CPU ............ .. .. ..o, 2-8
Addressing the VMEbus from the CPU ........... ... ... ...t 2-10
Decoding Addresses to the VMEbus ........... ... ... i, 2-10
Structure of Addresses from VME Controllers to System Memory . ... .. 2-12
How a VME Controller Addresses System Board Resources and

System Memory (Flowchart) ........... ... ... . i i, 2-13
How a VME Controller Addresses System Board Resources and

SyStem MEMOTY . . oot vttt ettt 2-14
External Timer Connections . ...........c.oiuiuiuitiiiininiee i, 2-25
Handling Interrupts with a Single-CPU System Board ................. 3-4
Handling Interrupts with a Dual-CPU System Board .................. 3-5
VME Interrupts to the System Board ................ ... ... ..., 3-23
VME Controller Initiating a Level-1 Interrupt to System Board ........ 3-24
VMEbus Grant Daisy-Chain . ........... ... 0 i, 3-25
The Monochrome Graphics Subsystem ............. ... ... .. ... ..., 4-3
Monochrome Graphics Video Memory Coordinate System ............ 4-12
Frame Buffer Organization .............. .. 0 i, 4-18
Color Graphics Subsystem (8-Bit) ........... ..o, 5-2
Color Graphics Subsystem (24-Bit) ........... ... i, 5-3
Broadcast Data Transfers of 8-bit Registers with 24-bit Color ......... 5-10
Graphics Subsystem Registers ............ ... 5-14
Global Elements of the POLY Command ................covvann.. 5-42
Local Elements of the POLY Command ........... ... ..., 5-43
Z-Buffer Gate Array COmMpPONENts . .......vtiieitnnerenneneennn.. 5-72
Keyboard Interface COMPONENtS . .......ovuivrinitnennennenneenns, 6-2
Position of Keys on Keyboard ........... ... ... ... i, 6-11
Receiving Data from the Keyboard ............ ... .. .. oot 6-21
Transmitting Data to the Keyboard .............. ... ... ... .. ... ... 6-23

014-001800 Xvii



\F ?o ?o %o ]J TJ TJ =
|

quwuluw

[
BW DN -

UU'UUU
[V NI CRI SN

xviii

Figures

300 Series Serial and Parallel Ports ............ ... ... ... . ... .... 7-2
400 Series Serial and Parallel Ports . .............. ... .. i, 7-2
Data Strobe Timing for a Data Products Interface ................... 7-22
Data Strobe Timing for a Centronics Interface ...................... 7-22
Components of the LAN Interface .............. ... ... ... . ... 8-2
Sbus Addresses Produced by the LAN Interface .................... 8-14
Conceptual CMMU Page Descriptor Produced by the LAN Interface ... 8-14
SCSI Port COMPONENtS .. ..ot it ittt 9-2
Initial Power-Up Flowchart . ......... ... ... ... .. .. B-1
Reset Flowchart . ....... ... i et B-2
Initialize Flowchart ....... ... ... . . . i, B-3
PROM-Resident Testing Flowchart ................. ... .o v, B-4
300 Series External Connectors . ............couuiuiuiueeninunennnnns D-2
300 Series System Board Connectors . ..............vvivnnnennnnn. D-3
400 Series External Connectors . ............cuviiiieennnnneennnns D-4
400 Series System Board Connectors . ............c.ovviiivinennnn.. D-5
VMEvbus Slots, Connectors, and Pin Designations .................. D-12

014-001800



Chapter 1
System Board Architecture

This chapter describes the system board architecture, including the following topics:

System architecture and configuration.

System board architecture and configuration.

The CPU set, including the CPU and CMMUs and cache coherency.
Main memory and the memory interface.

The Mbus and Sbus, and the interface between them.

The graphics subsystem, including monochrome graphics, color graphics and the
Z-buffer controller (400 series only).

® The I/O subsystem, including the keyboard port, serial ports, parallel port,
Ethernet LAN interface, SCSI interface, and VMEDbus interface (400 series only).
The VMEDbus section discusses VMEDbus arbitration and VMEbus data transfers.

® Timers available to system programmers.

Interrupts and the interrupt control logic.

014-001800 1-1



System Board Architecture

Workstation Architecture and Configuration

Data General’s AViiON™ 300 and 400 series stations use the Motorola 32-bit
MC88100 RISC (Reduced Instruction Set Computing) processor and the Motorola
MC88200 CMMU (Cache/Memory Management Unit). They run either Data
General’s DG/UX™ operating system or industry-available operating systems for

MC88000-based systems.

The workstations consist of a system board, expansion memory modules, a fan, and a
power supply in a desktop package. Using 4-Mbyte memory modules, 300 series
stations support a maximum of 28 Mbytes of memory and 400 series stations support

a maximum of 32 Mbytes of memory.

The workstation base configuration has no disk or tape storage and requires a remote
file server for mass-storage. A compact, free-standing, mass-storage subsystem is

available for workstations requiring local disk or tape storage.

Graphics subsystems differ between workstations. The 300 series system board comes
with either a monochrome or color graphics subsystem, a frame buffer, and optionally

with an additional 4 Mbytes of dynamic random access memory (DRAM) for

applications that require extensive font storage such as the Kanji character set. The
graphics subsystem for the 400 series station includes either an 8-bit or 24-bit color
board with frame buffer, plus an optional Z-buffer board for three-dimensional

applications requiring hidden line and hidden surface removal.

The monochrome graphics subsystem drives a 1280 x 1024 pixel, flicker-free display
on a monochrome monitor; the color graphics subsystem drives a 1280 x 1024 pixel,
flicker-free display on either a color monitor or a grayscale monitor.

Table 1-1 summarizes the configurations for each workstation.

Table 1-1 Workstation Configurations

Graphics support

VMEDbus interface

Integrated I/0

Parallel port (Centronics or Data Products)
Asynchronous ports (RS-232-C)

Mouse port RS-232-C

Keyboard port

SCSI port

LAN interface

1-bit monochrome or
8-bit color

o e e e e

Item 300 Series 400 Series
CPU set (1 CPU, 2 CMMUs) 1 lor2

CPU clock speed (MHz) 16.67, 20 16.67, 20
Physical memory range (4-Mbyte modules) 4 - 28 Mbytes 4 - 32 Mbytes

8-bit color or
24-bit color

24-bit Z-buffer (option)

1

[ e S Y

014-001800



System Board Architecture

System Board Architecture and Configuration

Each system board contains the following functional components: one or two CPU
sets, main memory, system control logic, integrated I/O subsystem, and a monochrome
or graphics subsystem. The 400 series stations also support a VMEbus and,
optionally, a color graphics subsystem and a Z-buffer board. Two buses, the Memory
bus (Mbus) and the System bus (Sbus), link the system board resources to each
other. Figure 1-1 and Figure 1-2 illustrate the system board architecture. The
shaded components apply only to the 400 series stations.

PN X X
. ' DRAM < > .
je— | |€——>»] Control - > '
e o e ) Logic > .
CPU ' : Memory Boards :
' ' (4—Mb3g2esM%ach. !
. ; max 32-Mbytes) !
<«—> | Instruction ! I_Ma_ln.hfle.njo_ry_ ................. '
<«——» | CMMU T
: \  Graphics Subsystem X
CPU set . 1 '
<_£__» Graphics > gr?fme X
Mbus ' Controller uffer !

System Control Logic

Mbus/Sbus Arbitration Logic

Interrupt Control Logic

CIO (Timing)

A

Y

System Control Registers

Boot PROM

\ 4

Y

1/0 Subsystem

Video
Monitor

Keyboard Controller

A

DUART1

<«—» Serial Port

\ 4

(RS-232-C)

Parallel Interface

—— Parallel
Printer

BBU SRAM

A

SCSI Controller

€= SCSI| Bus

Y

A

LAN Controller

l«—>» Ethernet

' Transceiver
)

Figure 1-1 Systermn Board Architecture — 300 Series

014-001800



System Board Architecture

! - : ' |oraM  |e—0on ;
' ‘ Data "o |€——p] Control  |€&—> X
' [« CMMU L ' Interface > '
' ' [ '
: [ ! :
' cPU . : Memory Boards
! . ' (4-Mbytes each,
. ! X max 32-Mbytes) '
| «— | Instruction | ' | , Main Memory !
' le—>sfcmMmu e | emmeiememiemeiieoie i
I : Mbus
' CPU set .
R I

1 ' .
: <« ot , PR graphitlzls )
' ——— > - »1 Controller '
P CMmu ) X Board '
[ : : '
' CPU ' . :
X ! ' . ,
' , : ! g-Bucflfer '
! ] o ——»| Boar !
i BERENG F Vi e (optional) | |
v ' . '
' S g ! ] . :
: Second CPU set {opticnal board) . '- _G_ragp_h pd _Bga_r cls ...... '
rong

1/0 Subsystem

Mbus/Sbus Arbitration Logic

| VMEbus Interface  f«——» VMEbus
]

\ 4

Interrupt Control Logic |

-»{ Keyboard Controller j<«—+—» Keyboard

e I

A
Y

ClO (Timing) : DUART1 and |l«——>» Mouse
' > DUART2 <€ Serial Ports
' <«—>» (RS-232-C)
' )
System Control Registers | : > v .
: Parallel Interface —-—3 Parallel
' ' Printer
Boot PROM «——> '
: > SCSI Controller [«——> SCSI Bus
1 1
BBU SRAM > : 1
1 1 )
el «——> LAN Controller [«——> Ethernet

X Transceiver
Figure 1-2 System Board Architecture — 400 Series

14 014-001800



System Board Architecture

The CPU Set

As shown in Figure 1-3, each CPU set consists of one Motorola MC88100 CPU and
two Motorola MC88200 Cache/Memory Management Units (CMMU). The CPU uses
the 32-bit Reduced Instruction Set Computing (RISC) architecture with an internal,
32/64-bit floating-point processor. The CPU set supports a virtual address space of 4
Gbytes, bringing instructions and data into the processor over separate 32-bit paths.
One CMMU provides caching and address translation for the instruction path while
the other CMMU provides these functions for the data path. The CPU set
communicates with the rest of the system using the Mbus. The 400 series station
supports a second CPU set. Throughout this manual we refer to the CPU set as the
CPU, except where necessary to differentiate between the components of the CPU set.

:'"""'"""""""""""'" LN Fttmrmmmmeesmmess
' : ! :
X Dj¢———— | pata « : ‘
X Data Data Pbus CMMU —»| |<—>| Memory Interface '
) Ale—m > ' ' '
'] cpu : ; .
' «— > ! !
' D | ion Pbus |Instruction |qt o X A [ '
+ | Instructions Al nstruction usl CMMU ! , '
' ) ! |Drivers Drivers |
. CPU Set ! ' I
' l v l

' I

! DRAM -

Mbus . !

(32 bits) !

i Main Memory X

N  TTctttomeeememees |

Figure 1-3 CPU Set and Main Memory

The CPU

The CPU uses the Harvard architecture with separate instruction and data ports.
Each port consists of a 32-bit address bus, a 32-bit data bus, and bus control signals
that together form the nonmultiplexed Processor bus (Pbus). Each Pbus connects a
CPU Pbus port (instruction or data) to a respective CMMU (instruction or data).

The CPU has thirty-two 32-bit internal data registers that reduce data path traffic to
approximately one load or store operation every four cycles. It has an internal
32/64-bit floating-point processor that shares the data registers with the processing
unit.

For more information on the CPU, see Motorola’s MC88100 User’s Manual.

014-001800 1-5



System Board Architecture

The Cache/Memory Management Unit (CMMU)

The Motorola MC88200 Cache/Memory Management Unit (CMMU) combines
segmented, demand-paged virtual memory management with high-speed memory
caching. Each CMMU contains 16 Kbytes of cache memory, 10 block address
translation cache (BATC) entries, and 56 page address translation cache (PATC)
entries. The CMMU provides 4 Gbytes of virtual memory space per process.

The cache prefetches and stores instructions and data. The cycle time is dependent
on the CPU speed. Table 1-2 shows the clock frequencies and periods.

Table 1-2 CPU Clock Frequencies and Periods

Clock Frequency Clock Period
(MHz) (ns)
16.67 60
20 50

The CMMUs communicate with the CPU via the Processor bus (Pbus) and with main
memory via the Memory bus (Mbus).

NOTE: Software must disable parity checking before reading some registers, such as
those for the color graphics subsystem, SCSI interface, and LAN interface.
For further information, see the MC88200 User’s Manual.

The CMMU cache memory is temporary storage that speeds up both the execution of
instructions and the reading and writing of data. If the cache is turned off, the CPU
interacts directly with system memory. When the cache is turned on, the CPU reads
from and writes to system memory through the cache. With the cache on, the
CMMUs update system memory using either Writethrough or Copyback mode. When
the cache is operating in

® Writethrough mode, all modifications to the cache are immediately written to
system memory.

® Copyback mode, only the first modification of each cache location is written to
system memory.

When a device reads system memory, the device expects to receive current accurate
data. CMMU cache coherency makes sure that devices receive the most recent data
when reading memory. Cache coherency is the ability of a CMMU to update obsolete
data in system memory when a device reads a system memory location whose data is
also resident in the CMMU cache. Cache coherency is valid only when the CMMU
communicates with the CPU in Copyback mode. If the cache is turned off, or if the
cache is on and updated in Writethrough mode, all modifications to the cache are
immediately written to system memory. When a device addresses a memory location
whose cache-equivalent data has been modified, the CMMU updates the data in
memory before the device reads the data from memory.

1-6 014-001800



System Board Architecture

Figure 1-4 illustrates cache coherency and Mbus snooping. Snooping is the
comparison of Mbus global addresses with data cache tags. If the tag and the Mbus
address match, and the cache data line has been modified, the cache data line is then
written to memory. For a more detailed description of cache coherency and Mbus
snooping, see Motorola’s MC88200 User’s Manual.

Device writes
address to Mbus

CMMU snoops Mbus address and
checks cache location to determine
if data has been modified.

Y

Has cache data
been modified?

Device memory read is aborted.

v

CMMU updates memory location
by writing cache data to memory.

v

CMMU clears cache modify bit to 0.

\
___,CDevice reads data)
from memory.

Figure 1-4 Mbus Snooping and Cache Coherency

The workstation’s hardware supports only data cache coherency and not instruction
cache coherency. Software can set up the data cache in either Writethrough or
Copyback mode. Copyback mode greatly increases performance, while Writethrough
mode continuously updates both the cache and memory. Since all SCST DMA
transfers are snooped, software should mark all SCSI DMA transfers as global
(high-use, shared data). Correspondingly, since no LAN DMA transfers are snooped,
software should mark all LAN DMA transfers as local, and be responsible for
maintaining cache coherency of the LAN buffers.

014-001800 1-7



System Board Architecture

Since the workstation’s hardware does not support instruction cache coherency, the
instruction cache does not snoop on the Mbus. As a result, software must maintain
instruction cache coherency by invalidating the cache during I/O DMA transfers to

instruction space.

The CMMUs define a block of data as four contiguous words (16 bytes). As shown
in Figure 1-5, if the first word of the block is aligned on an address whose least
significant nibble (4 bits) is 016 (such as FFF8 F12016), the CMMU completely reads
or writes the block within one bus cycle. If this transfer crosses from one block
address range to another, the transfer requires an additional bus cycle.

For more information on the CMMU, see Motorola’s MC88200 User’s Manual.

FFF8 F120
FFF8 F124
FFF8 F128
FFF8 F12C
FFF8 F130
FFF8 F134
FFF8 F138
FFF8 F13C

\> CMMU Data Block

Block Address Range = 0 - F

A

> CMMU Data Block

Figure 1-5 CMMU Data Block

1-8 014-001800



System Board Architecture

Memory

The memory system consists of main memory, which includes onboard dynamic
random-access-memory (DRAM), expansion DRAM boards and the associated
memory interface logic, plus static RAM (SRAM) and programmable
read-only-memory (PROM).

Main Memory

Main memory consists of dynamic random-access-memory (DRAM) and the memory
interface logic needed to control accesses to the DRAM (see Figure 1-6). DRAM
memory consists of 4-Mbyte memory modules that plug into the system board. Each
4-Mbyte memory module has 36 1-Mbit, fast-page 100-ns DRAMs that provide 32
data bits and 4 parity bits for each address. The 300 series stations accept as much
as 28 Mbytes of RAM, while 400 series stations accept as much as 32 Mbytes of
RAM.

If the workstation has 16-Mbyte memory modules, it can support either 112 Mbytes
(300 series stations) or 128 Mbytes (400 series stations) of DRAM. Each 16-Mbyte
memory module has 36 4-Mbit, fast-page 100-ns DRAMs that provide 32 data bits
and 4 parity bits for each address.

Main memory is contiguous and begins at address 0000 0000. Each location has 36
bits: 32 bits for the data word and 4 bits for parity. The parity logic, located on the
system board, generates and checks the parity bits.

The DRAM uses byte parity; one parity bit for each byte of data. The parity bits
have separate data-in and data-out connections to the DRAMs, and the write parity
data is driven to the DRAMs in a way that allows diagnostic software to force parity
bits high during a write to memory. This logic also provides the control signals for
refreshing the DRAM array.

< )

! Mbus Latches '
, Buffers (Read Data) X
! l 7 !
: ng:esss and Drivers :
: Multiplexors ] X
X v l X
] )
) 1

Address — Memory
Latches and »| Board
Multiplexors RAS,

CAS, WE

Figure 1-6 Main Memory

014-001800 1-9



System Board Architecture

Main-Memory Interface

The memory interface connects the DRAM to the Mbus, controlling data transfers to
and from the DRAM. When a device addresses memory, the memory interface
enables the memory module that contains the addressed location; then reads from or
writes to the location. The interface consists of the following:

® Address and data latches.

® Address and data drivers.

® Control logic and memory timing to regulate the memory strobes (RAS and CAS)
and write enable (WE).

The memory interface responds only to addresses in the lower 128 Mbytes of system
address space. Table 1-3 shows the number of clock cycles it takes to execute reads
and writes.

Table 1-3 Memory Read and Write Cycles

Number of Clock Cycles
at CPU Speed:
Type of Access 16.67 (MHz) 20 (MH2)
Single-word write 5 6
Single-word read 6 7
Block write (4 words) 11 12
Block read (4 words) 12 13

The memory interface sends status signals to the workstation’s Parity Address Register
(PAR) to indicate when one or more modules has 100 ns DRAM:s installed and the
number of modules with 4-Mbit DRAMs. For information on these status bits, see
the description of the Parity Address Register (PAR) later in this chapter.

Battery Backed Up (BBU) SRAM and PROM

The BBU SRAM provides 2 Kbytes of nonvolatile storage for diagnostics, system
configuration, and boot information. (Note that within this manual we also refer to the
BBU SRAM as NOVRAM or nonvolatile RAM.) The 128-Kbyte PROM contains
powerup diagnostic and initialization code, including the local code for booting the
system over an Ethernet. The diagnostic registers provide information that allow
diagnostic software to control the state of the system board, determine system board
status, and obtain Mbus parity error status information.

1-10 014-001800



System Board Architecture

The System Control Logic

The system control logic allocates and controls the system board resources, and
includes the following: Mbus and Sbus arbitration logic, interrupt control logic, timing
services, boot (PROM), battery-backed-up static RAM (BBU SRAM, also called
nonvolatile RAM or NOVRAM), and system control registers. The timing services
include the time-of-day (TOD) clock, time-of-boot (TOB) clock and the
programmable interval timer (PIT). The NOVRAM contains the system configuration
information. The system control logic resides on the Sbus. Figure 1-7 illustrates the
system control logic.

Timekeepert RAM (MK48T028)

Mbus/Sbus Boot PROM

Arbitration Logic

i | Battery Backed-up Time-of-Boot
' NOVRAM (TOB) Clock
)

\ 4 v
< Sbus (32 bits address/data) >
A
v [ y T T Ty T Th y
» | Programmable '
Interrupt . : Time-of-Day |' System Control
Control Logic . T,';t,?‘r)v al Timer C.l;cu)r?ter X Registers
1

.........................

Interrupt
Requests

v

Interrupt Line
to CPUs INT
Pin

Figure 1-7 System Control Logic

014-001800 1-11



System Board Architecture

The Mbus and the Sbus

The Memory bus (Mbus) and the System bus (Sbus) pass address, data, and status
between the CPU, memory, system control logic, and I/O controllers.

The Mbus is a 32-bit, multiplexed address/data bus generated by the CPU. It
connects the CPU, main memory and graphics subsystem to each other and to the
Sbus. The Mbus supports block transfers and cache coherency.

The Sbus is a 32-bit, multiplexed address/data bus that connects I/O controllers
(except the video controller), system control logic and registers to each other and to
the Mbus. The Sbus is a “subset” of the Mbus, providing a 32-bit address/data path,
but not supporting block transfers or cache coherency protocols.

The Mbus

The Mbus connects all of the system board resources to each other. The Mbus
includes a 32-bit multiplexed Data/Address bus and Arbitration/Control lines. The
Mbus links the central processing components (the CPUs and CMMUs) to the
memory, I/0, control logic and registers. Table 1-4 lists and describes the signals on
the Mbus.

Table 1-4 Mbus Signals

Signal Description
Data Transfer:

AD[31-00] Address/data
Bus Arbitration:

BR Bus request

BA Bus acknowledge
BB* Bus busy

AB* Arbitration busy
Control and Status:

C[6-0] Control
ST[3-0] Local status
SS[3-0]* System status

When two or more devices try to access the Mbus at the same time, bus arbitration
logic determines which device is granted the Mbus. The Mbus can be accessed by a
system board CPU or by any VME controller.

1-12 014-001800



System Board Architecture

The Sbus

Sbus masters cannot transfer data to/from Sbus slaves. If a device on the Sbus needs
to communicate with another device on the Mbus, it must do so through the CPU.
Table 1-5 defines the Sbus signals.

Table 1-5 Sbus Signals

Signal Description

Data Transfer:

SI[31-0] Address/data
Control and Status:

STRB[1-0] Strobe

AS* Address strobe
G

READ Read data
WAIT Wait

PAUSE Pause

The Mbus/Sbus Interface

The Mbus/Sbus interface links the Mbus and Sbus to each other. Arbitration logic
regulates requests to access the Mbus and the Sbus.

The Mbus/Sbus interface performs the following tasks:

Provides a bidirectional data path between the two buses.
Defines the system memory map and decodes addresses.
Performs bus arbitration.

Generates and checks parity.

Notifies the CPU of system error conditions.

The Ethernet and SCSI controllers support Direct-Memory Access (DMA) and have
16-bit interfaces. To avoid leaving “holes” in the memory, these DMA devices need
to address memory on half-word (16-bit) boundaries. Since the Mbus supports only
word-aligned accesses to memory, the Mbus/Sbus interface allows Sbus DMA masters
to access memory on half-word boundaries. The Mbus/Sbus interface consists of all
the logic necessary to interface the Sbus to the Mbus, so that it need not be replicated
for each 16-bit peripheral. Sbus masters are half-words aligned on even addresses
(i.e., 0, 2, 4, 8, A, C, E).

014-001800 1-13



System Board Architecture

The Graphics Subsystem

The graphics subsystem controls the bit-mapped display device — the monitor. The
subsystem resides on the Mbus and consists of a graphics display controller, a frame
buffer, and a CRT interface circuit that creates and sends the video signals to the
monitor. Two types of graphics subsystems are available: monochrome, or color. The
300 series system board contains either a monochrome graphics subsystem or an 8-bit
color graphics subsystem. The 400 series station uses separate boards for the color
graphics subsystem supporting either 24-bit or 8-bit color graphics and an optional
Z-buffer for hidden line and hidden surface removal.

Both the color graphics subsystem and the monochrome graphics subsystem generate
parity bits when they write data to the Mbus, but they do not check parity when they
receive data.

Monochrome Graphics

A NEC uPD72120 advanced graphics display controller drives the monochrome

graphics subsystem. This controller is a slave to the CPU, and it performs drawing
and Bit Block Transfer (BITBLT) operations that the CPU would otherwise have to
perform. The controller also refreshes the Video RAMs (VRAMs) and the screen.

The VRAMSs make up a 1280 (horizontal) by 1638.4 (vertical) pixel single-plane
frame buffer. This buffer provides for a 1280 by 1024 pixel screen display plus extra
off-screen memory for storing fonts, icons, and pull-down windows.

The CPU can directly access the frame buffer to manipulate the video image and to
use software that runs with a dumb frame buffer. However, because the CPU
accesses the frame buffer through the display controller, video memory accesses take
considerably longer than accesses to main memory.

For more information on the monochrome graphics subsystem, see Chapter 4,
“Programming the Monochrome Graphics Subsystem.”

Color Graphics

One or more Data General Complementary Metal Oxide Semiconductor (CMOS) gate
arrays display and control the video display and video memory for the color graphics
subsystem. The gate arrays are slaves on the Mbus that off load the CPU from
performing vector drawing and pixel block transfer operations. The 8-bit color
subsystem uses a single color graphics gate array; the 24-bit color subsystem contains
three gate arrays.

VRAMs make up a 1536 by 1024 pixel frame buffer. The frame buffer provides a
1280 by 1024 pixel screen display and extra off-screen storage for fonts and menus.
The color units differ in the number of planes available to store color information and
the amount of simultaneous colors each can display from a 16.7-million color palette.
The 8-bit color subsystem has 8 planes and provides 256 simultaneous colors. The
24-bit color subsystem uses 24 planes, providing 16.7-million colors. Both color units
have two planes for storing overlays or window information.

For more information on the color graphics subsystem, see Chapter 5, “Programming
the Color Graphics Subsystem.”

1-14 014-001800



System Board Architecture

Z-Buffer Controller

The 24-bit Z-buffer controller, an option in 400 stations, supports hidden line and
hidden surface removal for three-dimensional applications. The Z-buffer consists of a
gate array that displays and controls the video display and video memory for the
frame buffer. The Z-buffer board plugs into the color graphics board.

The color graphics controller decodes addresses to registers and arrays within the
Z-buffer, and also generates control signals for the Z-buffer controller. The Z-buffer
controller includes the logic for performing Hither and Yon clipping, and supports
color graphics screen resolutions and context switching. The Z-buffer generates parity
when read.

The /O Subsystem

The I/0 subsystem contains integrated controllers that provide communication between
the system board and peripheral devices. The I/O subsystem resides on the Sbus and
consists of a keyboard port, a mouse port, one or more serial ports, a parallel port, a
SCSI port, and a LAN interface, and in 400 series stations, a VMEDbus interface.

Keyboard Port

The Keyboard interface supports both AT-compatible and Japanese AX-compatible
keyboards. The interface converts the serial input from the keyboard into parallel
data; converts parallel data into a serial output for the keyboard; generates the start,
stop, and parity bits; and controls keyboard line protocol.

Mouse Port

The mouse port uses an RS-232-C interface to communicate with a mouse. The
mouse port is one channel of a dual universal asynchronous receiver/transmitter
(DUART).

Serial Ports

The 300 series station has one serial port that supports either an RS-232~C interface
or an RS-422 interface. The 400 series station has two RS-232-C ports that support
modems. Each serial port (RS-232-C and RS-422) is one channel of a DUART.

Parallel Port

The parallel port supports peripherals with either a Centronics interface or a Data
Products interface.

Small Computer Systems Interface (SCSI) Port

The SCSI port supports access to mass—storage devices on the external SCSI bus. It
connects to an ANSI-standard SCSI bus. The SCSI port resides on the Sbus, and
consists of a DMA controller and a SCSI controller. The DMA controller supports
16-bit data transfers between the SCSI controller and main memory.

014-001800 1-15



System Board Architecture

To start a SCSI bus task, the CPU programs registers in the DMA and SCSI
controllers. The SCSI controller signals the DMA controller when it is ready for a
data transfer, and again when it completes the transfer or requires CPU intervention.

Local Area Network (LAN) Interface

The Ethernet LAN interface resides on the Sbus, and functions as either an Sbus
slave or a master. It consists of an Ethernet controller and a serial interface. An
external Ethernet transceiver box may be connected directly to the serial interface
using a D15 connector.

The CPU acts as the I/O controller for the Ethernet controller, using a special part of
main memory as the data buffer. The Ethernet controller has direct-memory access
(DMA) channels for transferring data between itself and main memory, and it
supports 16-bit data transfers.

The VMEbus Interface (400 Series Only)

The Versa Modula Europa bus (VMEDbus) links the VME controllers and the system
board to each other. The 400 station VMEDbus interface logic supports Revision C.1
of The VMEbus Specification. The system board’s VME interface logic provides
address decoding (see Figure 1-8), bus arbitration, and interrupt handling.

When any VME controller, including the system board, is master of the VMEbus, it
can transfer words, halfwords and bytes to another VME controller; they can not send
blocks of data over the VMEbus. The system board registers and memory are
mapped to regulate accesses by other VME controllers. Address decode logic enables
access to portions of the address space (i.e., utility space, the Ethernet LAN interface,
or a specific expansion memory board).

CPU LAN SCSI VME
L I | J The address map and address
Address Map and Address Decode Logic decode logic control accesses
between the system resources.
Memory Utllity Serial and
Space Parallel Interface

Figure 1-8 Address Decoding

1-16 014-001800



System Board Architecture

Table 1-6 lists the VMEDbus signals. The system board provides the 16-MHz system
clock to the SYSCLK line of the VMEbus. The system board also monitors and
handles the interrupt, bus arbitration, and ACFAIL lines.

Table 1-6 VMEbus Signals

Signal Description Signal Description
Data Transfer: Clocks:
A[31-01] Address SERCLK Serial clock
AM[5-0] Address modifier SYSCLK System clock
D[31'00]‘ Data Failures:
DSt 0] Data strobe ACFAIL* Ac failure

. ress sirobe SYSFAIL* System failure
LWORD Long word SYSRESET* System reset
SERDAT* Serial data
WRITE* Write Interrupts:
DTACK* Data transfer acknowledge IRQ([7-1]* Interrupt request

IACK* Interrupt acknowledge

Bus Arbitration: IACKIN* Interrupt acknowledge in
BR[3]* Bus request IACKOUT* Interrupt acknowledge out
BG[3]IN* Bus grant in
BG[3]OUT* Bus grant out Power:
BBSY* Bus busy +5V +5Vde
BCLR* Bus clear +12V +12V de
BERR* Bus error GND Ground

VMEbus Arbitration

VME controllers, including the system board, communicate through the VMEbus.
Before communicating over the VMEbus, a VME controller requests access to the
VMEDbus by asserting the bus request line BR3*. VMEbus arbitration logic, located
on the system board, detects this request and grants the bus, when available, via the
bus grant lines BG3IN* and BG30OUT*. According to The VMEbus Specification, the
VMEDbus has four sets (or levels) of bus request and grant signals to regulate bus
access. This implementation of the VMEbus uses only level 3 (BR3*, BG3*IN and
BG3*OUT). The bus grant lines are daisy-chained from VME controller to VME
controller; the board in slot 1 of the VMEbus has the highest access priority, and the
board in slot 2 is next in priority. The system board has the lowest VMEbus priority.
Therefore if all the VME controllers request access to the VMEDbus at the same time,
the board in slot 1 will access the VMEbus. When a controller accepts control of the
VMEDbus, it holds BG30UT* High and asserts BBSY* Low. When it releases the
VME-bus, it deasserts BBSY*, and the arbitration process repeats. This daisy—chain
configuration is illustrated in Figure 1-9. The VMEbus Specification describes these
signals in greater detail.

014-001800 1-17




System Board Architecture

System
Board

Mbus | Mbus/Sbus
CPU Interface
Sbus

Bus Arbitration Logic

VME Interface, Slot 1

BG3OUT*

BG30OUT* BGS3IN*

BG3IN*

BG3IN*

BG3OUT*

A=)~ Siot 2

VME Controller

A—D-

VME Controller

Siot 3

NOTE: |If Ais 1, the VME controller passes the bus grant to
the next controller. If A is 0, the VME controller
takes the bus grant and uses the VMEbus.

Figure 1-9 VMEbus Grant Daisy-Chain

Registers

The registers include

System control registers (see Chapter 2)

® Miscellaneous registers (see Chapter 2) include the time-of-boot (TOB) clock
registers and the Programmable Interval Timer (PIT) and time of day (TOD) clock

registers.

e Interrupt registers (see Chapter 3) which include CPU interrupt registers and VME

interrupt registers.

Monochrome graphics registers (see Chapter 4).
Color graphics registers (see Chapter 5).
Keyboard port registers (see Chapter 6).

Serial port registers (see Chapter 7).

Parallel port registers (see Chapter 7).

Ethernet LAN registers (see Chapter 8).

SCSI registers (see Chapter 9).

1-18

014-001800



System Board Architecture

Timers Available to System Programmers

The Programmable Interval Timer (PIT), time of boot (TOB) and time of day (TOD)
clocks are available to the operating system.

The PIT provides internal timing functions for use by the operating system. This timer
is a write—only countdown timer that interrupts the CPU when the count reaches zero.

The TOB and TOD clocks provide timestamps for the operating system. On powerup
the TOB clock supplies the initialization software with the time and date. After
powerup, the TOD clock keeps the time.

Interrupts and the Interrupt Logic

Interrupt logic:

® Receives and asserts interrupts
® Manages the interrupt registers
® Notifies the CPU of pending interrupt requests

End of Chapter

014-001800 1-19






Chapter 2
Programming the System Board

This chapter describes the following topics:

How to program the CPU.

How to read from and write to memory.

Address mapping.

Mbus and Sbus arbitration.

Bus masters and slaves.

How to address system board resources and system memory from the CPU.

How to address a VME controller from the CPU (400 series stations only).

How to address system board resources from a VME controller (400 series
stations only).

® How to program the time-of-boot clock, nonvolatile RAM, programmable interval

timer, and time-of-day clock.
The boot PROM.
The System Control Monitor (SCM).

014-001800



Programming the System Board

Programming the CPU

The CPU is programmed using the Reduced Instruction Set Computing (RISC)
instruction set.

The registers are memory-mapped (mapped to unique locations in the workstation
address space), therefore they are programmed using the Load Register from Memory
(I1d) and Store Register to Memory (st) instructions.

NOTE: Programming a dual-CPU or single-CPU workstation is identical; both types
of workstation use the same instruction set. The WHOAMI register
indicates the number of CPU chip sets the workstation contains.

For detailed information on the instruction set and the CPU programmable registers,
see Motorola’s MC88100 User’s Manual. For detailed information on the CMMU
programmable registers, see Motorola’s MC88200 User’s Manual.

The CPU supports the big-endian scheme for ordering bytes in memory. In this
scheme, lower memory bits correspond to high-order bytes, as shown in Figure 2-1.

31 24|23 16 115 8|7 0
Byte 0 Byte 1 Byte 2 Byte 3

31 16| 15 0
Half-Word 0 Half-Word 1

63 32 | 31 0
Word 0 Word 1

Figure 2-1 Big-Endian Byte Ordering

2-2 014-001800



Programming the System Board

Addressing Memory

Main memory occupies the lower 128 Mbytes of address space. All memory must be
contiguous, starting at address 0000 0000. If a vacant memory location, (i.e., one
that has no RAM) is read, the memory interface returns data of all 1s and parity of
all 1s, resulting in a parity error. If a vacant memory location is written to, the data
is lost and an error is not generated.

To avoid this problem, the system should size the memory by writing to and reading
from the memory and comparing the results. To do this, software needs only to
perform a write/read sequence at 4-Mbyte boundaries — the smallest increment of
memory expansion.

When the system is powered up or reset, the CPU reads its first instruction from
location 0000 0000. This address is normally the start of main memory, but during a
reset or a powerup, the system maps the boot PROM to 0000 0000. The memory
interface disables the DRAM output drivers during a powerup or reset; main memory
cannot be read from, but it can be written to.

Data Transfers to/from Memory

Mbus/Sbus masters can read from and write to system memory. When a device reads
from system memory, the memory sends the data one word (32 bits) at a time until it
receives an End of Request (EOR) signal from the requestor or until the read crosses
to a new block of data. If the block crossing occurs before the EOR, the memory
module asserts an end of data signal.

When a device writes data to memory, the memory receives the data (in bytes,
half-words, or words) until it receives an EOR or until a block crossing occurs.

When a CPU reads or writes a block (4 words) of data from system memory, the
following occurs:

1. The CPU writes the beginning address to memory.
2. The memory module receives the address.

3. If the memory module cannot respond to the address immediately (within one
clock cycle), it inserts wait states until it is ready to receive or send the data.

4. Either the CPU (write to memory) or the memory module (read from memory)
writes a word of data to the Mbus.

5. The memory module automatically increments the address to point to the next
word; then writes or reads the new data. This continues until the end of the
data block is reached.

014-001800 2-3



Programming the System Board

Address Map

The Mbus/Sbus interface contains the address decode logic that defines the address
map. This map consists of three main areas: main memory, video memory, and Mbus
utility space.

The system memory occupies a contiguous block in the lower 128 Mbytes of physical
address space, starting at address 0000 0000.

The video memory occupies a 128—Mbyte block at the beginning of the upper half of
the physical address space, starting at address 8000 0000. This space provides a
memory-mapped video frame buffer for the graphics subsystem.

The VMEbus address space consists of A32 and A24 space. The A32 space occupies
two blocks of physical address space, a 1.57-Gbyte block starting at 2000 0000, and a
1.8-Gbyte block starting at 9000 0000. The A24 space occupies a 16-Mbyte block
starting at FEOO 0000.

The Mbus utility space is mapped into the upper 4 Mbytes of physical address space,
starting at address FFC0O 0000. This space is reserved for the memory-mapped
control and status registers of integrated I/O devices, the boot PROM, and other
system control functions.

When the workstation is powered up, or when a system reset occurs, the utility space,
which includes the boot PROM, is mapped to address 0000 0000. During a system
reset or boot, only the lower 20 address bits A[19:0] are used; the upper 12 address
bits A[31-20] are ignored. This points all addresses into the remapped 4-Mbyte
utility space. During reset, main memory will accept data from write operations. This
situation exists until the Diagnostic Control Register (DCR) bit 5 is set to 1.

Table 2-1 identifies system memory space for 300 and 400 series stations. Appendix
A, “Address Map,” has complete address maps for the 300 and 400 series stations.

Table 2-1 System Memory Space

Memory Resource Size (Bytes) Address Range

300 Series Stations

Boot PROM 128 K 0000 0000 - 0001 FFFF (During boot)
128 K FFCO0 0000- FFC1 FFFF (After boot)
System memory 128 M 0000 0000 - O7FF FFFF (Write only during boot)
Video memory 128 M 8000 0000 - 87FF FFFF
400 Series Stations
Boot PROM 128 K 0000 0000 - 0001 FFFF (During boot)
128 K FFCO0 0000- FFC1 FFFF (After boot)
System memory 256 M 0000 0000 - O07FF FFFF (Write only during boot)
Video memory 128 M 8000 0000 - 87FF FFFF
VME A32 space 2G 1000 0000 - 7FFF FFFF
1.8G 9000 0000 - FDFF FFFF
VME A24 space 16 M FE00 0000 - FEFF FFFF

2-4 014-001800



Programming the System Board

Mbus and Sbus

The following sections describe the Memory bus (Mbus) and System bus (Sbus).

Mbus and Sbus Arbitration

The Mbus and Sbus support several controllers that can become master of these
busses. Access to the busses is regulated using the prioritized arbitration scheme.
Mbus and Sbus masters share the same arbitration unit, and the current master is the
master of both the Sbus and the Mbus. Sbus masters can communicate only with
Mbus devices, not with other Sbus devices. Mbus masters can communicate with
other Mbus devices or with Sbus devices. The Mbus/Sbus interface ensures that the
data, addresses, control, and status all flow in the proper directions to effect the
correct transfer.

Due to the strict latency requirements of the Ethernet LAN interface, Mbus masters
must restrict their transfers to less than 5 ms. They must yield the bus for at least
one cycle between word transfers, or in the case of block devices, between every
4-word block. This allows higher priority devices to access the bus in a timely
fashion.

The Mbus/Sbus interface incorporates a time-out mechanism that terminates a bus
cycle and returns an Mbus error when an Mbus wait does not allow the DRAMs to be
refreshed. The time interval varies depending on when the Mbus wait is asserted in
reference to the time from the previous DRAM refresh. For example, on 16.67-MHz
workstations, the time varies from 15-31 us; on a 20-MHz workstation, the time
varies from 13-26 ps.

The Mbus/Sbus interface’s Mbus arbitration logic uses a priority mechanism to grant
bus mastership. There is no fairness incorporated into this arbitration mechanism.

Table 2-2 lists the potential bus masters and their priorities. The Ethernet LAN
interface has the highest priority because it has the strictest bus latency requirements.

Table 2-2 Sbus Master Priorities

Device Priority

Ethernet LAN interface Highest
SCSI DMA controller

VME interface

Data CMMU 0

Instruction CMMU 0

Data CMMU 1

Instruction CMMU 1 Lowest

014-001800 2-5



Programming the System Board

Master and Slave Devices

A device is a master device when it has control of the system to read from and write
to other devices. Only intelligent devices, such as the CPU/CMMU or a VME
controller, can be a master. Slave devices (those accessed by a master) respond to
commands from the master. Masters and slaves vary from transaction to transaction,
and in many instances slaves become masters in response to commands from a
previous master.

For example, if a CPU/CMMU requests data from a disk, the CPU/CMMU is the
initial master device. The disk controller is the slave device that receives the read
command, obtains the data from the disk, and places the data into its buffer. The
disk controller then becomes the master, writes the data from its buffer to system
memory. System memory is the slave device which receives the data from the disk
controller. The CPU/CMMU is again the master device as it reads the data from
system memory.

Data Alignment

All data transfers using the System bus (Sbus) must be aligned on word boundaries;
all locations on the Sbus are word aligned. As a result, software must access Sbus
slaves as 32-bit quantities regardless of how many bits of data the register actually
contains. This ensures that the data is correctly aligned.

2-6 014-001800



Programming the System Board

Addressing System Board Resources and
System Memory

This section describes how to address the system board resources and system memory.
The following numbered steps, in conjunction with Figure 2-2 and Figure 2-3,
describe how the CPUs access the system board resources and the system memory.

1. The CPU puts a 32-bit address onto the Mbus.

2. The address decode logic decodes the address bits (2a) and enables access to a
device (2b) such as onboard memory, expansion memory boards, utility space,
and VME space.

3. The 32-bit address points to a location within the selected device.

Figure 2-2 shows how the CPU addresses memory, while Figure 2-3 shows how
addresses are decoded.

CPU
Instruction
CMMU Data CMMU | Master
Address &
@ Data
Mbus '
Address Sg?a“’ss &
Address Memory
Decode Interface
Expansion Memory Address &
Board Select. @ Data

Expansion

—————>»1 Memory Board Slave

Figure 2-2 How the CPU Addresses System Memory

014-001800 2-7



Programming the System Board

2-8

NOTE: Both instruction and data

CMMUs generate addresses,

but not at the same time.

cPU
instruction Data CMMU
A[31-00] J
Mbus

Address

L

A[31-00]

The address points to a location
within the system board or
expansion memory board.

Y

Address
Decode Logic

Jr

Address Decode

The address decode logic points to and
selects the following address spaces.

Onboard RAM

Memory Board 6

Memory Board 1

Memory Board 7

Memory Board 2

Utility space

Memory Board 3

Memory Board 8

Memory Board 4

VME A16 Space

Memory Board 5

VME A24 Space

1 = 300 and 400 stations
D = 400 stations only

VME A32 Space

See the section “Addressing a
VME Controller from a CPU"

Figure 2-3 Decoding Addresses from the CPU

014-001800



Programming the System Board

Addressing VME Controllers (400 Series Only)

When the CPU addresses a VME controller, the address decode logic decodes address
bits A[31-16]. AM[5-4] is translated from VME address space select. The address
modifier bits inform the VME controllers which VME space the address is written to:
A16, A24, or A32 space. See Table 2-3 and Table 2-4 in the description of the
EXTAM register for more information about the address modifier bits.

The following numbered steps in conjunction with Figure 2-4 and Figure 2-5 describe
how the CPUs access the system board resources and the system memory.

When the CPU addresses a VME controller, the system board decodes the address as
follows:

1. The CPU puts a 32-bit address onto the Mbus.

2. The address decode logic decodes the upper 10 address bits. If these 10 bits
point to the VMEDbus, the following steps are performed simultaneously.

3. The VME interface performs the following tasks simultaneously:

®  Writes the address to the VMEDbus from the Sbus.

®  Writes the address modifier AM[5-0] to the VMEbus. AM[5-4] is
translated from VME address space select (i.e., A32, A24, A16). AM[3-0]
comes from Extended Address Modifer (EAM[3-0]) of the EXTAM
register.

® The address modifier bits AM[3-0] are put on the VMEbus from the
EXTAM register.

Figure 2-4 illustrates how an address passes from the system board to a VME
controller. In this example, the CPU is instructing a disk controller to send a block
of data to the expansion memory.

Figure 2-5 illustrates how the VMEbus decodes addresses, and where the address
modifier bits come from.

A description of the EXTAM register follows Figure 2-5.

014-001800 2-9



Programming the System Board

CPU System Board
Instruction
CMMU Data CMMU | Master
Address &
Data
Mbus ¢
Address
A[31-22)
Address & mte;p&rge
Data Address
Decode
IVMthus Expansion
nterface
VME A32, Memory
A24, or
A16 Select
VMEbus
VMEbus
Slave

VME Controller

Figure 2-4 Addressing the VMEbus from the CPU

VMEbus
Address

Mbus Address Bits

l

VMEbus Address Bits

Type of VMEbus
Access

EXTAM Register Bits:
EXTAM[3-0)

VME Address Space
iglzect: A16, A24 or

Y

Y

VMEbus Address Modifier
Bits AM[3-0]

VMEbus Address Modifier
Bits AM[5-4]

AM[3-0]

VMEbus

AM[5:4]

Figure 2-5 Decoding Addresses to the VMEbus

2-10

014-001800




Programming the System Board

EXTAM Extended Address Modifier

Address FFF8 8014 Write only

The Extended Address Modifier (EXTAM) register supplies the address modifier bits
AM|[3-0] to the VMEbus when an Mbus controller accesses the VMEbus. The
address modifier bits AM[5-0] supply the VME devices with information such as
address size, type of access, and identification of the bus master. Address modifier
bits AM[S, 4] identify the VME address space, and are decoded (by logic) from
VME address space select as shown below. AM([S, 4] is put on the VMEbus.

Table 2-3 defines the address modifier (AM[S, 4]) bits.

Table 2-3 Address Modifiers (VME Space)

VME Space AM5 AM4
A32 0 0
A24 1 1
Alé6 1

Table 2-4 defines the address modifier (AM[3-0]) bits.

Table 2-4 Address Modifiers (Transfer Type)

AM3 AM2 AM1 AMO Type of Access

1 1 1 1 Supervisor block transfer
1 1 1 0 Supervisor program access
1 1 0 1 Supervisor data access

1 0 1 1 User block transfer

1 0 1 0 User program access

1 0 0 1 User data access

NOTE: A user transfer or user access is the same as a nonpriveleged access defined in
the VMEbus specification.

EXTAM is not affected by system reset or local reset.
Initialize EXTAM before addressing a VME controller from the system board.

7 4 3 0
Unused EAM

Bit Mnemonic Function

7-4 Unused

3-0 EAM[3-0] Extended Address Modifiers.
Drives the address modifiers AM[3-0] onto the VMEbus when a CPU
writes an address to the VMEbus. The address modifier defines the
type of transfer or access (see Table 2-3, Address Modifiers).

014-001800 2-11



Programming the System Board

Addressing System Board Resources from a
VME Controller (400 Series Only)

This section describes how VME controllers address system memory. This addressing
process is invisible to the programmer. The following text and illustrations explain
how the CPUs access the system board resources and the system memory.

VME controllers have one of three address spaces: A16, A24, or A32 space, and are
respectively referred to as A16, A24, or A32 controllers. The number of address
lines driven by the controller defines the address space or range available.

A16 controllers

A24 controllers

A32 controllers

have 16 address lines in and out, and therefore their addressing
range is limited to 64 Kbytes. A16 controllers can access other
VME controllers, but they cannot access the system board.

have 24 address lines in and out, and therefore their addressing
range is limited to 16 Mbytes. A24 controllers can access assigned
system memory only after the CPU has instructed them to do so.
When an A24 controller accesses system memory, the EXTAD
register appends the upper eight address bits to the A24 address.
This enables the A24 device to address the correct pages in
memory. When addressing system memory, the address modifier
bits AM[3-0] define the type of access: whether the transfer is to
user space or to supervisor space, and whether these accesses are
block, program or data accesses.

have 32 address lines in and out, and therefore their addressing
range extends throughout the limits of the system. A32 controllers
can access assigned system memory as well as other VME
controllers.

Figure 2-6 illustrates how VME controllers address system memory.

A VME A24 Address to System Memory

31

24 |23 16

EXTAD 24-bit address

15

24-bit address

A VME A32 Address to System Memory

31 22 | 21 16
Address of 4-Mbyte page Address within 4-Mbyte page
15 0

Address within 4 Mbyte page

Figure 2-6 Structure of Addresses from VME Controllers to System Memory

2-12

014-001800



Programming the System Board

Figure 2-7 is a flowchart that illustrates how VME controllers address system board
resources and system memory.

A VME con troller generates
an address and address
modifier, and writes them to
the VMEbus.

'

The address decode logic determines
whether or not the address Is valid.

Decodes to another
VME controller or
produces a bus error
through a bus timer.

Is the address
and address
modifier valid?

A24 address A32 address

A24 or A32
address?

The VME interface appends the The VME interface puts the 32-bit
EXTAD bits 31-24 to the VME address generated by the VME
address bits 23-01. The EXTAD bits controller onto the Mbus.

convert the A24 address into a 32-bit
address which is placed on the Mbus.

'

The address decode logic enables
the selected portion of the address
range.

Figure 2-7 How a VME Controller Addresses System Board Resources and
System Memory (Flowchart)

014-001800 2-13



Programming the System Board

Figure 2-8 illustrates how VME controllers address system board resources and system

memory.

CPU System Board
instruction Data CMMU
Address
- Mbus and Data
Address
A[31-16]
aA,?g rg:fa Address Decode Memory
Logic Interface
Address
and Data
A Expansion Memory
Board Select
Expansion
———>»  Memory
System board select
Slave
IVzlll'i‘fl:aus Address Decode
nterface
Address Logic
Address
VMEbus | and Data
A24 or A32 Master
Device

Figure 2-8 How a VME Controller Addresses System Board Resources and

2-14

System

Memory

014-001800



Programming the System Board

EXTAD Extended Address

Address FFF8 8010 Write only

The extended address register provides the upper eight Mbus address bits when an
A24 VMEDbus device accesses the Mbus. EXTAD is loaded during powerup with a
base address for VME access to system memory.

EXTAD is not affected by either system reset or local reset.

7 0
EXT
Bit Mnemonic Function
7-0 EXT[31-24] Extended Address.

Supplies the address bits A[31-24] to the Mbus when an A24
VMEDbus device accesses the Mbus.

014-001800 2-15



Programming the System Board

Programming the System Control Registers

The system control registers are memory-mapped and are accessed as 32-bit registers.
To access a system control register declare it as type int in a C program, or use the
Load Register from Memory (ld) or Store Register to Memory (st) instruction in an
assembly language program. Table 2-5 provides the memory map for these registers.

The rest of this section describes the diagnostic registers.

Table 2-5 Memory Map of the System Control Registers

Register or Component Address (hexadecimal) Type

Common to both Workstations

DCR (Diagnostic Control) FFF8 4008 (300 series stations) Write-only
FFF8 40C0 (400 series stations)

DSR (Diagnostic Status) FFF8 400C (300 series stations) Read-only
FFF8 40C4 (400 series stations)

PAR (Parity Address) FFF8 4010 (300 series stations) Read-only
FFF8 40C8 (400 series stations)

400-specific

WHOAMI (CPU Configuration) FFF8 8018 Read-only

2-16

014-001800



Programming the System Board

DCR Diagnostic Control
Address FFF8 4008 (300 stations) Write Only
Address FFF8 40C0 (400 stations) Write Only

The Diagnostic Control Register (DCR) allows software to control the state of the
system board.

NOTE: All DCR bits are cleared to 0 after a power—on reset and system reset.

System components, such as the graphics subsystem, that reside on the Mbus must
provide their own software reset capabilities beyond the power-on reset and software
reset functions provided by the system board.

15 9( 8 \? 6 5 4 3] 2 1 0
Unused MSS | LED| RKB| LRD| FL1 | RIO|RET| RSC |RSY
Bit Mnemonic Function
15-9 Unused Unused
8 MSS Monitor Speed Select (Available only on color graphics systems.)

1 Selects a 125 MHz video monitor.
0 Selects a 107 MHz video monitor.

7 LED Diagnostic LED control.
1 Turns off the diagnostic LED.
0 Turns on the diagnostic LED.

6 RKB* Reset keyboard subsystem.
0 Resets the keyboard interface. For information on the state of the
keyboard interface after reset, see Chapter 6 “Programming the
Keyboard Port.” After a power-on reset or system reset, this bit is
0, holding the keyboard interface in the reset state.

5 LRD Disable/enable low memory decoding of utility space.

1 Maps the utility space to the top of memory beginning at address
FFCO 0000. LRD is set after the system is powered up. When
mapped to this area, data can be read from and written to memory.

0 Maps the utility space to the bottom of memory, beginning at
address 0000 0000. LRD is cleared during a powerup or reset so
that the CPU can execute the power-up code beginning at address
0000 0000. When in this mode, the upper ten address bits
(A[32:23] are ignored. Data can be written to but not read from
memory.

* Signal is a logical true (1) when asserted low.

(continued)

014-001800 2-17



Programming the System Board

Bit Mnemonic Function

4 FL1 Force a logical 1 into the parity bits.

1 Writes a logical 1 to all four byte parity bits when data is written to
main memory. The data written to each byte determines whether a
parity error is signaled when the data is read from main memory.
Since there is no effect during a read operation, this allows you to
force a parity error on any byte. For example, writing 0101 0100
produces a parity error for byte 0. In this case, byte 0 is the only
byte to have odd parity when all parity bits are forced to 1s (the
workstation uses even parity). Writing FFFF FFFF forces all bytes
to have a parity error.

Memory does not check for valid parity and treats parity bits for
data the same as data bits. It is the responsibility of the Mbus
master to check for parity errors.

3 RIO* I/0O subsystem reset.
0 Resets the mouse and serial ports’ DUART and the paraliel port.
For information on the state of the DUART and the parallel port
after reset and the exact state of the various subsystems after reset,
see Chapter 7 “Programming the Serial Ports and Parallel Port.”
After a power-on reset or system reset, this bit is set to 0, holding
the DUART and parallel port in the reset state.

2 RET* Ethernet subsystem reset.
0 Resets the LAN interface. For information on the state of the LAN
interface after reset, see Chapter 8, “Programming the Local Area
Network Interface.” After a power-on reset or system reset, this bit
is set to 0, holding the LAN interface in the reset state.

1 RSC* SCSI subsystem reset.
0 Resets the SCSI port. For information on the state of the SCSI port
after reset, see Chapter 9, “Programming the Small Computer
Systems Interface Port.” After a power-on reset or system reset,
this bit is set to 0, holding the SCSI port in the reset state.

0 RSY System reset.
1 Initiates a system reset that puts the entire board, including the
CPU, in the reset state. The power-on reset bit (STS) in the
Diagnostic Status Register (DSR) is not set to 1, indicating that the
reset was initiated by software and not by system powerup.

* Signal is a logical true (1) when asserted low.

(concluded)

2-18 014-001800



Programming the System Board

DSR

Diagnostic Status

Address FFF8 400C (300 stations) Read Only
Address FFF8 40C4 (400 stations) Read Only

The Diagnostic Status Register (DSR) allows software to determine the state of the
system board.

Reserved RST|TPR|STS

Bit

Mnemonic

Function

7-3

Reserved

RST*

TPR

STS

Ignored when the register is written, and undefined when the register
is read.

NOVRAM reset.

1 Indicates that the hardware jumper at locations TP2 and TP3 is not
installed. This jumper is not normally installed.

0 Indicates that the jumper is installed so that firmware can initiate a
NOVRAM initialization sequence.

SCSI terminator power.
1 Indicates that the onboard SCSI terminators have power.
0 Indicates that the fuse is blown and should be replaced.

Power-on reset.

1 Indicates that the last reset was a system reset initiated by a
power-on reset. When the DSR is read, this bit is set to 0, and is
not reset to 1 until the next power~on reset. It allows diagnostic and
power-up software to distinguish between a power-on reset and a
software initiated reset.

* Signal is a logical true when asserted low.

014-001800

2-19



Programming the System Board

PAR Parity Address
Address FFF8 4010 (300 stations) Read Only
Address FFF8 40C8 (400 stations) Read Only

The Parity Address Register (PAR) monitors the addresses of each Mbus cycle and
supplies address and strobe information. A parity error interrupt is generated only if
the SCSI port or the LAN interface reads a memory location that contains bad parity
during a DMA transfer or if the CPU reads the SCSI Signal register (Register 9) while
it is in transition. All other parity error conditions are handled by the bus fault
mechanism when one of the CMMU chips is the bus master.

1If the Mbus cycle is positively acknowledged, the latched information is discarded,
and the next Mbus cycle is monitored. If the cycle generates an Mbus parity
interrupt, the latched address is stored in PAR until the register is read. After PAR is
read, addresses can be latched again. Reading PAR clears the parity error interrupt
request in the appropriate interrupt status register, and resets any pending parity error.

15 14 | 13 | 12 11110 | 9 8 7 6 5 4 0
MS1|{MSO0| PH | Reserved | A1 | PB1|PBO| 100 | MS2 | DSP MMAD

Bit Mnemonic Function

15 MS1 Memory Size 1

14 MSO0 Memory Size 0

Together these bits indicate the number of memory modules with
4-Mbit DRAMs.

13 PH Phase
1 The parity bus error terminated an address phase.
0 The parity bus error terminated a data phase. In the workstation’s
current implementation this bit is always 0.

12,11 Res Reserved.
Ignored when written to, returns Os when read from.
10 Al Half-word Address.

This bit, along with the latched byte strobes, indicates which byte

caused the parity error interrupt.

1 Indicates that the error occurred on either or both bytes in the
bottom half-word (bits 15-0).

0 Indicates that the error occurred on either or both bytes in the top
half-word (bits 31-16).

(continued)

2-20 014-001800



Programming the System Board

Bit

Mnemonic

Function

4-0

PB1, PBO

100

MS2

DSP

MMAD

Parity Error Byte.

These bits indicate which byte strobes were active during a bus cycle
that was terminated by an Mbus parity error. PBO indicates that the
error occurred in the most-significant byte (either bits 7-0 or bits
23-16). PB1 indicates that the error occurred in the least-significant
byte (either bits 15-8 or bits 31-24). Use PBO and PB1 in conjunction
with A1 (bit 10) to determine which byte caused the parity error.

100 ns DRAM indicator.
0 indicates that the memory modules use 100 ns DRAMs.

Memory Size 2

DRAM chips installed in the workstation (1-Mbit DRAM chips do not
affect this count). The bits are binary encoded with MSO being the
least significant bit. Modules with 4-Mbit chips must be installed
starting at physical address 0000 000016, and must occupy contiguous
physical memory space. These bits count down from 0. For example,
1112 indicates 0 modules installed; 1102 indicates 1 module installed.

Parity Error Address Space.

1 Indicates that the Mbus parity error was caused during an access of
the lower 128 Mbytes of address space.

0 Indicates that the parity error occurred during an access to any
address space above the lower 128 Mbytes.

Memory Module Address.

These bits identify the memory module containingthe RAM location
that caused a parity error. Depending on which size DRAM is
installed, each module contains 4-Mbyte or 16-Mbyte locations, each
with 32 data bits and 4 byte parity bits. Software must use this
information in conjunction with bits 15, 14, 6 (MS2-0) to determine
the faulting memory module.

014-001800

(concluded)

2-21



Programming the System Board

WHOAMI (400-Series Only) CPU Configuration

Address FFF8 8018 Read Only

The CPU Configuration (WHOAMI) register contains the CPU configuration and
defines which CPU is currently master of the Mbus. The CPU configuration defines
how many CPUs and CMMUs are on the system board. The possible configurations
are given by the CPU Configuration (CPC) bits. The WHOAMI register is unaffected
by either system reset or a local reset.

CPC CMM

Bit Mnemonic Function

7-4 CpC CPU Configuration.
These bits define the current CPU configuration as follows:

CPC CPU Configuration
516 2 CPUs, 4 CMMUs
Al6 1 CPU, 2 CMMUs

3-0 CMM Current Mbus Master
The CMM bits indicate which CPU is currently the master of the Mbus
during a data cycle. These bits are valid only during a data cycle when
a CPU is initiating the read or write through its data CMMU. CMM is
not valid during an instruction read or write, or while a VME controller
is master of the Mbus.

CMM Mbus Master

1 CPUO is master of the Mbus.
2 CPU1 is master of the Mbus.

2-22 014-001800



Programming the System Board

The Time-of-Boot (TOB) Clock and
Nonvolatile RAM (NOVRAM)

The time-of-boot (TOB) clock is a battery-backed device that initializes the
time-of-day clock. The TOB clock is implemented using a SGS-Thomson
MK48T02B 2K X 8 Zeropowert/Timekeepert RAM chip. This chip provides total
nonvolatility for over 3 years of operation without power. Real-time clock is accurate
to within one minute per month at room temperature (25_C). The device provides a
programmable register for calibrating the timekeeping accuracy. In addition to the
timekeeping functions, this chip provides 2040 bytes of NOVRAM used for diagnostics
and system configuration/boot information.

Time-of-Boot Clock Registers

The eight TOB clock registers are 8-bit registers in the timekeeper RAM. Software
can adjust the TOB clock by writing the desired time and date to these registers.
They are aligned on word (32-bit) boundaries and occupy the last eight locations of
the 2048 words reserved for the NOVRAM. Table 2-6 shows the registers, their
addresses, and illustrates their use with an example.

Table 2-6 Memory Map for the Time-of-Boot Clock Registers

Range of Value Example

Address Register Hex. (Decimal) Hex. (Decimal)
FFF8 1FFC Year 00-63 (99) 59 (89)
FFF8 1FF8 Month 01-0C (12) 08 (08)
FFF8 1FF4 Date 01-1F (31) 11 (17)
FFF8 1FF0 Day 01-07 (07) 05 (05)
FFF8 1FEC Hour 00-17 (23) 10 (16)
FFF8 1FES8 Minutes 00-3B (59) 19 (25)
FFF8 1FE4 Seconds 00-3B (59) 29 (41)
FFF8 1FEO Control — 40 (64)
The example returns: Thursday, August 17, 1989, 16:25:41.

The Control register (FFF8 1FEQ) allows you to read, set, or calibrate the TOB clock.
Before reading or writing the TOB registers, you must prevent the clock from updating
the registers by setting the appropriate bit: to read data set bit 6 of the Control
register to 1, to write data set bit 7 to 1. Halting the register updating does not affect
the TOB clock’s timekeeping. Resetting the read bit to 0 continues updating of the
registers; resetting the write bit to 0 transfers the register values to the TOB clock and
continues the timekeeping operations. The date/time values occupy the low-order bits
of the registers with any unused bits set to 0.

To calibrate the TOB clock, write a calibration value into bits 0-5 of the Control
register. Bit 5 is the sign bit: 0 indicates negative calibration, slowing the clock down;
1 indicates positive calibration, speeding the clock up. Bits 0-4 contain a binary
calibration value from 0-31. Each value modifies a number of minutes in each
64-minute cycle of the clock. A value of 000012 modifies the first 2 minutes by 1

014-001800 2“23



Programming the System Board

second per minute. A value of 001102 modifies the first 12 minutes by 1 second per

minute.

For detailed descriptions of these registers and further programming information, see
the SGS-Thomson, Memory Products Databook.

NOVRAM Addresses

The NOVRAM contains 2040 bytes of nonvolatile data for Data General diagnostics
and system configuration/boot information. The NOVRAM occupies two 4-Kbyte
pages in the Mbus utility space. Each NOVRAM byte is word aligned in Mbus
address space, and is accessed as the lowest order byte (bits 8-0) of each word.
Table 2-7 gives the address map for the NOVRAM bytes.

Table 2-7 NOVRAM Addresses

Address Byte Number Comments

FFF8 0000 0000

L Ce Reserved (not write-protected)
FFF8 01FF 0127

FFF8 0200 0128

Ca C Reserved (write-protected)

FFF8 03FF 0255

FFF8 0400 0256

R C. General use (not write-protected)
FFF8 1FDC 2039

2-24

014-001800



Programming the System Board

Programming the CIO

A Zilog Z8536 Counter/Timer and Parallel I/O (CIO) is used as a counter/timer only,
generating an interrupt to the CPU when a countdown reaches terminal count. This
process can be used to generate, through software, a time-of-day (TOD) clock.

The counter/timer lines can be enabled or disabled by programming the control
registers. As shown in Figure 2-9, timers 1 and 3 are linked externally. To prevent
false triggers, all of the counter/timer I/O pins are pulled High.

Timer 1 Timer 2 Timer 3
Ck In  Out Ck In Out Ck In  Out
L) L]
| | |
3.6864 MHz —»] /2 N b —— -
Ck Clock Input

In
Ot

Counter Input
Counter Output

Figure 2-9 External Timer Connections

The 3.6864-MHz PCLK input is internally divided by 2 and supplied to the counters,
providing a minimum resolution of 0.54 ms.

The counters can be programmed to generate an interrupt when they reach terminal
count. The program must read the counter often enough to detect a roll-over; the
counter does not generate an interrupt when it rolls over.

The 8-bit CIO registers are aligned on word boundaries and are the low-order byte.
Table 2-8 defines the addresses of the CIO registers. For detailed descriptions of the
CIO registers, see Zilog Corporation’s manual Z8536 Z-CI0/Z8536 CIO
Counter/Timer and Parallel 1/0 Unit.

Table 2-8 CIO Register Addresses

Address Register

FFF8 3000 Port A Data register
FFF8 3004 Port B Data register
FFF8 3008 Port C Data register
FFF8 300C Control register

014-001800 2-25



Programming the System Board

The Boot PROM

The boot PROM contains 128 Kbytes arranged as 32 Kwords by 32 bits/word. The
boot PROM resides in the utility space at addresses FFCO 0000 through FFC1 FFFF.
During a power-on reset or a system reset, the boot PROM is mapped to 0000 0000
through 0001 FFFF. This mapping allows the CPU to fetch the boot code from
address 0000 0000.

NOTE: The remapping function is enabled by clearing bit 5 (LRD) of the
Diagnostic Control Register (DCR). See the Diagnostic Control Register in
an earlier section, “Programming the System Control Registers.”

During powerup, the CPU executes the System Control Monitor (SCM) program to
initialize and test the system board and memory modules. See the next section, “The
System Control Monitor (SCM).” When this power-up sequence is completed, the
system operator enters the BOOT command and the CPU boots the operating system
from the default boot device. The boot device can be a local disk or tape drive or a
server on Ethernet. For more information on the power-up sequence, see Appendix
B, “Power-Up Flowchart.”

If the CPU cannot boot the operating system from the default device, it runs the SCM
user interface and displays the boot menu on the system console (either the graphics
monitor or a terminal connected to the serial port). The boot menu allows a user to
specify the boot path. For information on the boot menu, see the manual Using the
System Control Monitor (SCM).

If performing an automatic program load, the load will not succeed unless a valid boot
path exists and the boot device contains the appropriate boot file. For information on
the boot file, see Appendix C, “Boot File Format.”

During powerup, the CPU also enters the SCM user interface when a system error
condition occurs or when one or more diagnostics test fails. During normal system
operation, the CPU accesses the SCM user interface when the operating system
encounters a problem that it cannot handle while running (i.e., a virtual halt or a
breakpoint not supported by a user program.) The SCM user interface consists of a
command interpreter and menus. These allow the system operator to display and
modify system configuration parameters.

For more information on the SCM user interface, see the manual Using the System
Control Monitor (SCM).
Power-Up and Boot Code

When a powerup reset occurs, the CPU executes power-up diagnostic code stored in
the PROM. After the system hardware passes diagnostic tests, the CPU boots from a
default storage device which may be on the Ethernet LAN, SCSI bus, or VMEbus
(400 series stations only.)

2-26 014-001800



Programming the System Board

The System Control Monitor (SCM)

Data General’s System Control Monitor (SCM) supports a standard set of system calls
that use CPU registers. Programs can pass control to and from the SCM using these
optional system calls. Operating system software may need to support the SCM system
calls for certain value—added functions.

The SCM currently provides the following services to the operating system via system
calls:

® Access to standard input/output devices.

® System configuration information.

® Panic and error reporting.

Software accesses SCM system calls through vectors in the boot PROM vector space.
A program must do the following to access the SCM system calls:

1  Set CR7, the Vector Base Register (VBR), to the PROM VBR. If this changes
the value of CR7, software must save the changes to copy back later. The VBR
defaults to the PROM values after powerup.

2  Load register 9 (r9) and other argument-specified registers with the offset value
defined in Table 2-9 (the values are in hexadecimal unless indicated otherwise).

3 Execute the following trap instruction: tb0 0,R0,496

Table 2-9 SCM System Calls

System Call Argument(s) Data Returned Function
.BANNER 19=113 r2=Pointer to string Returns pointer to system banner string.
.CHAR 19=0 r2(LSB)=ASCII Waits for an ASCII character from the

character  default input port, reads it, and returns
the character in the least significant byte
of register 2. (A null indicates a break.)

.CHFLOW 19=116 r2=Flow control flag  Reads or writes the character flow control
r2=0 or non-0 (XON/XOFF) flag. If r2 = 0 initially,
r3=Value then r2 will contain the current flag

value. If 12 = non-0 initially, then stores
value from r3. An r3 value of F816
indicates flow control enabled; any other
value indicates disabled.

.CHKSUM r2=Pointer to r2=Checksum Performs data checksum test and returns
data the value in r2. (Adds all the bytes and
r3=Byte count complements the result.)
19=68
.CHSTAT 19=5 r2(LSB)=Default Polls the standard input port for character

input status status and returns this value in the least
significant byte of r2.

.COMMID 19=114 r2=Pointer to address Returns pointer to Ethernet address.
.CPUID 19=102 r2=CPU ID Returns the CPU ID.
Note: If r2 is set to 1, an error has occurred.

(continued)

014-001800 2-27



Programming the System Board

Table 2-9 SCM System Calls

System Call Argument(s) Data Returned Function
.GDMP 19=105 r2=Pointer Reads video timing parameters into SPAD
r2=0 or non-0 buffer, and returns pointer as byte-packed
data in r2. If r2 original value not 0,
writes byte-packed data pointed to by r2
into BBSRAM.

.GTLINE 12=32-bit 12=String length Reads a character string of 256 characters
string buffer or less from the standard input port,
address echoes them, and places the character

r9=2 string in the buffer address in r2.
Terminator characters are: \n = New
Line, \l = Carriage Return, and \f =
Formfeed. The SCM screen edit control
functions are supported.

.HALT 19=63 None Halts the user program and enters the

SCM.

.HOSTID 19=107 r2=Pointer to Returns to 12 a pointer to 4-byte binary

host ID host ID data.

.INVALID 19=112 None Invalidates the instruction cache

r2=JP# or -1 (Icache). If r2 = a JP number, then only
that JP Icache is invalidated. If 12 = -1,
then all JP Icaches are invalidated.
.KBLAN 19=106 r2=Language Returns language code to r2. The codes
and languages are
1 U.S. English 6 Spanish
2 German 7 Swiss
3 U.K. English 8 Italian
4 French 9 Japanese
5 Swedish

.MSIZE r9=103 r2=Top of memory Returns top of memory to r2. If 12 =0

r2=0 or non-0 initially; then r2 will contain top of

physical memory. If 12 = non-0 initially,
then r2 will contain top of user memory.

.NBLOCAL 19=115 12=LAN port number Reads or writes the LAN port number. If

r2=0 or non-0 r2 = 0 initially, then r2 will contain the
r3=Value LAN port number. If r2 = non-0 initially,
then stores value from r3.

.OCHAR r9=20 r2=0 Prints the value in the least significant

r2(LSB)=ASCII character byte of 12 to the standard output device.

.OCRLF 19=26 12=0 Prints a Carriage Return/line feed to the

standard output device.

.PANIC 19=110 r2=Error code Halts the user program, returns an error

code to r2, and enters the SCM.
.PRINTER r9=117 r2=Printer type Returns printer type to r2. A value of 0 =
Centronics; non-0 = Data Products.

.POLLKEY 19=5 r2=Key hit Returns an indication of whether or not a
key was pressed. If 12 = 0, no key was
pressed. If 12 = non-0, a key was
pressed.

.PTLINE 19=21 r2=0 Prints the character string pointed to by

12=32-bit the address in r2 to the standard output
address of device. Does not return until it encounters
string the null terminator in the string. Note
that this call allows five additional
arguments and uses the C printf
characteristics.
Note: If r2 is set to 1, an error has occurred.

2-28

(continued)

014-001800



Table 2-9 (continued)

Programming the System Board

SCM System Calls

System Call Argument(s) Data Returned Function
.REBOOT 19=101 None Resets and reinitializes the workstation,
r2=0 or Pointer to initializes the boot time registers, and
boot path enters the boot menu. If r2 = 0, the call
uses the default boot path. If r2 = non-0,
the call uses the pointer in r2.
.REVNUM r9=104 r2=Revision Returns PROM revision to r2 in the
number format: bit 31 (if 1), engineering
revision; bits 30-16, major revision
number; bits 15-0, minor revision
number. For example,
80050002 = Rev E05.02
30000 = Rev 3.0
.RWDCR r9=111 r2=DCR Reads or writes a copy of the Diagnostic
r2=0 or non-0 Control Register (DCR) word in memory.
r3=New DCR If r2=0, returns DCR to 12. If 12 =
value non-0, writes 13 value to DCR word. The
description of the Diagnostic Control
Register (DCR) in this chapter gives the
DCR values,
JPSTART r2=JP# to start r2=Status Starts another processor (JP#) after an
r3=Starting initial boot (used only in multiprocessor
address systems). The status returned to 12 is
r9=100 0 Start successful
1 Illegal or missing JP
2 Single JP configuration
3 JP not halted
4 JP does not respond
.STDIO r9=70 r2=1/0 device Returns the standard input and output
number ports. Device number values are
0 Serial input and output
1 Serial input/serial and
graphics output
2 Keyboard input/graphics output
.TECW 19=108 12=ECW Returns or sets Environment Control
r2=0 or non-0 Word (ECW). If r2 = 0, returns ECW to
r3=New ECW r2. If r2 not = 0, writes r3 value to
value ECW. Table 2-8 lists the ECW bit
values, functions, and default states at
powerup.
Note: If r2 is set to 1, an error has occurred.

014-001800

(concluded)

2-29



Programming the System Board

Table 2-10 defines the contents of the Environment Control Word.

Table 2-10 Environment Control Word (ECW) Contents

State at
Bit Function Powerup
0 Reserved
Loop on error 0
0 Disables testing when program encounters an error.
1 Continues testing when program encounters an error.
2 Output to console 1
1 Directs program output to the system console.
3 Percent failure 0
0 Disables reporting of this error.
1 Enables reporting of percent of errors after looping (errors per
total number of loops). Note that bit 1 (loop on error) must also
be enabled.
4 Print pass messages 1
0 Disables printing of message.
1 Enables printing of messages to the system console after each
test pass completes.
5 Output to printer 0
0 Disables output to printer.
1 Enables program output to the default printer port.
6 Disassembler 1
0 Disables display.
1 Enables displaying an additional output field that contains the
mnemonics of memory address contents.
7 Print subtest message 0
0 Disables printing message.
1 Enables printing subtest messages to the system console.
8 Report all 1
0 Print brief messages to the system console.
1 Print verbose messages to the system console.
9 Halt on error 0
1 Enables halting the program after an error and returning the
SCM prompt.
10 Enable error logging 0
0 Disables error logging.
1 Enables recording all errors in system error log.
11, 12 Reserved 0
13 Page mode 0
0 Disables Page mode.
1 Enables displaying output on the system console one screen
(page) at a time
14-31 Reserved 0

2-30 014-001800



Programming the System Board

In addition to the system calls, the System Control Monitor (SCM) supports hardwired
entry points to the subroutines in Table 2-11 (accessible with a jsr instruction
containing the appropriate entry point).

Table 2-11 SCM Subroutines

Entry Point

(Hex) Subroutine Argument Description

1000 putchar to stdio r2=char Outputs the character in r2.

1004 getchar from stdio r2=char Returns a character to r2.

1008 KBD_reset r2=0 Performs a keyboard hard reset.

100C GDM_reset 12=0 Performs a graphics display monitor hard reset.

1010 GDM_load_fonts - Loads the fonts for the graphics display monitor.

1014 GDM_putchar r2=char Outputs the character in 12 to the graphics
display monitor.

End of Chapter

014-001800 2-31






Chapter 3
Interrupts, System Errors,
and Bus Faulits

This chapter discusses the following topics:

® Types of interrupts.
® How the interrupting devices interrupt the CPU.
® How the CPU handles the interrupts.

The workstation has two error reporting mechanisms: bus faults and interrupts. The
CMMUs inform the CPU of bus faults, and the interrupt control logic informs the
CPU of interrupts generated by the various subsystems.

Interrupts are a means for various system resources (memory, I/O controllers, power
supply, etc.) to notify the CPU of a condition that needs attention. Each interrupt
has an associated interrupt service routine that the CPU executes. Some interrupts
represent a specific interrupt condition (condition-specific interrupts), while others
represent one of many possible interrupt conditions (multiple-use interrupts). For
specific interrupts, the operating system developer may use a table to associate an
interrupt vector with the interrupt. For the multiple-use interrupts, the interrupting
device must supply an interrupt vector to the system board CPU.

Interrupt control logic provides the CPU with interrupt information. When devices
assert their interrupt request, the interrupt control logic first performs a logical AND
of the interrupt requests with the contents of the interrupt mask register; then it
asserts the interrupt line (INT) to the CPU. Workstations with two CPUs have two
interrupt lines (INTO and INT1), one for each CPU. In these systems, the interrupt
control logic asserts the appropriate line or lines, depending on the masks.

The interrupt service routine reads the interrupt status register (ISR or IST) and if
necessary the interrupt enable registers (IENn); then it isolates the interrupt(s).

The device faults for the I/O subsystems are discussed in the related chapters as
follows:

Chapter 6 “Programming the Keyboard Interface and Speaker”
Chapter 7 “Programming the Serial Ports and Parallel Port”
Chapter 8 “Programming the Local Area Network Interface”

Chapter 9 “Programming the Small Computer System Interface”

014-001800 3-1



Interrupts

Types of Interrupts

Interrupts fall into one of two categories: condition-specific interrupts and
multiple-use interrupts.

Condition-Specific Interrupts

Condition-specific interrupts span much of the system, including all of the local system
board interrupts and many VME interrupts. These interrupts represent specific
conditions such as the depressing of the abort switch or the occurrence of a single-bit
memory read error.

300 Series Interrupts

The condition-specific interrupts include Powerfail (PF), Parity Error (PE), CIO
Interrupt (CI), Keyboard Interrupt (KB), DUART Interrupt (DU), Parallel Port
Interrupt (PP), Ethernet Interrupt (ET), SCSI Interrupt (SC), SCSI DMA Terminal
Count (DT), SCSI DMA Write Protect Error (DW), SCSI DMA Valid BIT (DV),
Graphics Interrupt (GI), and Software Interrupt (SI). Of these, the DUART Interrupt
(DI) and the CIO Interrupt (CIO) may be one of several possible, but specifically
defined, interrupts from the related device.

400 Series Interrupts

The condition-specific interrupts include Abort Pushbutton (ABT), AC Failure
(ACF), Bus Arbiter Timeout (ATO), Z-Buffer Interrupt (ZBF), Video Interrupt
(VDI), Parity Error (PAR), Keyboard Interrupt (KBD), CIO Interrupt (CIO), System
Failure (SF), Parallel Port Interrupt (PPI), DUART1 Interrupt (DT1), DUART2
Interrupt (DT2), Ethernet Controller Interrupt (ECI), DMA Terminal Count (DTC),
DMA Write Protect Error (DWP), DMA Valid Bit (DVB), and SCSI Controller
Interrupt (SCI). Of these, the DUART Interrupts (DI1 and DI2) and the CIO
Interrupt (CIO) may be one of several possible, but specifically defined, interrupts
from the related device.

Multiple-Use Interrupts (400 Series Only)

Multiple-use interrupts include Signal High Priority (SHP), Signal Low Priority (SLP),
Software-Generated Interrupts (SI[7-0]), and VME Interrupts (IR[7-1]). VME
interrupts are generated by VME controllers through seven interrupt request lines
(IRQ[7-1]*) on the VMEbus. A VME controller can choose which interrupt line to
use when it has an interrupt condition that requires servicing by the system board.
These interrupt lines are not limited to specific interrupts; any serviceable interrupt
can be generated through the VME interrupt request lines. To execute the correct
interrupt service routine, the system board CPU must obtain the interrupt vector from
the interrupting VME controller.

Besides being interrupted, the system board CPU can initiate interrupts to the VME
controllers using the VME-level interrupts. The CPU, when it interrupts a VME
controller, must define the interrupt level and provide the VME controller with an

3-2 014-001800



Interrupts

interrupt vector. This process is described later in this chapter in the section
“Interrupting a VME Controller.”

How the CPU Is Interrupted

This section describes how all interrupt requests are passed to the CPU from
interrupting devices throughout the system.

Interrupts originate from system board controllers and logic (i.e., the SCSI interface,
LAN interface, parity logic, address decode logic, etc.). In addition, in 400 series
stations, the VME controllers generate interrupts to the system board.

When a device requires servicing by an interrupt service routine, the device asserts an
interrupt request. The system board contains interrupt logic that checks the interrupt
request lines and processes incoming interrupts. When an interrupt is received, the
interrupt logic sets the appropriate bit in the Interrupt Status register, and asserts the
Interrupt (INT) line to the CPU. In systems with more than one CPU, the INT line
is multiplexed, with one interrupt line per CPU. Interrupts originate from VME
controllers as well as the onboard Ethernet LAN, SCSI and Serial Interface
controllers.

The interrupt control logic monitors and processes interrupt requests. The interrupt
logic sets the appropriate bit(s) in the Interrupt Status (IST) register, compares the
IST register with the Interrupt Enable (IENn) registers, and when a bit in IST is set
and not masked by an IENn register, the logic asserts the interrupt line (INT) to the
CPU associated with that IENn register.

014-001800 3-3



Interrupts

Interrupt
handler

Handling Interrupts

This section discusses some dynamics of developing software to service interrupts.
Because the CPU has one interrupt line (INT) to notify it of a pending interrupt, all
interrupts are stored in registers which the CPU reads and decodes. Figure 3-1 shows
how interrupts are handled by a system that has one CPU on the system board.

A device initiates an interrupt request.

Interrupt logic on the system board sets a bit
in the Interrupt Status (ISR or IST) register,
and then asserts the INT line to the CPU.

I

The CPU halts the current process.

\

Save the current processor state.

Load IST and find the interrupt.

Is the interrupt
one of the
seven VME

interrupt levels?

Determine the VME interrupt level
from the position of the interrupt
bit in the Interrupt Status (IST)

register.
I

Read the VME Interrupt Acknowledge
and Vector (VIAVn) register for the
interrupt level to generate an IACK
to the VME controlier and to obtain
the interrupt vector.

Get the interrupt vector from a
vector table. Use the position of the
interrupt bit in IST to point to the
vector.

On the basis of this vector, the CPU selects and
executes the appropriate interrupt handler routine.

Restore the processor state.

Figure 3-1 Handling Interrupts with a Single-CPU System Board

014-001800



Interrupts

Figure 3-2 illustrates how to service interrupts in a system that has two CPUs on the
system board.

Interrupt
handler

014-001800

@tiates an interrupt request.

Interrupt logic on the system board sets a bit in the
Interrupt Status (ISR or IST) register, and then
asserts the INT line to the CPU.

One of the CPUs halts its current process.

l

The CPU reads the IST register and
the appropriate IEN register

The CPU compares IEN and IST. I

Is the interrupt bit set
in both IEN and IST?2

Restore the processor state.

Is the interrupt
one of the seven
VME interrupt

Get the interrupt vector from a vector table.
Use the position of the interrupt bit in IST to
point to the vector.

levels?

| Yes

Determine the VME interrupt level from
the position of the interrupt bit in the
Interrupt Status (IST) register.

Read the VME Interrupt Acknowledge and
Vector (VIAVN) register for the interrupt
level to generate an IACK to the VME
controller and to obtain the interrupt vector.

In a multiprocessor system,
software should also check the
IBE bit in the VIACKVn register
to verify that another CPU is
not handling the interrupt.

Is the interrupt
already being
handled?

CPU returns to the
previous process.

Save the processor state.

|

the appropriate interrupt handler routine.

The CPU, on the basis of this vector, selects and executes

L Restore the processor state;l

Figure 3-2 Hanadling Interrupts with a Dual-CPU System Board



Interrupts

Programming the CPU Interrupt Registers

The interrupt registers are memory mapped 32-bit registers. To access these registers
from a C program, declare them as type int. To access them from an assembly
language program, use the Load Register from Memory (Id) or Store Register to
Memory (st) instruction. Table 3-1 is a memory map for the interrupt registers.

Table 3-1 Memory Map of the Interrupt Registers

Register or Component Address Type

300 series registers

ISR (Interrupt Status) FFF8 4000 Read/Write
IER (Interrupt Enable) FFF8 4004 Write-only
SWIR (Soft Interrupt) FFF8 4014 Write-only
400 series registers

IENO (Interrupt Enable CPUO) FFF8 4004 Write-only
IEN1 (Interrupt Enable CPU1) FFF8 4008 Write-only
IST (Interrupt Status) FFF8 4040 Read-only
SETSWI (Set Software Interrupt) FFF8 4080 Write-only
CLRSWI (Clear Software Interrupt) FFF8 4084 Write-only
ISS (Interrupt Source Status) FFF8 4088 Read-only
CLRINT (Clear Interrupt) FFF8 408C Write-only

014-001800



Interrupts

300 Series CPU Interrupt Registers

This section describes the CPU interrupt registers in 300 series stations.

ISR (300 Series Only) Interrupt Status

Address FFF8 4000 Read/Write

The Interrupt Status Register (ISR) identifies the interrupts that are currently active.
Devices with the strict latency requirements are assigned to the highest order ISR bits,
but the interpretation of interrupt priority is left to the system software.

ISR and IER have the same bit assignments. ISR defines the current state of all
interrupt requests, and IER enables or masks the interrupts recorded in ISR.

Since the ISR bits reflect the state of interrupt requests, they are not directly affected
by a system reset. Software must clear individual interrupts only by clearing the
source of the interrupt in the specific I/O device.

The ISR bits are defined as follows:

31 {30 29 |28 22 | 21 20 19 | 18 [ 17 | 16
Res| PF | PE Reserved Cl |Reserved| KB | DU | PP | Res
16 | 14 | 13 | 12 | 11 10 9 8 0
ET | SC|{DT |DW | DV | GI | SI Reserved
Bit Name Function
31 Reserved Ignore this bit.
30 PF Powerfail
1 Indicates that a power fail has occured.
0 No error.
29 PE Parity error
1 Indicates that a parity error has occured.
0 No error.
28-22  Reserved Ignore these bits.
21 CI CIO interrupt
1 Indicates that the CIO has asserted an interrupt.
0 No error.
20 Reserved Ignore this bit.
19 KB Keyboard interrupt
1 Indicates that the keyboard controller has asserted
an interrupt.
0 No interrupt.

(continued)

014-001800 3-7



Interrupts

Bit Name Function

18 DU DUART
1 Indicates that the DUART has asserted an interrupt.
0 No interrupt.

17 PP Parallel port interrupt
1 Indicates that the parallel port has asserted an interrupt.
0 No interrupt.

16 Reserved Ignore this bit.

15 ET Ethernet interrupt
1 Indicates that the Ethernet controller has asserted an interrupt.
0 No interrupt.

14 sC SCSI controller interrupt
1 Indicates that the SCSI controller has asserted an interrupt.
0 No interrupt.

13 DT SCSI DMA terminal count reached
1 Indicates that the SCSI terminal count has been reached.
0 No interrupt.

12 DW SCSI DMA write-protect error
1 Indicates that a SCSI DMA write-protect error has occurred.
0 No interrupt.

11 DV SCSI DMA valid bit
1 Indicates that the SCSI DMA valid bit is set.
0 No interrupt.

10 GI Graphics Interrupt
1 Indicates that the graphics controller has asserted an interrupt.
0 No interrupt.

9 SI Software interrupt
1 Indicates that software has asserted an interrupt.
0 No interrupt.

8-0 Reserved Ignore these bits.

(concluded)

3-8 014-001800



Interrupts

IER (300 Series Only) Interrupt Enable

Address FFF8 4004 Write Only

The Interrupt Enable Register (IER) contains interrupt enable bits for each interrupt
source, except for the Nonmaskable Interrupt (NMI) source. The only NMI source is
the Power Fail interrupt. Note that if software disables the single interrupt signal, the
NMI is also disabled.

ISR and IER have the same bit assignments. ISR defines the current state of all
interrupt requests, and IER enables or masks the interrupts recorded in ISR.

A system reset clears all IER bits to 0; therefore masking all interrupts.

The IER bits are defined as follows:

31 {30 |29 |28 22 121 |20 |19 |18 | 17 | 16
Res| PF | PE Reserved Cl | Res| KB | DU | PP | Res
15114 |13 |12 {11 |10 | 9 8 0
ET| SC|DT | DW|DV| GI | SI Reserved

Bit Name Function

31 Reserved Write a 0 to this bit.

30 PF Powerfail

1 Enables the interrupt.
0 Masks the interrupt.

29 PE Parity error
1 Enables the interrupt.
0 Masks the interrupt.

28-22  Reserved Write a 0 to these bits.

21 CI CIO interrupt
1 Enables the interrupt.
0 Masks the interrupt.

20 Reserved Write a 0 to this bit.

19 KB Keyboard port
1 Enables the interrupt.
0 Masks the interrupt.

(continued)

014-001800 3-9



Interrupts

Bit

Name

Function

18

17

16
15

14

13

12

11

10

DU

PP

Reserved

ET

SC

DT

DW

DV

Gl

SI

Reserved

DUART
1 Enables the interrupt.
0 Masks the interrupt.

Parallel port
1 Enables the interrupt.
0 Masks the interrupt.

Write a 0 to this bit.

Ethernet interface
1 Enables the interrupt.
0 Masks the interrupt.

SCSI protocol controller
1 Enables the interrupt.
0 Masks the interrupt.

SCSI DMA terminal count reached
1 Enables the interrupt.
0 Masks the interrupt.

SCSI DMA write-protect error
1 Enables the interrupt.
0 Masks the interrupt.

SCSI DMA valid bit
1 Enables the interrupt.
0 Masks the interrupt.

Graphics Interrupt
1 Enables the interrupt.
0 Masks the interrupt.

Software interrupt
1 Enables the interrupt.
0 Masks the interrupt.

Write a 0 to these bits.

3-10

(concluded)

014-001800



Interrupts

SWIR (300 Series Only) Software Interrupt

Address FFF8 4014 Write Only
The Software Interrupt Register (SWIR) initiates software interrupts.

The SWIR bits are defined as follows:

7 1 0
Reserved SWiI
Bit Name Function
7-1 Reserved Ignore these bits.
0 SWI Software interrupt.

1 Interrupts the CPU. The status of this bit is reflected by ISR bit 9
(SI). Writing a 0 to IER bit 9 masks this interrupt.

0 Clears the interrupt request. This bit is not set to 0 after system
reset or power-on reset.

Even though a reset does not enable the software interrupt request, software must
ensure that bit 0 of the SWIR is set to 0 before enabling the interrupt after a reset.

014-001800 3-11



Interrupts

400 Series CPU Interrupt Registers

This section describes the registers used to interrupt the CPU in 400 series stations.

IENO, IEN1 (400 Series Only) Interrupt Enable
IENO Address FFF8 4004 Write
IEN1 Address FFF8 4008 Write

The Interrupt Enable registers (IENO and IEN1) enable and mask interrupts to the
CPUs. IENO and IEN1 enable interrupts to CPU0O and CPU1, respectively (a
single-processor system uses only IENO). To enable an interrupt, write a 1 into the
corresponding bit in IENO or IEN1. To mask an interrupt, write a 0 into the
corresponding bit in IENO or IEN1. The bits in the IST register and the Interrupt
Enable registers are mirror images of each other. A system reset clears all Interrupt
Enable register bits to 0; a local reset does not affect these registers.

The IENn bits are defined as follows:

31 130]29[28 27 [26)25]|24 |23 |22 ]21|20)19]18[17 | 16
ABT|ACF| ATQ Reserved ZBF| VDI | PAR| IR7 | KBD| CIO| SF | IR6 | PPI | DIt | DI2

15|14 f13J12|11j10] 9 |8 7 |6 |5]4|3 211 0
ECI|IRS |DTQ IR4 | DWH IR3 | DVB| Reserved| IR2 | SCi| IR1 | Reserved) Si1 | SI0

Bit Name Function

31 ABT Abort.
1 Enables the abort pushbutton interrupt.
0 Masks the abort pushbutton interrupt.

30 ACF Ac failure.
1 Enables the ac power failure interrupt.
0 Masks the ac power failure interrupt.

29 ATO VMEbus timeout.
1 Enables the VMEbus timeout interrupt.
0 Masks the VMEbus timeout interrupt.

28, 27 Reserved Write a 0 to these bits.

26 ZBF Zbuffer.
This bit only applies to systems containing the optional Z-buffer
board.

1 Enables the Zbuffer request interrupt.
0 Masks the Zbuffer request interrupt.

25 VDI Video.
1 Enables the video request interrupt.
0 Masks the video request interrupt.

(continued)

3-12 014-001800



Interrupts

Bit

Name

Function

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

PAR

IR7

KBD

CIO

SF

IR6

PPI

DIl

DI2

ECI

IRS

DTC

IR4

DWP

IR3

Parity error.
1 Enables the parity error interrupt.
0 Masks the parity error interrupt.

VMEDbus level 7.
1 Enables the level 7 interrupt from the VMEbus.
0 Masks the level 7 interrupt from the VMEbus.

Keyboard.
1 Enables the keyboard request interrupt.
0 Masks the keyboard request interrupt.

CIO.
1 Enables the CIO interrupt.
0 Masks the CIO interrupt.

System failure.
1 Enables the system failure interrupt.
0 Masks the system power failure interrupt.

VMEDbus level 6.
1 Enables the level 6 interrupt from the VMEbus.
0 Masks the level 6 interrupt from the VMEbus.

Parallel port.
1 Enables the parallel port request interrupt.
0 Masks the parallel port request interrupt.

DUARTI1.
1 Enables the DUART1 interrupt.
0 Masks the DUART1 interrupt.

DUART2.
1 Enables the DUART2 interrupt.
0 Masks the DUART2 interrupt.

Ethernet controller.
1 Enables the Ethernet controller request interrupt.
0 Masks the Ethernet controller request interrupt.

VMEDbus level 5.
1 Enables the level § interrupt from the VMEbus.
0 Masks the level § interrupt from the VMEbus.

DMA terminal count
1 Enables the DMA terminal count interrupt.
0 Masks the DMA terminal count interrupt.

VMEDbus level 4.
1 Enables the level 4 interrupt from the VMEDbus.
0 Masks the level 4 interrupt from the VMEbus.

DMA write protect error.
1 Enables the DMA write protect error interrupt.
0 Masks the DMA write protect error interrupt.

VMEDbus level 3.
1 Enables the level 3 interrupt from the VMEbus.
0 Masks the level 3 interrupt from the VMEbus.

014-001800

(continued)

3-13



Interrupts

Bit

Name

Function

DVB

Reserved

IR2

SCI

IR1

Reserved
SI1

SI0

DMA valid bit.
1 Enables the DMA valid bit interrupt.
0 Masks the DMA valid bit interrupt.

Write a 0 to these bits.
VMEDbus level 2.

1 Enables the level 2 interrupt from the VMEbus.

0 Masks the level 2 interrupt from the VMEbus.

SCSI controller.
1 Enables the SCSI controller request interrupt.
0 Masks the SCSI controller request interrupt.

VMEDbus level 1.

1 Enables the level 1 interrupt from the VMEDbus.

0 Masks the level 1 interrupt from the VMEbus.
Write a 0 to these bits.

Software-generated interrupt 1.
1 Enables software interrupt 1.
0 Masks software interrupt 1.

Software-generated interrupt O.
1 Enables software interrupt 0.
0 Masks software interrupt 0.

3-14

(concluded)

014-001800



Interrupts

IST (400 Series Only) Interrupt Status

Address FFF8 4040 Read

The Interrupt Status (IST) register contains the current state of all interrupt requests.
When a device generates an interrupt, the interrupt logic sets the corresponding bit in
the IST register.

To service an interrupt, the interrupt service routine reads the IST register, and
possibly one of the Interrupt Enable registers (IEN, IENO or IEN1) to determine
whether or not the interrupt is masked. The interrupt service routine services the
highest—priority interrupt. The bits in the Interrupt Enable registers and the Interrupt
Status register are mirror images of each other.

Resets do not affect IST bits; IST can only be cleared by software.

i
31 |30]|29 |28 27|26 |25 |24 }23 22|21 [20]19]|18 )17 | 16
ABT|ACHATQ Reseﬁed ZBF| VDI | PAR} IR7 | KBD| CIO|{ SF | IR6 | PPI | DIt | DI2

{

15114 {13 (12|11 {10} 9 {8 7 |6 |54 (13 2|1 0
ECI|IR5 [DTQ IR4 |DWH IR3 |DVB Resegved IR2 | SCI| IR1 | Reserved| Si1 | SI0
I

Bit Name Function

31 ABT Abort pushbutton.
1 The abort pushbutton has been depressed since the last write to the
CAB bit in the CLRINT register.
0 The abort pushbutton has not been depressed since the last write to
the CAB bit in the CLRINT register.

30 ACF Ac failure.

1 An ac power failure has occurred since the last write to the ACF bit
in the CLRINT register. The ac failure signal originates from the
power supply, which is connected to the VMEDbus.

0 No ac power failure has occurred.

29 ATO VMEDbus arbitration timeout.
1 The VMEDbus bus grant has timed out and generated an interrupt.
0 No VMEbus timeout has occurred.

28, 27 Reserved Reserved and read as 0.

26 ZBF Zbuffer
This bit only applies to systems containing the optional Z-buffer
board.

1 The Zbuffer is requesting an interrrupt.
0 The Zbuffer is not requesting an interrrupt.

25 VDI Video.
1 The video controller is requesting an interrupt.
0 The video controller is not requesting an interrupt.

(continued)

014-001800 3-15



Interrupts

Bit Name Function

24 PAR Parity error.
1 A parity error has occurred.
0 No parity error has occurred.

23 IR7 VME level 7.
1 A VMEDbus level 7 interrupt has occurred.
0 No VMEbus level 7 interrupt has occurred.

22 KBD Keyboard.
0 The keyboard is not requesting an interrupt.
1 The keyboard is requesting an interrupt.

21 CIO CIO.
1 The CIO is requesting an interrupt.
0 The CIO is not requesting an interrupt.

20 SF System failure.
1 A system failure signal has occurred since the last write to the
CSF bit in the CLRINT register. This is the SYSFAIL* signal on
the VMEbus and not a workstation failure.
0 No system failure has occurred.

19 IR6 VME level 6.
1 A VME level 6 interrupt has occurred.
0 No VME level 6 interrupt has occurred.

18 PPI Parallel port.
1 The parallel port is requesting an interrupt.
0 The parallel port is not requesting an interrupt.

17 DIl DUARTI.
1 DUART1 is requesting an interrupt.
0 DUART]I is not requesting an interrupt.

16 DI2 DUART?2.
1 DUART?2 is requesting an interrupt.
0 DUART?2 is not requesting an interrupt.

15 ECI Ethernet controller.
1 The Ethernet controller is requesting an interrupt.
0 The Ethernet controller is not requesting an interrupt.

14 IRS VMEDbus level S.
1 A VMEDbus level S interrupt has occurred.
0 A VME-bus level 5 interrupt has not occurred.

13 DTC DMA terminal count
1 The DMA terminal count has been reached.
0 The DMA terminal count has not been reached.

12 IR4 VMEDbus level 4.
1 A VMEDbus level 4 interrupt has occurred.
0 No VME-bus level 4 interrupt has occurred.

11 DWP DMA write protect error.

1 A DMA write protect error has occurred.
0 No DMA write protect error has occurred.

10 IR3 VMEDbus level 3.
1 A VMEDbus level 3 interrupt has occurred.
0 No VMEDbus level 3 interrupt has occurred.

(continued)

3-1 6 014-001800



Interrupts

Bit Name Function
9 DVB DMA valid bit.

1 A DMA valid bit interrupt has occurred.

0 No DMA valid bit interrupt has occurred.
8,7 Reserved Reserved and read as 0.
6 IR2 VMEDbus level 2.

1 A VMEbus level 2 interrupt has occurred.

0 No VMEbus level 2 interrupt has occurred.
5 SCI SCSI controller.

1 A SCSI controller is requesting an interrupt.

0 No SCSI controller is requesting an interrupt.
4 IR1 VMEbus level 1.

1 A VMEDbus level 1 interrupt has occurred.

0 No VMEbus level 1 interrupt has occurred.
3,2 Reserved Reserved and read as 0.
1 SI1 Software-generated interrupt 1.

1 Software interrupt 1 was generated.

0 Software interrupt 1 was not generated.
0 SIo Software~generated interrupt 0.

1 Software interrupt 0 was generated.

0 Software interrupt 0 was not generated.

(concluded)
014-001800 3-17



Interrupts

ISS (400 Series Only) Interrupt Source Status

Address FFF8 4088 Read Only

The Interrupt Source Status (ISS) register contains the current status of certain
hardware interrupts. Clear an interrupt request by setting the appropriate bit in the
Clear Interrupt (CLRINT) register. System and local resets do not affect the ISS
register.

7 3 2 1 0
Unused ABT|{ACH SF
Bit Name Function
7-3 Unused Returns 0 when read.
2 ABT Abort button status.

1 The abort button is depressed.
0 The abort button is not depressed.

1 ACF Ac fail status.
1 An ac fail interrupt request is pending (the ACFAIL* line on the
VMEDbus is asserted low).
0 No ac fail interrupt is pending (the ACFAIL* line on the VMEbus
is not asserted).

0 SF System fail status.
1 The SYSFAIL* line on the VMEbus is asserted (low).
0 The SYSFAIL* line on the VMEDbus is not asserted (high).

3-18 014-001800



Interrupts

CLRINT (400 Series Only) Clear Interrupt

Address FFF8 408C Write Only

The Clear Interrupt (CLRINT) register allows software to clear certain hardware
interrupts. To clear an interrupt request, write a 1 to the appropriate CLRINT bit.
For example, to clear a system failure interrupt request, write 1 into the CSF bit.
This clears the System Failure (SF) bit in the Interrupt Source Status (ISS) register.
System and local resets do not affect the CLRINT register.

NOTE: Clearing the interrupt request bit in the CLRINT register only clears the
interrupt request and not the interrupt condition. The corresponding bit in
the ISS register contains the state of the interrupting condition.

7 3|2 1 0
Unused CAB|CAQCSF
Bit Name Function
7-3 Unused Ignored when written to.
2 CAB Clear the abort button interrupt request (ABT)

Pressing the abort pushbutton generates this interrupt.
1 Clears the ABT interrupt request.
0 Leaves the ABT interrupt request unchanged.

1 CAC Clear the ac fail interrupt request (ACF)
The power supply generates this interrupt by asserting the ACFAIL*
line on the VMEDbus.
1 Clears the ACF interrupt request.
0 Leaves the ACF interrupt request unchanged.

0 CSF Clear the system fail interrupt request (SF)
Any controller on the VMEbus may generate this interrupt by
asserting the SYSFAIL* line.
1 Clears the SF interrupt request.
0 Leaves the SF interrupt request unchanged.

014-001800 3-19



Interrupts

SETSWI (400 Series Only)

Set Software Interrupt

Address FFF8 4080

Write Only

The Set Software Interrupt (SETSWI) register generates software interrupts. Setting a
bit in SETSWI sets the corresponding interrupt bit in the Interrupt Status (IST)

register. Unlike other condition-specific interrupts, you can use the software

interrupts for any software condition requiring servicing through an interrupt service
routine. As with the other condition-specific interrupts, the interrupt vector is within
a table of vectors, and is pointed to by the position of the interrupt in the IST

register.
7161|541 3]|2 1 0
SI7 | Si6| SI5| Sl4| SI3| SI2| SI1| SI0
Bit Name Function

7-0 SI17-SI0

Set software interrupt.
1 Generates the corresponding software interrupt.
0 Leaves the corresponding software interrupt unchanged.

3-20

014-001800



Interrupts

CLRSWI (400 Series Only) Clear Software Interrupt

Address FFF8 4084 Write Only

The Clear Software Interrupt (CLRSWI) register clears software interrupts. Setting a
bit in the CLRSWI register clears the corresponding interrupt bit in the Interrupt
Status (IST) register. A reset does not affect the CLRSWI register.

716514 [3]2]1 0
Cl7{ CI6| CI5| Ci4| CI3|CI2| CI1]| CIO

Bit Name Function

7-0 CI17-CI0 Clear software interrupt.
1 Clears the corresponding software interrupt.
0 Leaves the corresponding software interrupt unchanged.

014-001800 3-21



Interrupts

Programming the VME Interrupt Registers

VME controllers initiate interrupts to each other via the Interrupt Request IRQ[7-1]*
lines of the VMEbus. VME controllers can interrupt the system board, but the
system board can not interrupt other VME controllers. The Interrupt Request
(IRQ[7-1]*) lines are assigned levels of interrupt priority with IRQ7* having the
highest priority and IRQ1* having the lowest priority. The power supply asserts
interrupts if needed through the ACFAIL* and SYSFAIL* lines of the VMEDbus.

When a VME controller requires interrupt servicing by the system board, the VME
controller asserts the appropriate interrupt request (IRQn*) line on the VMEbus. The
VME Interface controller passes the interrupt to the interrupt logic which monitors all
incoming interrupt lines for interrupt requests, and processes all interrupts. When an
interrupt is asserted, the interrupt logic sets the appropriate bit in the Interrupt Status
(IST) register. If this interrupt is not masked by the Interrupt Enable (IEN) register,
the interrupt logic asserts the interrupt line (INT) to the CPU associated with that
IENn register. Figure 3-3 illustrates how VME controllers interrupt the system board.
The CPU acknowledges one of these interrupts by reading the corresponding VME
Interrupt Acknowledge and Vector (VIAVn) register. When read, VIAVn asserts the
interrupt acknowledge signals IACK* and IACKOUT* on the VMEbus. These
interrupt acknowledge signals trigger the VME controller to write the interrupt vector
to the VMEbus. The VME interface logic writes this to the Mbus for the CPU to
read.

Any VME controller can interrupt the system board and request that it service the
interrupt. A VME controller initiates an interrupt to the system board via the
Interrupt Status (IST) register. Table 3-2 defines the addresses associated with the
VIAVn registers.

Table 3-2 Memory Map of the VME Interrupt Registers

Register Address Type

VIAV1 FFF8 5004 Read-only
VIAV2 FFF8 5008 Read-only
VIAV3 FFF8 500C Read-only
VIAV4 FFF8 5010 Read-only
VIAVS FFF8 5014 Read-only
VIAV6 FFF8 5018 Read-only
VIAV7 FFF8 501C Read-only

3-22 014-001800



Interrupts

The VME controller
asserts an interrupt.

The system board interrupt logic
sets the appropriate bit in the
Interrupt Status (IST) register.

‘d

The system board interrupt logic
compares the bits in the IST register
with one of the Interrupt Enable (IEN,
IENN) registers.

The system board interrupt
logic asserts the interrupt (INT)
line to the CPU.

v

The interrupt service routine
handles the interrupt.

Are any enabled
interrupt bits
set?

Figure 3-3 VME Interrupts to the System Board

014-001800 3-23



Interrupts

IRQ[7-0] Level Interrupts

The following series of steps and Figure 3-4 illustrate how a VME controller initiates a
level-1 interrupt to the system board.

1. The VME controller asserts the Interrupt Request 0 (IRQ1*) line on the
VMEDbus.

2. The system board interrupt logic sets the interrupt request level-1 (IR1) bit in the
Interrupt Status (IST) register high (1).

3. The system board interrupt logic asserts the INT line to the CPU to notify the
CPU that an interrupt request is pending.

VME controlier

IRQ1*
VMEbus

Interrupt logic Bit 4 (IR1) in the Interrupt
pt log —> Status (IST) register is set.

INT line to the CPU is asserted.

|

|

|

|

|

! v
|

: System board
[

Figure 3-4 VME Controller Initiating a Level-1 Interrupt to System Board

After the INT line to the CPU has been asserted, the CPU executes an interrupt
service routine that finds, acknowledges and handles the interrupt as follows:

1. The CPU reads the IST register and finds the interrupt.

2. The CPU reads the corresponding VME Interrupt Acknowledge and Vector
(VIAVn) register to acknowledge the interrupt and to get the interrupt vector.
There are seven VIAVn registers, one for each interrupt level. When the CPU
reads VIAVn it also checks the state of the IACK Bus Error (IBE) bit. In a
multiprocessor system, if IBE is set, the CPU disregards the interrupt and returns
to its previous process. If IBE is not set, the CPU first sets IBE to notify other
CPUs that the interrupt is being handled, then the CPU executes the appropriate
interrupt service routine (see the next step).

3. The CPU executes the new interrupt service routine located at the vector
obtained from the VIAV[7-1] register.

3-24 014-001800



Interrupts

When the CPU reads IBE, it asserts the Interrupt Acknowledge line (IACKOUT?*),
which is daisy chained with the VME controllers in slots 2 and 3 of the VMEbus (see
Figure 3-5.)

Mbus Mbus/Sbus System Board
CPU interface

Sbus

Bus Arbitration Logic
|

VME Interface

IACKOUT* IACKIN*

IACKOUT* IACKIN*

IACKIN* IACKOUT*
A Siot A Siot
VME Controller VME Controller

NOTE: If A is 1, the VME controller passes the interrupt
acknowledge to the next controller. If A is 0, the
VME controller takes the interrupt acknowledge.

Figure 3-5 VMEbus Grant Daisy-Chain

014-001800 3-25



Interrupts

VIAVn (400 Series Only) VME Interrupt Acknowledge
and Vector

VIAV1 Address FFF8 5004 Read Only

VIAV2 Address FFF8 5008

VIAV3 Address FFF8 500C

VIAV4 Address FFF8 5010

VIAVS Address FFF8 5014

VIAV6 Address FFF8 5018

VIAV7 Address FFF8 501C

The CPU acknowledges interrupts and obtains interrupt vectors from VME controllers
via the seven VME Interrupt Acknowledge and Vector (VIAVn) registers. Each of
the seven interrupt request levels has a VIAVn register associated with it. When a
VME controller interrupts the system board CPU via one of the seven VME interrupt
request levels, the CPU acknowledges the interrupt request and obtains the interrupt
request vector via the VIAVn register. When the CPU reads VIAVn, the interrupt
logic asserts the Interrupt Acknowledge (IACK* and IACKOUT™) lines to the
VMEbus. The VME controller responds by writing the interrupt vector to the data
lines and by asserting the Data Transfer Acknowledge (DTACK?*) signal on the
VMEbus. If DTACK* is not asserted, the system board interrupt logic sets the
Interrupt Acknowledge Bus Error (IBE) bit in the VIAVn register. If IBE is already
set, the CPU will disregard the interrupt vector. If the system board has two CPUs
and if IBE is set, the CPU disregards the interrupt and returns to its previous process.

Resets do not affect the VIAVn registers.

15 9 |8 |7 0
Unused IBE VIV

Bit Mnemonic Function

15-9 Unused

8 IBE IACK Bus Error
1 Indicates that the last VME interrupt acknowledge (IACK) was
terminated by a VMEbus error (BERR).
0 Indicates that the last VMEbus IACK cycle was successfully
completed; it was terminated by a data transfer acknowledge. The
VIV bits contain a valid interrupt vector.

7-0 VIV[7-0] VME Interrupt Vector from D[7-0]
VIV is the interrupt vector from the VME controller generating the
interrupt.

NOTE: VIV contains a valid vector only when IBE is cleared.

3"26 014-001800



Interrupts

System Errors

Table 3-3 summarizes the system error conditions and the type of fault or interrupt
generated in response to the error. The error status bits differ between workstations;
see the descriptions of the ISR (300 series stations) or the IST (400 series stations)
registers.

Table 3-3 System Error Conditions and Responses

Error Condition Response
Parity error, CMMU master Mbus parity fault '
Nonexistent memory, CMMU master Mbus parity fault !
Watchdog time-out, Mbus/Sbus master Mbus fault
Watchdog time-out, Mbus/Sbus master No action

300 ISR Bit 400 IST Bit
AC power fail 30 (NMI) 30 (maskable)
Parity error, DMA master 291 241
Nonexistent memory, DMA master 29 24
DUART internal error/interrupt 18 17, 16
Ethernet internal error/interrupt 15 15
SCSI internal error/interrupt 14 5
DMA write~protect error 12 11
DMA valid bit error 11 9

' Software must distinguish between an actual parity error and a nonexistent memory error by using the address of

the faulted transaction, which is latched by the faulted CMMU, and the memory configuration of the machine.

014-001800 3-27



Interrupts

Bus Faults

Bus faults occur when a CMMU is the bus master and a requested transaction causes
an error. The CMMUs detect the bus fault condition and signal a fault to the CPU
via the Pbus fault reply status. Software must read the CMMU System Status register
to determine the cause of the fault.

Two bus fault conditions generate parity faults: data parity errors, and reads from
nonexistent memory. Writes to nonexistent memory do not generate parity faults; the
data is lost.

Parity interrupts may occur either when a controller is master of the Sbus and requests
a transaction that causes an error, or when a slave device detects an internal error.

The interrupt service routine should read the interrupt status register (ISR or IST) to
determine the cause of the interrupt. Some controllers have internal status registers
that provide more precise interrupt information.

The Mbus/Sbus interface contains a timer that terminates bus cycles when an Mbus
wait does not allow the DRAMSs to be refreshed. When this happens, the timer
generates an Mbus error, and the CPU receives a Pbus fault status from the faulting
CMMU. The System Status register in the CMMU at fault indicates that an Mbus
fault occurred. A time-out is the only event that generates an Mbus fault. (Mbus
faults are different from Pbus faults.) Such a time-out occurs with the following
conditions:

® A hardware fault in the slave device may exist, causing it to assert its wait signal
for longer than the allowable time.

® Some slave devices are accessed without first clearing the corresponding reset bit in
the Diagnostic Control Register (DCR). When this occurs, the slave device does
not respond properly to the access.

® The drawing preprocessor is busy while an attempt is made to write to the
parameter registers of the video controller. The write request causes a watchdog
time-out fault.

End of Chapter

3-28 014-001800



Chapter 4
Programming the
Monochrome Graphics Subsystem

This chapter describes the monochrome graphics subsystem used in the 300 series
station. To accomplish this, the chapter describes the following topics:

The monochrome graphics subsystem.

Hardware design details that affect the graphics controller’s operation.

How to program the monochrome graphics subsystem.

How to program the frame buffer.

014-001800 4-1



Programming the Monochrome Graphics Subsystem

Features of the Monochrome Graphics
Subsystem

The monochrome graphics subsystem controls the bit-mapped display (monitor),
providing the following:

1280 x 1024 pixel display, 70-Hz noninterlaced refresh rate, compliant with U.S.,
Canadian, and European VDT standards.

1280 x 614.4 pixel, one plane frame buffer, providing extra off-screen storage for
fonts, icons, small windows.

25K characters per second (16 x 16 pixel font, cached in video memory).

50K ten-pixel random vectors per second; 25K fifty-pixel random vectors per
second.

50K ten—pixel random vectors transformed and clipped per second (2D or 3D).
65K ten-pixel polyline segments transformed and clipped per second (2D or 3D).
20M pixels copied or scrolled per second using Bit Block Transfer (BITBLT).
40M pixels filled or cleared per second using BITBLT.

Windowing support through use of a clipping rectangle.

The subsystem resides as a slave device on the Mbus. It uses two separate memory
mapped areas: a register set and the frame buffer. You program the subsystem either
by setting up parameters and a command in the register set or by manipulating the
frame buffer directly. Parameters include frame buffer coordinates and a command
opcode. When the program writes the last parameter to the register set, the subsystem
executes the requested command without further program intervention.

4-2 014-001800



Programming the Monochrome Graphics Subsystem

Components of the Monochrome Graphics
Subsystem

As shown in Figure 4-1, the subsystem consists of the following:

Mbus interface.

NEC uPD72120 graphics controller.

Display memory bus.

Frame buffer with optional off-screen storage.
Timing and control logic.

Parallel-to-serial shift register.

D/A converter and video output driver.

The rest of this section describes these components.

< Mbus (32 bits Address/Data) >
A

v Input

Mbus Interface
A
\ i

Graphics Controller Processing
(NEC vPD72120)

A

\

\

< Display Memory Bus (24 bits Address/16 bits Data) >

A
AD[15-0] v
Demultiplexor A[23-16] > Storage
[
D[15-0 15—
v [ ]w A[15-0] v v
Timing Controller > Frame Buffer (VRAM)

Optional DRAM

Clock Divider %
\ \
f Parallel-to-Serial
> Shift Register
Clock \
D/A Converter and > Output
Video Output Driver

'

RS-343A
To Monitor -/

Figure 4-1 The Monochrome Graphics Subsystem

014-001800 4-3



Programming the Monochrome Graphics Subsystem

Mbus Interface

The Mbus interface links the Mbus to the monochrome graphics controller. The
Mbus interface consists of an address buffer, address decode logic, data transceiver,
parity generating logic (parity to the Mbus), and synchronization and control logic.

The Mbus interface monitors the Mbus and responds appropriately when the graphics
subsystem is selected. The graphics subsystem is a slave device on the Mbus; it
cannot be master of the Mbus. The graphics subsystem ignores parity bits when the
CPU writes to it, but generates parity bits when the CPU reads from it.

Accesses by the CPU to the graphics subsystem require a wait state during both the
address and data phases of the access. Since the subsystem is not fast enough to
respond to the address phase of a CPU access, it latches the address, and then signals
the CPU to start the data phase. The subsystem extends the data phase with wait
states until the read or write operation is complete.

Monochrome Graphics Controller

The graphics subsystem uses the NEC pPD72120 graphics controller. The graphics
controller contains several instructions that it performs internally, reducing demands
on the CPU. Among these commands are screen refresh, video memory refresh, and
block move.

The CPU programs the graphics subsystem via the graphics controller’s internal
registers. The graphics subsystem completes operations independent from the CPU;
the graphics controller executes commands, such as scrolling a window, while the CPU
performs other operations. Furthermore, the graphics subsystem is pipelined; the CPU
can program the subsystem for a new operation while the subsystem is executing an
existing operation.

Display Memory Bus

The graphics controller reads from or writes to the frame buffer over the display
memory bus. The display memory bus has 16 multiplexed address/data bits and an
additional 8 address bits to extend the address range to 24 bits. All data is read as
16-bit words.

Display Memory Bus Control

The video memory control provides the proper timing and control for the frame
buffer by generating read, write, data transfer, and refresh cycles. Refresh occurs
during the horizontal sync period, and is clocked by a signal that is four times the
graphics controller’s 8-MHz clock.

4-4 014-001800



Programming the Monochrome Graphics Subsystem

Frame Buffer

The subsystem’s frame buffer (or video memory) consists of Video RAMs (VRAMs)
containing the video information that is continuously displayed on the screen. A
VRAM is a dual-port memory device with one port for graphics controller access and
one port for sending data to the monitor.

The frame buffer is organized as a block of DRAM with a large static serial register
that loads an entire DRAM row at a time for shifting out serially to the display. This
organization allows the graphics controller to have over 88 percent of the frame
buffer’s bandwidth for drawing operations.

Each memory location in the frame buffer stores one pixel: 1 for a white pixel, or 0
for a black pixel. The frame buffer is a 1280 (horizontal) x 1638.4 (vertical) pixel

block. It is further divided into a 1280 (H) x 1024 (V) visible area and a 1280 (H)
x 614.4 (V) off-screen area located below the visible memory.

The frame buffer may include additional off-screen memory (4 Mbits of DRAM).
This memory is for memory-intensive fonts such as the Kanji character set, and is
addressed in the same way as the parallel ports of a VRAM. Unlike a VRAM, the
DRAM has no serial port.

Parallel-to-Serial Shift Register

A parallel-to-serial shift register converts 16-bit parallel data from the frame buffer to
serial data, and transmits the data to the D/A converter. The D/A converter converts
the serial input data to analog data, and passes the data to the video output driver.
The video output driver converts the analog data into RS-343A compatible data and
transmits it to the video monitor.

D/A Converter and Video Output Driver

The data is transmitted to the video display monitor at 125-MHz. The RS-343A
signal is an analog voltage signal that can drive a monitor capable of monochrome or
gray-scale video. This data produces a 70-Hz screen refresh rate for the monitor’s
1280 x 1024 pixel screen display. In addition to the data signal, the output stage
produces the horizontal synchronization signal, the vertical synchronization signal, and
the blanking signal.

014-001800 4-5



Programming the Monochrome Graphics Subsystem

How This Implementation Differs from NEC
Specifications

The graphics controller operation differs from the uPD72120’s operation specified in
NEC’s wPD72120 Advanced Graphics Display Controller User’s Manual. These
differences in operation affect the horizontal front and back porches, direct reads of a
half-word display memory value, and register and frame buffer location addresses.
The rest of this section describes these differences.

Horizontal Front and Back Porches

The horizontal synchronization signal is two clock ticks (2 SCLKs) behind the
horizontal blank signal. As a result, the horizontal front porch (HFP) is one clock
tick less and the horizontal back porch (HBP) is one clock tick more than the NEC
user’s manual states. This means that if you program the graphics controller to set
HFP equal to 3 (or 8 SCLKs), the graphics subsystem sets HFP equal to 2 (or 6
SCLKs); and, if you program it to set HBP equal to 3 (or 8 SCLKs), the graphics
subsystem sets HBP equal to 4 (or 10 SCLKs).

Reading Data from the Frame Buffer

When the CPU reads data from the video memory, it receives the data with the
most-significant bit (MSbit) bit 15:

15 14 1 0

MSbit LSbit

NEC’s user manual indicates that the MSbit is bit 0:

15 | 14 1 0

LSbit MSbit

Addressing theRegisters and Frame Buffer

The graphics controller registers assume that the system uses byte addressing. Since
the CPU uses word addressing, the graphics subsystem hardware shifts each address,
so that the address of each graphics controller register or frame buffer location is a
word address specifying a half-word (16-bit) location. As a result, the workstation
maps the graphics controller registers and frame buffer locations to different addresses
than those given in the NEC user’s manual. For a complete register address map and
frame buffer address map, refer to the section “Accessing the Registers” later in this
chapter, and the appendix “System Address Map.”

Word Count

The word count is one more than stated in the NEC documentation. The
workstation’s system control logic initializes the word count to 4E for a
1280-pixel-wide display.

4-6 014-001800



Programming the Monochrome Graphics Subsystem

Programming the Monochrome Graphics
Subsystem

The CPU writes parameters and commands to graphics controller registers, causing the
controller to draw in the frame buffer. The graphics controller consists of a drawing
preprocessor and a drawing processor. While the drawing processor executes the
current drawing command, the preprocessor accepts parameters for the next drawing
command and sets up that command.

The rest of this section lists the drawing commands implemented by the graphics
controller and discusses graphics controller interrupts and how to program and
initialize the registers.

Drawing Commands

Table 4-1 lists the graphics controller commands. See the NEC wPD72120 Advanced
Graphics Display Controller User’s Manual for a complete description of how each
command works.

Table 4-1 Monochrome Graphics Controller Commands

Commands

Drawing Commands

Arc Elliptical Bow
Circle Elliptical Sector
Circular Bow Rectangle

Dot Sector

Ellipse Straight Line

Elliptical Arc

Paint Commands

Arbitrary Closed Area
Circular Area
Elliptical Area

Copy Commands

Physical address to physical address
Physical address to coordinate address
Rotation and Sizing Commands
Arbitrary angle rotation
Enlarge/shrink

Data Read Commands

Color information read

PUT/GET Commands

Coordinate address to system
System to coordinate address

Rectangular Area
Trapezoidal Area
Triangular Area

Coordinate address to coordinate address
Coordinate address to physical address

90 degree rotation

Coordinate value read

Physical address to system
System to physical address

014-001800



Programming the Monochrome Graphics Subsystem

Graphics Controller Interrupts

When the graphics subsystem has a condition that requires CPU intervention, the
graphics controller sets the appropriate bits in its Status register, and then it asserts its
interrupt (INT) line. The INT line eventually sets the Graphics Interrupt (bit 10) of
the system board’s Interrupt Status Register (ISR). The operating system should
contain a graphics interrupt service routine that reads the graphics controller’s Status
register and performs necessary operations to clear the interrupt condition.

The operating system can mask some graphics controller interrupts via the graphics
controller’s Control register. The following interrupts can be masked:

® The preprocessor went from a busy to a nonbusy state.
® The drawing processor went from a busy to a nonbusy state.

® Drawing is occurring in a clipped region.
The following interrupts cannot be masked:

® The preprocessor detected an error during processing.

® The drawing processor detected an error during processing.

For more information, see the NEC wPD72120 Advanced Graphics Display Controller
User’s Manual.

4-8 014-001800



Programming the Monochrome Graphics Subsystem

Programming the Monochrome Graphics Registers

The monochrome graphics registers occupy a 256-byte space in the graphics controller
and are accessed as 16-bit words. Since the registers vary in length and are packed
into the 256-byte space, some registers occupy different bits of the same address.
Thus, a program may access more than one register when addressing a 16-bit word.
Some registers also have the same address as others, so which register a program
accesses may depend on whether or not the program reads or writes to the particular
address. For these reasons, when writing programs to access these registers you must
ensure that the program interprets all 16 bits correctly when it reads from an address,
and sends all 16 bits correctly when it writes to an address. Since the 16-bit data
port of the graphics controller is mapped to the low-order 16 bits (15-0) of the
Mbus, any data read to or written from a graphics controller register must appear in
those Mbus bits.

The registers are mapped to address space FFF8 9000 through FFF8 90FC.
Table 4-2 lists each register together with the Mbus bit field that contains the
register’s contents. The graphics controller registers are described in the NEC
WPD72120 Advanced Graphics Display Controller User’s Manual.

Table 4-2 Address Map for the Monochrome Graphics Controller Registers

Address Register Type Bits
FFF8 9078 Control (CTRL) Write 15-8
STATUS Read 15-0
FFF8 9078 BANK Write 7-0
FFF8 90E4 Address Control (AC) Write 14-12
DISPLAY_PITCH Write 11-0
FFF8 90E0 DISPLAY_CTRL Write 15-0
FFF8 90E8 Display Address (DAD) (lower and middle byte) Write 15-0
FFF8 90EC Display Address (DAD) (upper byte) Write 7-0
Word Count (WC) Write 15-8
FFF8 90F8 Word Count (WC) (upper 4 bits) Write 15-12
FFF8 90FO0 Cursor Enable (CE) Write 14
Cursor Mode Select (CRS) Write 15
Cursor X Coordinate (GCSRX) Write 11-0
FFF8 90F4 Cursor Y Start (GCSRYS) Write 11-0
FFF8 90F8 ! Cursor Y End (GCSRYE) Write 11-0
FFF8 90FC 2  Horizontal Sync (HS) Write 11-0
Horizontal Back Porch (HBP) Write 11-0
Half Horizontal Time (HH) Write 11-0
Horizontal Display Period (HD) Write 11-0
Horizontal Front Porch (HFP) Write 11-0
Vertical Sync (VS) Write 11-0
Vertical Back Porch (VBP) Write 11-0
Lines per Field (L/F) Write 11-0
Vertical Front Porch (VFP) Write 11-0
FFF8 9000 Execution Address Origin (EADORG) (lower/middle byte)  Read/Write  15-0

' Not used in workstation.
2 At powerup, values are written to same address in sequence.

(continued)

014-001800 4-9



Programming the Monochrome Graphics Subsystem

Table 4-2 Address Map for the Graphics Controller Registers

Address Register Type Bits
FFF8 9004 Execution Address Origin (EADORG) (upper byte) Read/Write  7-0
Dot Address Origin (DADORG) Read/Write  11-8
FFF8 9060 Pitch Source (PITCHS) Read/Write  15-0
FFF8 9064 Pitch Destination (PITCHD) Read/Write  15-0
FFF8 9018 ' Plane Displacement Source (PDISPS) (lower/middle byte) Read/Write  15-0
FFF8 9020 ' Plane Displacement Destination (PDISPD) Read/Write  15-0
(lower/middle byte)
FFF8 9024 ' Plane Displacement Destination (PDISPD) Read/Write  7-0
(lower/middle byte)
FFF8 9028 Plane Maximum (PMAX) Read/Write  15-0
FFF8 906C Plane Select (PLANES) Read/Write  15-0
FFF8 902C Drawing Mode 0 (MODO) Read/Write  3-0
Drawing Mode 1 (MOD1) Read/Write  7-4
FFF8 9030 Pattern Pointer (PTPN) (lower/middle byte) Read/Write  15-0
FFF8 9034 Pattern Pointer (PTPN) (upper byte) Read/Write  7-0
FFF8 90C0 Pattern Count (PTNCNT) Read/Write  15-0
FFF8 9038 Stack Pointer (STACK) (lower/middle bytes) Read/Write  15-0
FFF8 903C Stack Pointer (STACK) (upper bytes) Read/Write  7-0
FFF8 9068 Stack Maximum (STMAX) Read/Write  15-0
FFF8 90D8 Clipping Mode (CLIP) Read/Write  9-8
Magnifier Horizontal (MAGH) Read/Write  7-4
Magnifier Vertical (MAGV) Read/Write  3-0
FFF8 90C4 X Clipping Minimum (XCLMIN) Read/Write  15-0
FFF8 90C8 Y Clipping Minimum (YCLMIN) Read/Write  15-0
FFF8 90CC X Clipping Maximum (XCLMAX) Read/Write  15-0
FFF8 90D0 Y Clipping Maximum (YCLMAX) Read/Write  15-0
FFF8 9008 Execution Address 1 (EAD1) (lower/middle bytes) Read/Write  15-0
FFF8 900C Execution Address 1 (EAD1) (upper byte) Read/Write  7-0
Dot Address 1 (DAD1) Read/Write  11-8
FFF8 9010 Execution Address 2 (EAD2) (lower/middle bytes) Read/Write  15-0
FFF8 9014 Execution Address 2 (EAD2) (upper byte) Read/Write  7-0
Dot Address 2 (DAD2) Read/Write  11-8
FFF8 9080 X Read/Write 15-0
FFF8 9084 Y Read/Write 15-0
FFF8 9088 DX Read/Write 15-0
FFF8 908C DY Read/Write 15-0
FFF8 9090 XS Read/Write 15-0
FFF8 9094 YS Read/Write  15-0
FFF8 9098 XE Read/Write  15-0
FFF8 909C YE Read/Write  15-0
FFF8 90A0 XC Read/Write  15-0
FFF8 90A4 YC Read/Write  15-0
FFF8 90A8 DH Read/Write  15-0
FFF8 90AC DV Read/Write  15-0
FFF8 90DC Command Read/Write  15-0
FFF8 907C PGPORT (PUT/GET Port) Read/Write  15-0
' Not used in workstation.
(concluded)
4-10 014-001800



Programming the Monochrome Graphics Subsystem

Before writing parameters to the registers, a program must read the graphics
controller’s Status register to find out if the preprocessor is busy. If the preprocessor
is busy, the program must keep reading the Status register for the preprocessor’s
status. When the preprocessor is not busy, the program can write the parameters for
the next draw command to the registers. After writing the parameters, the program
should write the draw command.

Initializing the Registers

During a system reset or power on reset, the power-up code initializes the display.

To do this, the power-up program writes to the Display Control Register (DCR) to set
the timing registers; then it writes the time parameters to the appropriate registers.
The screen remains blank until initialization is complete.

For more information on initializing the monochrome graphics controller, see the NEC
wPD72120 Advanced Graphics Display Controller User’s Manual.

Sample Program

The C program that follows initializes and programs the graphics controller registers.
Since the code in the workstation’s boot PROM initializes the registers in a way similar
to the graph_init routine in this program on workstation powerup and reset, other
software does not need to run an initialization program again.

Note that the graph_init routine initializes the origin of the video memory in the lower
left corner of the on-screen space with the Y-axis growing positively upward and the
X-axis growing positively to the right. Since this initializes coordinate 0,0 to be the
lower-left hand corner, the 16 pixels at address 8000 0000 correspond to coordinates
0,1023 through 15,1023 (the most significant bit of the 16-bit value at 8000 0000 is
0,1023). The routine places the off-screen space directly below the on-screen space
with its Y-axis growing negatively downward and its X-axis growing positively to the
right. Figure 4-2 shows the video memory coordinate system.

014-001800 4-11



Programming the Monochrome Graphics Subsystem

Y-axis
A
0,1023
On-Screen Video Memory
0,0
0,-1
Off-Screen Video Memory
0.-615 511,-615
511,-615
0,-616
Font Storage (Optional)
0.-3892 255,-3892

1279,1023

1279,0 —» X-axis
1279, -1

1279,-614

1279,-615

1279,-3891

Figure 4-2 Monochrome Graphics Video Memory Coordinate System

4-12

014-001800



/i#*#*#tt#

Sample C Program
DATA STRUCTURE FOR NEC REGISTERS ********ss*xx/

struct agdc_reg

{

/* internal working registers

int eadorg;
int dadorg;
int eadl;
int dadi;
int ead2;
int dad2;
int pdisps1;
int pdisps2;
int pdispd1;
int pdispd2;
int pmax;
int mod0_mod1;
int ptpnl;
int ptpn2;
int stackl;
int stack2;

int filler[14];

int rD4;

int status;
int pgport;
int x;

int y;

int dx;

int dy;

int xs;

int ys;

int xe;

int ye;

int xc;

int yc;

int dh;

int dv;

int pitchs;
int pitchd;
int stmax;
int planes;
int ptncnt;
int xclmin;
int yclmin;
int xclmax;
int yclmax;

int mag;

int command;
int display_ctrl;
int display_pitch;
int dis_ad1;

int dis_ad2;

int cursor;

int gesrys;

int gesrye;

int hor_vert;

*/

Programming the Monochrome Graphics Subsystem

adr 00 */
adr 04 */
adr 08 */
adr 0C */
adr 10 */
adr 14 */
adr 18 */
adr 1C */
adr 20 */
adr 24 */
adr 28 */
adr 2C */
adr 30 */
adr 34 */
adr 38 */
adr 3C */

adr 78 */
adr 7C */
adr 80 */
adr 84 */
adr 88 */
adr 8C */
adr 90 */
adr 94 */
adr 98 */
adr 9C */
adr A0 */
adr A4 */
adr A8 */
adr AC */
adr BO */
adr B4 */
adr B8 */
adr BC */
adr CO */
adr C4 */
adr C8 */
adr CC */
adr DO */

adr D8 */
adr DC */
adr EO */
adr E4 */
adr E8 */
adr EC */
adr FO */
adr F4 */
adr F8 */
adr FC */

014-001800

4-13



Programming the Monochrome Graphics Subsystem

/******* ] ogical Drawing Operations **********/

#define SRC_DEST 0
#define NOTSRC_DEST
#define ZERO_DEST

#define ONE_DEST

#define EXOR_SRC_DEST
#define EXOR NOTSRC DEST
#define EXOR ZERO_ DEST
#define EXOR ONE_ DEST
#define AND_ SRC DEST
#define AND__ NOTSRC DEST
#define AND_SRC_NOTDEST 10
#define AND_NOTSRC_NOTDEST 11

O 003N W WN -

#define OR_ SRC DEST 12
#define OR NOTSRC_DEST 13
#define OR_SRC_NOTDEST 14

#define OR_NOTSRC_NOTDEST 15

/**** MACRO FOR ROUTINES THAT USE GRAPHICS *****/

/** This routine defines a register for the pointer to the graphics processor so it
must be redeclared in every routine that writes to the graphics processor registers. The
register address can be made global, but it will not be made a “register” variable by
the compiler. The call to GRAPH(); should be in the variable declaration section of
the routines. **/

#define GRAPH() register struct agdc_reg *reg = (struct agdc_reg *) 0xfff89000

4-14 014-001800



Programming the Monochrome Graphics Subsystem

#*tt#‘*t**/

/****** Some macros that use the NEC chip directly

/****** NOTE: There are no curly brackets around macros. *****/
#define CHK_STATUS_PRE() while (reg->status & 1)
#define CHK_STATUS_PROC()  while(reg->status & 2)
#define SETPTN(p) CHK_STATUS_PRE(); \
reg->ptnent = p
#define COL_MODE(p) CHK_STATUS_PRE(); \
reg->mod0_mod1 = 0x11 * p
#define FILL() CHK_STATUS_PRE(); \
reg->mod0_mod1 = 0x33; \
reg->eadl = 0; \
reg->dadl = 0; \
reg->dh = 1279; \
reg->dv = 1023; \
reg->command = 0x8e3e /* A_REC_FILL_A */
#define BLANK() CHK_STATUS_PRE();
reg->mod0_mod1 = 0x22; \
reg->eadl = 0; \
reg—>dadl = 0; \
reg->dh = 1279; \
reg->dv = 1023; \
reg->command = Ox8e3e /* A_REC_FILL_A */
#define LINE(x1,y1,x2,y2) if ((y1) == (y2)) { \
CHK_STATUS_PRE(); \
reg->x = x1; \
reg->xs = x2; \
reg->y = yl; \
reg->ys = y2; \
reg->command = 0x8c3e; } \
else { \
CHK_STATUS_PRE(); \
reg—>x = x1; \
reg—>y = yl; \
reg->xe = x2; \
reg->ye = y2; \

reg->command = 0x1841; } /* A LINE M1 */
/****** Above routines use fills for horizontal lines **********/

#define BITBLTUL (xd,yd,xs,ys,ws,hs) \
CHK_STATUS_PRE(); \
reg->xs = XS, \
reg->ys = ys; \
reg—>x = xd; \
reg—>y = yd; \
reg—>dh = ws - 1; \

reg—>dv = hs - 1;

reg->command = 0x840e /* A_COPY_CC */

7

014-001800 4-15



Programming the Monochrome Graphics Subsystem

/***** ROUTINE TO INITIALIZE GRAPHICS CONTROLLER *********/

graph_init()
GRAPH();

/**#*‘t‘l*

reg—>display_ctrl = Oxcb38;
reg->display_ctrl = Oxcb3a;
reg->hor_vert = 3;
reg->hor_vert = 4;

reg->hor_vert = 1;
reg->hor_vert = 0x27;
reg—>hor_vert = 2;
reg->hor_vert = 4;
reg->hor_vert = 0x2a;
reg->hor_vert = 0x400;
reg->hor_vert = 1;

reg—>display_ctrl = Oxcb38;

[EEEEEEREE R
reg->display_pitch = 0x50;
reg->dis_adl = 0;

reg->dis_ad2 = 0x4e00;

reg->gesrye = 1;
reg->eadorg = 0x3fb0;

reg->dadorg = 1;
reg->pitchs = 0x50;

reg->pitchd = 0x50;

reg->pdispd1
reg->pdispd?2
reg->pmax = 1;

reg->planes = 0;

reg->mod0_mod1 = 0;

reg->mag = Ox1ff;
reg—>status = 0;
reg->ptncnt = 0;

Timing Setup for 125 MHz DOT Clock

**‘#**tt/

/* Setting STSP bit to 1. */

/* Horizontal synchronizing signal. */
/* Horizontal back porch. */

/* Rising/falling times for even
field vertical synchronizing signal
during interlace display. */

/* Horizontal display period. */

/* Horizontal front porch. */

/* Vertical synchronizing signal. */
/* Vertical back porch. */

/* Line/field display period

in vert direction. */

/* Vertical front porch. */

/* Set the STSP bit back to 0. */

Drawing Setup *#t*tl**“**/ .

/* Number of words covering

horizontal width of memory plane. */

/* Screen display start address

set to 0. */

/* Number of displayed words during
display period within one

scanning cycle. */

/* Clear upper bits of word count reg.*/
/* Absolute address within display
memory corresponding to the origin of
X-Y coordinates (0,0) set to LOWER LEFT
hand side cI screen. */

/* Dot address origin also set to 0. */

/* Sets the horizontal width using the
number of words for the drawing source
memory plane within display memory. */
/* Sets the horizontal width using the
number of words for the drawing target
memory plane within display memory. */
/* Only one memory plane so set to 0. */
/* Only one memory plane so set to 0. */
/* Specifies the memory planes, using
the first memory plane only. */

/* Specifies the logical operation to be
carried out during drawing for each
plane. */

/* The logical operation is set to copy
source to destination. */

/* No magnification. */

/* Clear bank and set status. */

/* Set pattern register to all black. */

4-16

014-001800



Programming the Monochrome Graphics Subsystem

/tt‘#ttt***# Enable Screen l#tt‘#tt###t/

FILL();

CHK_STATUS_PRE();

CHK_STATUS_PROC(); /* Wait until screen is clear, then */
reg->display_ctrl = Oxcb30; /* start display

(activate blank signal). */

/* Random Line Generator — generates nn thousand random lines,
half black and half white. */

void random (nn)

int nn;

register x1,y1,x2,y2,xmax,ymax,seed,loop,loop1,zero,p;
register vall,val2,val3,val4;

GRAPH();
zero = 0;
xmax = 1280;
ymax = 1024;
seed = 3;
vall = 31421;
val2 = 6927;
val3 = 65535;
vald = 16;
p=1

loop = nn;

while (loop-- > zero) {
if (p > zero) {COL_MODE(ZERO_DEST); }
else {COL_MODE (ONE_DEST); }
loop1l = 1000;
while (loopl-- > zero) {
seed = (seed * vall + val2) & val3;

x1 = (seed * xmax) >> val4;
seed = (seed * vall + val2) & val3;
x2 = (seed * xmax) >> val4;
seed = (seed * vall + val2) & val3;

yl (seed * ymax) >> val4;
seed = (seed * vall + val2) & val3;
y2 = (seed * ymax) >> val4;
LINE(x1,y1,x2,y2);

}

p=-p
}
main()
{
graph_init();

random(3);

}

014-001800 4-17



Programming the Monochrome Graphics Subsystem

Programming the Frame Buffer

To program the frame buffer, either send parameters and drawing commands to the
graphics controller, or write to the frame buffer. Direct access to the frame buffer
allows you to manipulate the video image and to take advantage of existing software
that assumes a dumb frame buffer. However, since direct access to the frame buffer
takes place through the graphics controller, these accesses take considerably longer
than main memory accesses. For example, a frame buffer read or write cycle takes
about 800 ns while a main memory read or write cycle takes about 240 ns, assuming
data is not in cache. Furthermore, because the graphics controller sends only the
low-order 16 bits of the Mbus for data transfers, frame buffer accesses must be done
in half-words (16 bits) on frame buffer word (32-bit) boundaries.

The visible screen portion of the frame buffer occupies the lower 80K by 16-bit words
of the frame buffer address space. Off-screen video memory accounts for the upper
48K by 16-bits of frame buffer address space.

The starting address of the first 16-bit word in the frame buffer is 8000 0000. The
last 16-bit word on the screen is at 8004 FFFC. The first 16-bit word of off-screen
memory is at 8005 0000, and the last word in the frame buffer is at 8007 FFFC.
Figure 4-3 shows the organization of the frame buffer.

Base Address (each address contains a 16-bit word)

N 4x(Nx80) 4x(Nx80+79)
0 8000 0000 | 8000 0004 | . . . 8000 013C| ™)
1 8000 0140 | 8000 0144 | : : : 8000 027C

L On-Screen
Video Memory

1023|8004 FECO | 8004 FEC4 8004 FFFC <
1024 T TR S
1025
1637 <
1638 |8 C {8008 0000
Font Storage
. >(Optlonal)
4915 | 8017 FFCO| - [ 8017 FFFC| _

Figure 4-3 Frame Buffer Organization

End of Chapter

4-18 014-001800



Chapter 5
Programming the
Color Graphics Subsystem

This chapter describes the following topics:

The color graphics subsystem.
Handshaking between the CPU and the color graphics subsystem.
How to program the color graphics subsystem.

The optional Z-buffer gate array and how to program the Z-buffer registers. The
300 series stations do not support the Z-buffer.

Features of the Color Graphics Subsystem

The color graphics subsystem drives a bit-mapped color graphics monitor, and has the
following features:

Drives a 1280 x 1024 pixel display, 60 or 70 Hz noninterlaced refresh rate,
compliant with U.S., Canadian, and European VDT standards.

® Can select from 256 (8-bit) or 16.7-million (24-bit) colors.

8-bit systems have a frame buffer of 1536 x 1024 pixels x 10 planes, and 24-bit
systems have a frame buffer of 2048 x 1024 pixels x 26 planes. The planes
consist of 8 or 24 color planes, plus two overlay planes. The frame buffer provides
extra off-screen storage area for fonts and menus.

Processes up to 280,000 10-pixel vectors/second (raw rate, with the CPU supplying
integer coordinates as fast as possible).

Incorporates several graphics commands such as Bit Block Transfer (BITBLT) and
Line Draw (LINE) to relieve the CPU of these functions.

Draws Gouraud-shaded polygons.

® Does windowing and pick via clipping rectangles.

014-001800 5-1



Programming the Color Graphics Subsystem

Components of the Color Graphics Subsystem

This section describes the major components of the color graphics subsystem.
Figure 5-1 and Figure 5-2 illustrate 8-bit and 24-bit color graphics subsystems
respectively. The components are:

® Color graphics controller.

® Frame buffer (VRAM).

® RAMDAC which contains a Look Up Table (LUT) in RAM, and a Digital to
Analog Converter (DAC).

® Clock generator.
Z-buffer (optional).

The rest of this section describes each of these components.

< Mbus (32 Bits Address/Data) >
Z-buffer Color Graphics Clock
{optional) Controller - Generator
A
D| A C

Yy v \

Frame Buffer

(VRAM)
A = Address Lines
D = Data Lines l
C = Control Lines Y
R = Red Output RAMDAC <
G = Green Output Bt458
B = Blue Output Lookup Table
and
D/A
Converters

R

Figure 5-1 Color Graphics Subsystem (8-Bit)

5-2 014-001800



Programming the Color Graphics Subsystem

Mbus (32 Bits Address/Data)

-

v

\/ \

\

Clock

Generator

Z-Buffer
(optional)

Color Graphics

Color Graphics

Color Graphics

Controller 0 Controller 1 Controller 2
A | c A ¢ A I c
AL | AL __Al
D | | D |
v ' v '
v v v \ v vy V
Frame Buffer Frame Buffer Frame Buffer
(VRAM) (VRAM) (VRAM)

N

orf——- e 7

] | |

| | |

| | |

v v TR

\A ] LA | vy v

RAMDAC 0 RAMDAC 1 RAMDAC 2

Bt257 Bt457 Bt457
Lookup Table Lookup Table Lookup Table

and and and

D/A Converter

D/A Converter

D/A Converter

!

G

C = Control Lines
A = Address Lines
D = Data Lines

!

R

!

B

G = Green Output
R = Red Output

B = Blue Output

G = Overlay Planes

Figure 5-2 Color Graphics Subsystem (24-Bit)

The Color Graphics Controller

The color graphics controller is a gate array that manipulates addresses and data, and
generates control signals for the color graphics subsystem. With minimal intervention
from the CPU, this gate array can draw lines, fill in specified areas, and manipulate

blocks of data. The color graphics gate array communicates with the CPU via the

Mbus.

014-001800



Programming the Color Graphics Subsystem

The Frame Buffer

Raster graphics systems have an array of memory called the frame buffer or bitmap in
which values for pixels are stored. These pixel values are pointers into the lookup
table (LUT) which is a color palette.

The frame buffer consists of Video Random-Access Memory (VRAM) which has two
1/0 ports; one port connects to the color graphics gate array, and the other connects
to the RAMDAC.

The frame buffer is organized into planes; each plane is one bit deep. 8-bit color has
8 color planes and 2 overlay planes. 24-bit color has 24 color planes and 2 overlay
planes. The color planes determine the colors displayed. 8-bit systems can generate
and display 28 or 256 true colors. 24-bit color systems can generate 224 or 16.7
million true colors and display 2048 x 1024 or 2.6 million true colors.

Overlay planes temporarily store superimposed images without destroying the
underlying images.

The frame buffer is located in memory within the following ranges: color data is stored
at 8000 0000 - 83FF FFFF, and overlay data is stored at 8400 0000 - 87FF FFFF.

Table 5-1 identifies the sizes of frame buffers.

Table 5-1 Frame Buffer Size

Graphics Frame Buffer
8-bit (300 1536H x 1024V Pixels
and 400) 1280H x 1024V Pixels displayed

8 Color planes + 2 Overlay planes

24-bit (400) 2048H x 1024V Pixels
1280H x 1024V Pixels displayed
8 Green planes + 2 Overlay planes
8 Red planes
8 Blue planes

5-4 014-001800



Programming the Color Graphics Subsystem

RAMDAC

Both 8-bit and 24-bit color systems use Brooktree RAMDAC chips. 8-bit stations
use one Brooktree Bt458 RAMDAC, and 24-bit stations use three Brooktree Bt457
RAMDAC:Ss.

The Lookup Table (LUT)

The lookup table (LUT) is a color palette; it contains values that define colors to be
displayed. 8-bit systems have a single 8-bit LUT, and 24-bit systems have three
8-bit tables (one for each primary color).

The Digital to Analog Converter (DAC)

Both 8-bit and 24-bit color systems have three high-speed 8-bit Digital-to-Analog
Converters (DACs). The output of each DAC drives an RS-343A interface with red,
green, and blue (synchronized on green).

The Clock Generator

The clock generator consists of two oscillators. The oscillators generate 125.000 MHz
(for 75-kHz color monitors) and 107.352 MHz (for 64-kHz color monitors) clocks.
The power—up routine identifies which monitor is connected, and assigns an oscillator
for the correct horizontal rate.

The Z-Buffer

The Z-buffer is a gate array that regulates and stores data for the Z-axis of
three-dimensional images to be displayed.

014-001800 5-5



Programming the Color Graphics Subsystem

Programming Conventions

This section describes programming conventions that affect more than one of the
major components of the color graphics subsystem. The major topics in theis section
include:

® Handshaking

® Context Switching

® Accessing color graphics resources
The color graphics subsystem is a slave device.

When the CPU accesses the color graphics subsystem, the address phase does not
require extra wait states, while the data phase requires one or more wait states for
accesses to the registers or frame buffer. Data phase accesses to the RAMDAC
require extra wait states.

When written to, the color graphics controller ignores parity bits.

The graphics controller has built-in commands to create objects and fields, to move
blocks of data within the frame buffer, and to transfer data between the frame buffer
and system memory. These commands are programmed through the Command
(CMD) register.

5-6 014-001800



Programming the Color Graphics Subsystem

Handshaking

Handshaking between the CPU and the color graphics subsystem is regulated using bit
0 (BSY) and bit 1 (DIP) of the Control and Status Register 0 (CSR0), shown here:

Bit Mnemonic Function Type

1 DIP Drawing In Progress Read
The color graphics controller is performing a drawing
operation. Check DIP when writing parameters that
cannot be pipelined.

1 Indicates the controller is executing a command.
0 Indicates the controller is not executing a command.
The following conditions terminate commands:
D The command completed its function and all frame buffer
accesses related to it have begun.
D The clipping boundary was crossed.
D A context switch occurred.

0 BSY Busy Read/Write
Indicates whether or not the color graphics controller is
busy, and whether or not the parameter registers
(PARMO - PARM15) can be loaded.
1 Indicates the controller is busy and cannot accept
new parameters; i.e., do not write to the parameter
registers. BSY is set when a command is executed.
0 Indicates the controller can accept new parameters; it
no longer needs the existing parameters.

When writing to pipelined registers, make sure that BSY is cleared to 0. When writing
to nonpipelined registers, make sure that DIP is cleared to 0. The ability to pipeline
parameter registers (PARMn) is dependent on both the command being executed and
the command to be executed. In general, do not pipeline global registers. Pipelining
can be handled using two masks (one for setup and one for execution) for each
command, describing the registers it needs to access. By keeping the mask for the
execution part of the command currently running, and performing a logical AND of
this mask and the setup mask of the next command, you can determine whether it is
necessary to wait for BSY or DIP.

When using CLIP_STOP (see Command register description), you should not pipeline
commands. When the clip boundary is crossed, the Clipping Boundary (BND) bit will
be set and the command stopped. If you have pipelined a second command, it will
immediately execute the new command and clear the BND bit.

014-001800 5-7



Programming the Color Graphics Subsystem

Context Switching

Context switching is controlled via the Stop (STP) and Resume (RES) bits in the
STOP register. Upon stopping execution, you must save the context by reading all the
registers. The context switch operation will also function properly when pipelined
commands are present. After the STP bit is set to 1, make sure that the DIP bit is
cleared to 0 before reading the current context and loading a new context. If a
command terminates at the same time an STP command is issued, the STATE1
register is automatically modified to appear as if the command switched out was a No
Operation (NOP) command. When the new context is restarted, the NOP command
will immediately terminate and subsequent commands will continue. If no new
context is available, you can put the controller in an idle state by clearing the Busy
(BSY) bit in CSR1, and then the STP bit in the STOP register.

NOTE: Before reading the color graphics registers, either disable parity checking or
ignore the parity traps (interrupts). For information on disabling parity, see
the MC88200 User’s Manual.

In addition, bits 0 (STP) and 1 (RES) of the STOP register control context switching.

Bit Mnemonic Function

1 RES Resume
Resume operations following a context switch. When set to 1 by the
host, directs the controller to resume execution of a previously stopped
command. The controller clears the RES bit after the command
continues executing.
0 No operation.
1 Restart current context; automatic clear.

0 STP Stop

Stop the current operation.

0 No operation. When cleared to 0, the CSRO DIP bit indicates that
the controller is stopped. A stop occurring simultaneously with a
normal command termination is handled as a normal termination;
a hardware mechanism ensures that when restarted, a “no
operation” (NOP) command is executed. The STP bit is normally
cleared to O by the controller after the controller resumes execution
(RES bit).

1 When set to 1, directs the color graphics controller to stop
execution at the earliest possible time. The time is command
dependent: BITBLT and POLY will stop at the next end of a scan
line; LINE transfers will stop at the next pixel.

5-8 014-001800



Programming the Color Graphics Subsystem

Accessing Color Graphics Resources

This section describes methods of accessing resources of the color graphics subsystem.
The major topic is broadcast and individual accesses.

Broadcast Accesses and Individual Accesses

The CPU accesses the color graphics registers using either a broadcast access or an
individual access. A broadcast access is when the CPU writes to or reads from a
register in all three controllers at the same time. An individual access is when the
CPU writes to or reads from a register in only one controller. Eight-bit color systems
do not distinguish between broadcast and individual accesses. In 24-bit color systems,
a broadcast access writes a word of data to all three controllers, but each controller
uses only the portion of the word relevant to it. During a broadcast read, each of the
three controllers writes one byte to the data bus, and the CPU reads all three bytes at
the same time as a word.

With a 24-bit color graphics subsystem, a broadcast address accesses a resource in
the three controllers simultaneously. With an 8-bit color graphics subsystem, the
broadcast address has no advantage over an individual access, but it can be used in
place of the individual access (to maintain compatibility if upgraded to 24-bit color).

Table 5-2 defines the base addresses used when accessing color graphics controllers.
The Position (POSN) bits in Control and Status Register 1 (CSR1) define the base
address used during an individual access.

Table 5-2 Base Addresses of the Color Graphics Controllers

— lndlvidual____.I
Broadcast POSN 00 POSN 01 POSN 10
Starts at FFF8 9000 FFF8 9100 FFF8 9200 FFF8 9300
Ends at FFF8 90FF FFF8 91FF FFF8 92FF FFF8 93FF

Access Guidelines

Several factors define how to access a color graphics resource; these are
® What the resource is (a register, the frame buffer, or the LUT)

® The number of bits in the resource (8-bits or 32-bits)

® The type of color graphics subsystem (8-bit or 24-bit color)

® The type of access (broadcast or individual).

014-001800 5-9



Programming the Color Graphics Subsystem

In 24-bit color systems, 8-bit registers, 32-bit registers and the frame buffer are
accessed as follows:

® 8-bit registers
broadcast accesses:
As shown in Figure 5-3, 8-bit registers on each color graphics controller receive
from or transmit to the correct byte of the bus as determined by the controller’s
position. Each controller’s position is defined by the Position (POSN) bits in the
Control and Status Register 1 (CSR1).

MSB LSB
32-bit [ Byte 2 | Byte 1 Byte 0 |
data : t t
8-bit 8-bit 8-bit
Register Register Register

Graphics Graphics Graphics

Controller Controller Controller
2 1 0

Figure 5-3 Broadcast Data Transfers of 8-bit Registers with 24-bit Color

individual accesses:
An 8-bit register will receive or transmit the least significant byte (bits 7-0)
regardless of the POSN bits in CSR1.

® 32-bit registers
broadcast accesses:
32-bit registers on each color graphics controller receive the entire 32 bits of data,
but transmit the least significant byte of data in the position that corresponds to the
controller’s POSN value.
individual accesses:
32-bit registers on each color graphics controller receive or transmit the entire 32
bits of data.

e Frame buffer

broadcast accesses:
The frame buffer receives or transmits 1 byte in the byte that corresponds to the
controller’s POSN value.

individual accesses:
The frame buffer receives the byte of data that corresponds to the controller’s
position, but transmits a byte of data replicated four times in the data word.

5-10 014-001800



Programming the Color Graphics Subsystem

Table 5-3 defines the addresses and offsets of the graphics controller registers, and
also defines the addressing and context switch characteristics of the color graphics
registers. The rightmost two hexadecimal digits of an address are the register’s offset
(e.g. 14 is the offset for the BACK register.) The “Broadcast/Individual” field
indicates whether the register should be accessed using a broadcast (B) access or an
individual (I) access. A Save in the Context Switch field indicates that the register
should be saved during a context switch.

Table 5-3 Color Graphics Registers

Broadcast/ Context
Address Individual Switch  Name Function
FFF8 9000 B Save CSRO Control and Status Register 0
FFF8 9004 B Save STOP Stop/Resume Register
FFF8 9008 B Save CSR1 Control and Status Register 1
FFF8 900C B Save CMD Command Register
FFF8 9010 B Save MASK Plane Mask Register
FFF8 9014 B Save BACK Background Color Register
FFF8 9018 B Save LPAT Line Pattern Register
FFF8 901C B Save PC/WID Pattern Control/WID Register
FFF8 9020 B - CRTO CRT Control Register 0
FFF8 9024 B — CRT1 CRT Control Register 1
FFF8 9028 B - CRT2 CRT Control Register 2
FFF8 902C — - — Reserved
FFF8 9030 B Save STATEO Internal State 0
FFF8 9034 B Save STATE1 Internal State 1
FFF8 9038-
FFF8 903C — - - Reserved
FFF8 9040 B Save PARMO Parameter Register 0
FFF8 9044 B Save PARM1 Parameter Register 1
FFF8 9048 B Save PARM2 Parameter Register 2
FFF8 904C B Save PARM3 Parameter Register 3
FFF8 9050 B/I Save ! PARM4 Parameter Register 4
FFF8 9054 B/1 Save ! PARMS Parameter Register §
FFF8 9058 B Save PARMS6 Parameter Register 6
FFF8 905C B Save PARM?7 Parameter Register 7
FFF8 9060 B Save PARMS Parameter Register 8
FFF8 9064 B/I Save ! PARM9Y Parameter Register 9
FFF8 9068 B Save PARM10 Parameter Register 10
FFF8 906C B Save PARM11 Parameter Register 11
FFF8 9070 B/I Save ' PARM12 Parameter Register 12
FFF8 9074 B/1 Save '’ PARM13 Parameter Register 13
FFF8 9078 B/I Save ! PARM14 Parameter Register 14
FFF8 907C B Save PARM1S5 Parameter Register 15

' Depending on the command executing, these registers may be written to using either the
broadcast address or their individual addresses. During a context switch, however, they
should be read and written individually to ensure proper operation for any command.

(continued)

014-001800 5-11



Programming the Color Graphics Subsystem

Table 5-3 Color Graphics Registers

Broadcast/ Context
Address Individual Switch  Name Function
FFF8 9080-
FFF8 909C — — — Reserved
FFF8 90A0 B — DATA Data Port Register
FFF8 90A4 B - PLTO Palette Pointer 0
FFF8 90A8 B - PLT1 Palette Pointer 1
FFF8 90AC B - BLNK Blink Control Register
FFF8 90B0-
FFF8 90BC — — — Reserved
FFF8 90C0 I — DACO RAMDAC Address Register
FFF8 90C4 I —_ DAC1 RAMDAC Color Palette RAM
FFF8 90C8 1 —_ DAC2 RAMDAC Control Register
FFF8 90CC I — DAC3 RAMDAC Overlay Palette RAM
FFF8 90DO0-
FFF8 90DC — — — Reserved
FFF8 90EO- B Save - Z-Buffer Control Registers
FFF8 91F0 (see the section, “Programming the
Z-Buffer Registers.”)
(concluded)
NOTE: Before reading the color graphics registers, either disable parity checking or

5-12

ignore the parity interrupts. For information on disabling parity, see the

MC88200 User’s Manual.

014-001800



Programming the Color Graphics Subsystem

Fixed-Point Numbers

Fixed-point numbers are required with some parameters, especially color shading
parameters and many parameters associated with the POLY command. The structure
of these fixed-point numbers is shown here:

Bit Contents

31-29  Not implemented.

28-16  Most significant word (Integer Portion).
15-13  Not implemented.

12-0 Least significant word (Fractional portion).

Parameters using fixed-point numbers assign 13 bits each to integer and fractional
parts. This 1/(2°13) ensures that less than one integer bit of error will accumulate
when scanning as many as 8192 pixels. The range of values in this format is from
-8192.0 to +8191.999.

To convert a floating—point value to fixed-point, do the following:
1.  Multiply the floating—point number by 8192.
2. Convert the floating-point number to integer.

3.  Shift bits 13 through 25 of the result three bits to the left.

Interrupts

The color graphics subsystem may interrupt the CPU when a drawing is completed, a
drawing is being written outside the clipping area, or a vertical blank started.

When an interrupt occurs, read the Control and Status Register 1 (CSR1); it
identifies the cause of interrupts. The interrupts can also be masked through bits in
the CSR1 register; if an interrupt is masked, the color graphics controller will not pass
the interrupt request to the interrupt control logic.

Since the graphics subsystem does not flag error conditions, the color graphics
program must ensure that the CPU sends correct parameters to the subsystem.

014-001800 5-13



Programming the Color Graphics Subsystem

Registers

Each graphics controller has registers that provide a variety of functions from setting
up and executing graphics commands to passing and identifying graphics interrupts.

The registers are memory mapped on 32-bit word boundaries. Some of the registers
use all 32-bits; others use only 8 bits. All registers must be accessed as words,
therefore the programmer must be careful to read or write the correct bits.

The graphics subsystem has two sets of registers — visible and working — as illustrated
in Figure 5-4. The operating system communicates with the visible registers. The
working registers are copies of the visible registers and are accessed only by the
graphics subsystem. The graphics subsystem writes the contents of the visible registers
into the working registers as needed (i.e., the registers are pipelined.) Except in some
cases, the visible registers can be programmed with new data while the subsystem is
executing a command using the “original” data.

CPU <«—>»] Visible Registers |« »| Working Registers = »| VRAM

Figure 5-4 Graphics Subsystem Registers

NOTE: To ensure compatibility with future hardware revisions, write Os to all
reserved or unimplemented bits. When reading registers, ignore the reserved
bits.

The color graphics controller contains the following registers:

Global Registers:

MASK Plane Mask register
BACK Background Color register
LPAT Line Pattern register

PC_WID  Pattern Control/Window ID register

DATA Dataport register

The global registers specify parameters affecting drawn pixel values, line patterning,
and plane masking. They are not pipelined during a draw command, therefore do not

modify their contents until the Drawing In Progress (DIP) bit in CSRO is 0, indicating
that drawing is inactive.

The POLY command uses all registers in a nonpipelined way, so that you must test
the DIP bit.

Command and Status Registers:

CSRn Control and Status Registers 0 and 1
CRTn CRT Timing registers 0 through 2
STATEn Internal State registers 0 and 1
STOP Stop register

PARMn Parameter registers 0 through 15
CMD Command register

5-14 014-001800



Programming the Color Graphics Subsystem

Global Registers

The next few pages describe the global registers in detail.

BACK Background Color

Address FFF8 9014 Read/Write

The Background Color (BACK) register contains the background color value for use
during patterned line and stippled draw operations. During these operations, a line
pattern or stipple bit with a value of 0 will select the BACK register as the source for
the pixel value to be written into the frame buffer. The BACK register is viewed as
an N-bit register where N is the number of frame buffer planes implemented. Bit 0
corresponds to pixel bits for frame buffer plane 0; bit 1 for frame buffer plane 1, and
sO on.

You should normally access the BACK register using its broadcast address. In
multiple color graphics controller configurations, this allows you to read or write the
8-bit BACK register of each controller with a single register access.

31 16
BACK
15 0
BACK
Bit Mnemonic Function
31-0 BACK Background Color
Contains the background color value for use during patterned line and
stippled draw opoerations.

014-001800 5-15



Programming the Color Graphics Subsystem

DATA Dataport

Address FFF8 90A0 : Read/Write

The Dataport (DATA) register is used by the color graphics controller during data
transfers (RXFER and WXFER commands). The controller repeatedly reads from
and writes to this register during block transfers between host memory and video
memory. During a transfer, you must write or read all pixels requested before starting
any other command, otherwise it will be necessary to reset or stop the color graphics
controller.

This register is viewed as an N-bit register where N is the number of frame buffer
planes implemented in the system. Bit 0 corresponds to pixel bits for plane 0; bit 1
for plane 1, and so on. With the STIPPLE bit set and a WXFER command active,
only bit 0 of this register is used. In this case, writing a 0 or 1 to this bit results in a
background (0) or foreground (1) pixel value being transferred to the frame buffer.
At reset time, the contents of this register are unknown and unchanged.

31 16
DATA
15 0
DATA
Bit Mnemonic Function
31-0 DATA Dataport
Dataport is the data transport interface for block transfers between
host memory and video memory.

5-16 014-001800



Programming the Color Graphics Subsystem

MASK Plane Mask

Address FFF8 9010 Read/Write

The Plane Mask (MASK) register provides selective writing of frame buffer planes.
With this function the color graphics frame buffer can be partitioned into logical plane
groups, each of which can be independently modified. The MASK register is viewed
as an N-bit register where N is the number of frame buffer planes implemented. Bit
0 controls the masking for plane 0; bit 1 for plane 1, and so on. A bit value of 0
disables writing to the associated plane; a bit value of 1 enables writing to that plane.

You should normally access the MASK register using its broadcast address. In
multiple color graphics configurations, this allows you to read or write the 8-bit MASK
register of each controller with a single register access.

31 16
MASK
15 0
MASK
Bit Mnemonic Function
31-0 MASK Plane Mask
Masks and enables the buffer planes

014-001800 5-17



Programming the Color Graphics Subsystem

LPAT Line Pattern

Address FFF8 9018 Read/Write

The Line Pattern (LPAT) register contains the 32-bit line pattern in effect during line
drawing. Bit 0 of the LPAT register represents the first pixel in a line (if the
PAT_RESET bit in the Command register is set to 1). Each bit in the pattern
contains a 0 for background color or a 1 for foreground color. Note that you may
draw a solid line either by using an FFFF FFFF pattern in the LPAT register or by
setting the SOLID bit in the Command register to 1.

You should normally access the LPAT register using its broadcast address. In multiple
color graphics controller configurations, this ensures that each controller uses an
identical line pattern. However, by using the individual unit number addressing, you
load a different 32-bit pattern into each controller, thus providing multicolored line
patterning.

31 16
LPAT
15 0
LPAT
Bit Mnemonic Function
31-0 LPAT Line Pattern
Contains the 32-bit line pattern in effect during line drawing.

5-18 014-001800



Programming the Color Graphics Subsystem

PC_WID Pattern Control/Window ID

Address FFF8 901C Read/Write

The Pattern Control/Window ID (PC_WID) register controls line patterning operations
and specifies window ID clipping parameters. The Pattern Control bits (PTCNT,
CRPTCNT, and PTPNT) save and restore the context of a “stopped” Line command.
The Window ID bits (WIDKEY, WIDMSK) are valid only if the WID_ENABLE bit in
the Command register is set. During a drawing operation, a pixel will be modified if
the corresponding WID mask matches the WIDKEY bits.

You should normally access the PC_WID register using its broadcast address. In
24-bit graphics systems, this ensures that each controller uses identical line pattern
controls. The WIDMSK and WIDKEY bits of the register are significant only for
controllers configured as masters (slave controllers ignore these bits).

31 27 | 26 22 | 21 19 | 18 16
Reserved PTPNT CRPTCNT PTCNT
15 8 7 0
WIDKEY WIDMSK
Bit Mnemonic Function
31-27 Reserved Must be zeroes when written to, and undefined when read from.
26-22 PTPNT Pattern pointer
Points to the current bit within the line pattern.
21-19 CRPTCNT Current pattern repeat count.
18-16 PTCNT Pattern repeat count.

Allows positive scaling of the current line pattern. The value
corresponds to each pattern bit being repeated 1-8 times.

Bits Operation
000 Normal line drawing, no stretch
001 x2 stretch
010 x3 stretch
011 x4 stretch
100 XS5 stretch
101 X6 stretch
110 X7 stretch
111 x8 stretch
15-8 WIDKEY ! Window key

Contains the value to be compared with the ID read from the
ID/overlay planes during a read-modify-write (RMW) frame buffer
cycle. If the unmasked bits read from the ID planes match those of
the WIDKEY, the RMW cycle will replace the existing pixel (no clip),
otherwise the RMW cycle will retain the existing pixel (clipping
occurs).

7-0 WIDMSK Window ID mask
Specifies which ID/overlay planes to use during the clipping process.

' Unused bits must be 0, for instance, workstations supporting 2 bits of window ID information
use only WIDKEY bits 9 and 8 and WIDMSK bits 1 and 0.

014~001800 5-19



Programming the Color Graphics Subsystem

Command and Status Registers

The next few pages describe the command and status registers in detail.

CSRO Control and Status Register 0

CSRO Address FFF8 9000 Read/Write

The Control and Status register 0 (CSRO) returns the state of drawing instruction
execution.

31 16
Reserved
15 31 2 1 0
Reserved BND| DIP | BSY
Bit Mnemonic Function Type
31-3 Reserved Must be zeroes when written to.
2 BND Clipping Boundary Read/Write

The previous command crossed the clipping boundary.

1 Indicates the previous command crossed clipping
boundary and the CLIP_STOP bit (Command
register) was set.

0 Indicates that either the previous command did not
cross clipping boundary, or the previous command
crossed clipping boundary and the CLIP_STOP bit
(Command register) was not set.

1 DIP Drawing In Progress Read
The color graphics controller is performing a drawing
operation. Check this bit when writing to registers that
are not pipelined.

1 Indicates that the controller is executing a

command.
0 Indicates that the controller is not executing a
command.
0 BSY Busy Read/Write

Color graphics controller is busy. The execution of a

command sets this bit. The color graphics controller

clears this bit when the controller no longer needs the

parameters.

1 Indicates that the controller is busy and cannot
accept new parameters.

0 Indicates that the controller can accept new
parameters.

5-20 014-001800



Programming the Color Graphics Subsystem

CSR1

Control and Status Register 1

CSR1

Address FFF8 9008 Read/Write

The Control and Status Register 1 (CSR1) returns the state of the color graphics
subsystem as well as information on configuration, interrupts, and timing.

31 | 30 23 |22 20 | 19 18 17 | 16
NMN Reserved CBR VBL | VSN |HSN | BtS
15 14 13 12 11 10 9 8 7 6 514 2 |1 0
MST| CLI |CLM | DDI| DDM| VBI | VBM | IMK | WST POSN FBSIZE PSIZE
Bit Mnemonic Function Type
31 NMN Control Signals Enable Read/Write

When written to, it enables or disables the frame buffer
control signals. When read from, it indicates whether the
control signals are enabled or disabled.
0 Write disables the signals.
Read indicates that the signals are disabled.
1 Write enables the signals.
Read indicates that the signals are enabled.
30-23  Reserved Must be zeroes when written to.
22-20 CBR CAS Before RAS Read
Indicates the number of CBR refresh cycles per scan line.
CBR No. of Cycles CBR No. of Cycles
000 0 100 4
001 1 101 S
010 2 110 6
011 3 111 7
19 VBL Vertical Blank Read
Indicates the Current status of the vertical blank (VBLANK) signal.
0 VBLANK is active.
1 VBLANK is inactive.
18 VSN Vertical Sync Read
Indicates the current status of the vertical sync (VSYNC) signal.
0 VSYNC is active.
1 VSYNC is inactive.
17 HSN Horizontal Sync Read
Indicates the current status of the horizontal sync (HSYNC) signal.
0 HSYNC is active.
1 HSYNC is inactive.
16 BtS Type of DAC and LUT Read
Indicates the type of RAMDAC being used.
0 8-bit color uses a Broktree Bt458 RAMDAC and 24-bit color uses
Brooktree Bt457 RAMDAGC:.
(continued)
014-001800 5-21



Programming the Color Graphics Subsystem

Bit Mnemonic Function Type

15 MST Master or Slave Read
Indicates whether this is master or slave controller
(multiple color graphics subsystems only).
0 Slave controller.

1 Master controller.

14 CLI Clipping Interrupt Read/Write
Indicates whether or not pixels have been clipped.
0 Pixels have not been clipped.
1 One or more pixels have been clipped.

13 CLM Clipping Interrupt Mask Read/Write
Enables/disables the clipping interrupt.
0 Disables clipping interrupt (CLI).
1 Enables clipping interrupt (CLI).
12 DDI Drawing Done Interrupt. Read/Write
Indicates whether or not the color graphics controller
has completed a drawing operation. Also see the
Drawing In Progress (DIP) bit in CSRO.
0 The controller has not completed a drawing operation.

1 The controller has completed a drawing operation.

11 DDM Drawing Done Mask Read/Write
Enables/disables the drawing done interrupt.
0 Disables interrupt when drawing done.
1 Enables interrupt when drawing done.

10 VBI Vertical Blank Interrupt. Read/Write
Indicates whether or not a vertical blank has occurred.
0 Vertical blank has occurred.
1 Vertical blank has not occurred.

9 VBM Vertical Blank Mask Read/Write
Enables/disables the vertical blank interrupt.
0 Disables vertical blank interrupt (VBI).
1 Enables vertical blank interrupt (VBI).

8 IMK Interrupt Mask Read/Write
Enables/disables all interrupt requests.
0 Disables interrupts.
1 Enables interrupts.

7 WST Wait States Read
Indicates that an additional wait state is inserted into
the Mbus data phase.
0 Extra wait state.
1 No extra wait state.

6-5 POSN Position Read
Color graphics controller base address. Defines the
position and address of the graphics controller. If 8-bit
color, POSN is set to 00. If 24-bit color, POSN is set
to 00 for red, 01 for blue, and 10 for green.
00 FFF8 9100
01 FFF8 9200
10 FFF8 9300

(continued)

5-22 014-001800



Programming the Color Graphics Subsystem

Bit Mnemonic Function Type

4-2 FBSIZE Frame Buffer Size Read

Type and size of frame buffer.
0002K x 1K, 64K x 4 VRAM
0011K x 512, 64K x 4 VRAM
0102K x 1K, 256K x 4 VRAM
0112K x 2K, 256K x 4 VRAM
1004K x 2K, 256K x 4 VRAM

1-0 PSIZE Pixel Size Read

Number of bits/pixel.
00 8 bits per pixel
10 24 bits per pixel

NOTE: PSIZE is set up during power-up reset only.

(concluded)

014-001800 5-23



Programming the Color Graphics Subsystem

CRTO, CRT1, CRT2 CRT Timing

CRTO
CRT1
CRT2

Address FFF8 9020 Read/Write
Address FFF8 9024 Read/Write
Address FFF8§ 9028 Read/Write

The CRT Timing registers contain parameters for the composite sync signal and
composite blank signal. These signals can be programmed to support a variety of
screen resolutions (noninterlaced display only). Horizontal timing is programmable in
units of 1/8 of the pixel clock rate (8 pixel times = 1 Hunit). Vertical timing is
programmable in units of horizontal rasters. Some of the CRT Timing register values

cross register boundaries.

CRTO Register (FFF8 9020)

31 24 |23 16
HTOTAL HBSTRT
15 14 716 0

HBSTRT HBEND HSEND

Bit Mnemonic Function

31-24 HTOTAL Horizontal Total
Number of Hunits from the start of a horizontal sync signal to the start
of the next horizontal sync signal (the line period). Program this value
with 2 less than the required number of Hunits. CRTO contains the
lower 8 bits; CRT1 contains the top bit.

23-15 HBSTRT Horizontal Blank Start
Number of Hunits from the start of a horizontal sync signal to the end
of the viewable display area (start of horizontal blank signal).
Program this value with 3 less than the required number of Hunits.

14-7 HBEND Horizontal Blank End
Number of Hunits from the start of a horizontal sync signal to the start
of the viewable display area (end of horizontal blank signal). Program
this value with 3 less than the required number of Hunits.

6-0 HSEND Horizontal Start to End
Number of Hunits from the start of a horizontal sync signal to the end
of the horizontal sync signal. Program this value with 2 less than the
required number of Hunits.

5-24

014-001800



Programming the Color Graphics Subsystem

CRT1 Register (FFF8 9024)

31

25 |24 16

VBSTRT

VBEND

15

13 [ 12

1 0

VBEND

VSEND HTOTAL

Bit

Mnemonic

Function

31-25

24-13

12-1

VBSTRT

VBEND

VSEND

HTOTAL

Viewable Area Start to End

Number of rasters from the start of the viewable area to the end of the
viewable area. Program this value with 1 less than the required
number of rasters plus the number in VADJ. CRT1 contains the 7
lower bits; CRT2 contains the 5 top bits.

Vertical Period

Number of rasters from the start of the viewable area to the start of
the next viewable area (the vertical period). Program this value with 1
less than the required number of rasters plus the number in VADJ.

Vertical Start to End

Number of rasters from the start of the viewable area (the end of
VBLANK) to the end of the next vertical sync signal. Program this
value with the required number of rasters plus the number in VADJ.

Total Horizontal Sync Signal

Number of Hunits from the start of horizontal sync signal to the start
of the next horizontal sync signal (the line period). Program this value
with 2 less than the required number of Hunits. CRTO contains the
lower 8 bits; CRT1 contains the top bit.

014-001800

5-25



Programming the Color Graphics Subsystem

CRT2 Register (FFF8 9028)

31 30 29 28 17 16
Reserv VADJ See below
FRCBLK| ENSYNC] rved VTOTAL
16 5] 4 0
VTOTAL VBSTRT
Bit Mnemonic Function
31 FORCBLNK* Force Blank Bit.
0 Forces the composite blank signal from the color graphics
controller to below, thus blanking the screen.
1 Enables screen display. Note that VRAM refresh and drawing
operations will continue even if the display is being blanked. A
reset clears this bit.
30 ENSYNC Enable Sync Bit.
When set to 1, enables the sync signal and blank generation within the
color graphics controller. Set this bit to 1 to enable timing only after
programming the CRT registers. A reset clears this bit.
29 Res Reserved.
This bit should always be 0 (a reset clears this bit).
28-17 VADJ Vertical Adjust
Number loaded into an internal counter prior to the start of the first
displayed raster. This value determines which row within the
VDRAMs is transferred to the VDRAM serial port in preparation for
the first line of active video. The other vertical timing parameters
depend on this value (normally 0).
16-5 VTOTAL Vertical Total
Number of rasters from the start of the viewable area to the start of
the next vertical sync signal. Program this value with the required
number of rasters plus the number in VADIJ.
4-0 VBSTRT Viewable Start to End
Number of rasters from the start of the viewable area to the end of the
viewable area. Program this value with 1 less than the required
number of rasters plus the number in VADJ. CRT1 contains the 7
lower bits; CRT2 contains the S top bits.

5-26

014-001800



Programming the Color Graphics Subsystem

The following example calculates values for a 70-Hz color graphics monitor.

The timing values for this monitor are

Horizontal resolution
Vertical resolution

Pixel clock (125 MHz)
(timing generation (in Hunits))
Horizontal line period
Horizontal front porch
Horizontal sync
Horizontal back porch
Horizontal display active
Vertical period

Vertical front porch
Vertical sync

Vertical back porch
Vertical display active

1280 pixels
1024 rasters

15.625 MHz = 64 ns
13.312 ms = 208 Hunits
0.512 ms = 8 Hunits
1.024 ms = 16 Hunits
1.536 ms = 24Hunits
1280 pixels = 160 Hunits
1071 rasters total

1 raster

4 rasters

42 rasters

1024 rasters

Using these values (with VADJ = 0) we calculate the following numbers for the timing

hsync + back porch + display active - 3 = 16 + 24 + 160 - 3 = 197

parameters:
HSEND  horizontal sync width - 2 = 16 - 2 = 14
HBEND  hsync + horizontal back porch - 3 = 16 + 24 - 3 = 37
HBSTRT
HTOTAL horiz line period - 2 = 208 - 2 = 206
VSEND vert active + front porch + vsync = 1024 + 1 + 4 = 1029
VBEND  vert period - 1 = 1071 - 1 = 1070
VBSTRT  vert active time - 1 = 1024 - 1 = 1023
VTOTAL vert active + back porch = 1025
VADJ 0

These registers can be programmed in any order. When programming, the ENSYNC
and FORCBLNK bits in CRT2 should be low (0). After programming, you should set
these bits to 1 leaving the other bits unchanged.

014-001800

5-27



Programming the Color Graphics Subsystem

STATEO, STATE1 Internal State
STATE( Address FFF8 9030 Read Only
STATE1 Address FFF8 9034 Read Only

The Internal State registers contain current values for drawing operations. STATEQ

contains the current BITBLT mask, direction and shift values. STATE1 contains a

copy of the Command register. Both registers must be saved and restored at context
switch time, but otherwise are not programmer-visible. When reset, the contents of

STATEO and STATE1 are unknown and unchanged.

STATEO
31 16
STATEO
15 0
STATEO
Bit Mnemonic Function
31-0 STATEO Internal State 0
Contains the current bit block transfer (BITBLT) mask, direction and
shift values.
STATE1
31 16
STATE1
15 0
STATE1
Bit Mnemonic Function
31-0 STATEI1 Internal State 1
Contains a copy of the contents of the Command (CMD) register.

5-28 014-001800



Programming the Color Graphics Subsystem

STOP Stop

Address FFF8 9004 Read/Write

The Stop register controls context switching.

31 16
Reserved
15 3 2 1 0
Reserved RST| RES| STP
Bit Mnemonic Function
31-3 Reserved Must be zeroes when written to, and undefined when read from.
2 RST Reset

Reset the color graphics controller.

0 No operation.

1 Perform a software reset and go to the idle state.
1 RES Resume

Resume operations following a context switch.
0 No operation.

1 Restart current context; automatic clear.
0 STP Stop

Stop the current operation.
0 No operation.

1 Stop the current drawing operation and go to the idle state.

014-001800 5-29



Programming the Color Graphics Subsystem

PARMO-PARM15 Parameter
PARMO Address FFF8 9040 Read/Write
PARM1 Address FFF8 9044 Read/Write
PARM2 Address FFF8 9048 Read/Write
PARM3 Address FFF8 904C Read/Write
PARM4 Address FFF8 9050 Read/Write
PARMS Address FFF8 9054 Read/Write
PARMG6 Address FFF8 9058 Read/Write
PARM7 Address FFF8 905C Read/Write
PARMS Address FFF8 9060 Read/Write
PARMY9 Address FFF8 9064 Read/Write
PARM10 Address FFF8 9068 Read/Write
PARM11 Address FFF8 906C Read/Write
PARM12 Address FFF8 9070 Read/Write
PARM13 Address FFF8 9074 Read/Write
PARM14 Address FFF8 9078 Read/Write
PARM15 Address FFF8 907C Read/Write

The Parameter (PARMn) registers supply parameters for the color graphics

commands.

After programming the Command register, program the parameter

registers to supply parameters for the command to be executed. The function of the

parameter registers varies from command to command.

The parameter registers may be grouped into two categories, the initial parameter
registers and the working registers. The initial parameter registers supply the graphics
controller with setup information used when executing a command; the values in these
registers remain unchanged throughout the execution of the command. The working
registers are changed by the graphics controller as needed when executing a
command. This is not visible because the graphics controller changes the values of
the background parameter registers; the foreground registers are left unchanged.

Resets do not affect the contents of the parameter registers.

5-30

014-001800



Programming the Color Graphics Subsystem

CMD

Command

Address FFF8 900C

The Command reg
controller.

LINE

CLINE
POLY

BITBLT

RXFER, WXFER

31

Read/Write

ister specifies a command to be executed by the color graphics

The commands are

Draws straight lines, solid or patterned, single-color or shaded
within a clipping rectangle.

Draws straight lines, solid or patterned, without clipping.

Draws a flat-topped triangle using Gouraud-shading or a solid
color, and pattern and stipple options.

Moves a rectangular area of pixels within the frame buffer. The
“Attributes” field specifies patterning and stippling options.
BITBLT is also used to draw text; a portion of the frame buffer
should contain characters that can be copied.

Transfer pixels between the host memory and the frame buffer.
Pixels are transferred in either Z-mode or in a limited XY-mode
(write transfers only) with the least significant bit selecting either
background or foreground colors.

16

Attributes

15 12

11 8| 7

Reserved

LU_OP Reserved OP

Bit

Mnemonic

Function

31-16  Attributes

Specifies options applicable to the operation (see bits 3-0, Opcode).
Bit Mnemonic — Operation
31

30

Reserved

SHADE

Applies Gouraud shading to LINE and POLY drawing.
1 Apply shading.

0 Do no apply shading.

NO_LAST

When drawing a line, prevents the last pixel of the line from being
drawn. A single-pixel line with this bit set will have no pixels drawn.
This function is useful when drawing polylines with the XOR ALU
function.

1 Do not draw last pixel.

0 Draw last pixel.

29

014-001800

(continued)

5-31



Programming the Color Graphics Subsystem

Bit

Mnemonic

Function

31-16

Attributes

Bit
28

27

26-24

23

22

21

20

19

Continued

Mnemonic — Operation

PAT_RESET

During line operations causes the pattern pointer to reset to the first bit
of the pattern for every new line.

1 Reset to first bit of the pattern.

0 Do not modify pattern pointer (useful for polylines).

ZBUF_ENABLE

Enables the Z-buffer interface with the Z-buffer co-processor. During
a BITBLT operation, if the SOLID bit (bit 23) is also set, this selects
the Z-buffer “fast clear” mode. Only 400 series stations support
Z-buffer operations.

1 Enables the Z-buffer interface.

0 Disables the Z-buffer interface.

SOURCE_PLANE
Selects one of eight planes for use as the source plane during stippled
operations.

SOLID
During BITBLT operations forces skipping the read of the source
(optimizes the BITBLT command for clear and fill operations).

1 Skip reading of the source.
0 Read the source.

TRANSPARENT

During a stippled or line operation uses the source data or the line
pattern to either modify the bit (when data is 1) or rewrite the bit
unmodified (when data is 0).

1 Perform TRANSPARENT operation.

0 Do not perform TRANSPARENT operation.

STIPPLE

During BITBLT, POLY, and transfer operations, forces source area to
be treated as a one-plane bitmap rather than a pixmap.

1 Perform STIPPLE.

0 Do not perform STIPPLE.

AREA_PATTERN

Forces the source data during BITBLT and POLY operations to be
treated as a 32 x 32 area pattern. The stored pattern must be aligned
so that the upper-left corner has the 5 least significant bits as 0, both
in X and Y. You can program the initial offset into the pattern, as
specified in the respective commands, to make alignment relative to
screen, window, or object.

1 Perform AREA_PATTERN.

0 Do not perform AREA_PATTERN.

WID_ENABLE

Enables clipping using the overlay planes. To use this function, the
PC_WID register must first be programmed with the appropriate plane
mask and key. WID is available on all operations.

1 Enable clipping with the overlay planes.

0 Disable WID_ENABLE.

5-32

(continued)

014-001800



Programming the Color Graphics Subsystem

Bit Mnemonic Function
31-16  Attributes Continued
Bit Mnemonic — Operation

18 CLIP_STOP
During line operations, selects whether execution stops or continues
when the clipping boundary is crossed.
1 Stop and set Clipping Boundary (BND in register CSR0) when
clipping occurs.

0 Do not stop when clipping occurs.

17-16 CLIP_CONTROL
Determines how clipping is used.
00 Draw inside clipping rectangle.
01 Do not clip.
10 Draw outside clipping rectangle (pick).
11 Do not clip.

15-12  Reserved Must be zeroes when written to, and undefined when read from.

11-8 Lu_oP ALU Operation

Specifies the type of ALU operation to be performed between the
source and destination data.

Value

(Hex) Mnemonic Logical Function

0 CLEAR 0 (zero)

1 AND source AND destination

2 AND REVERSE source AND NOT destination

3 COPY source

4 AND INVERTED NOT source AND destination

5 NOP destination

6 XOR source XOR destination

7 OR source OR destination

8 NOR NOT source AND NOT destination

9 EQUIV NOT source XOR destination

A INVERT NOT destination

B OR REVERSE source OR NOT destination

C COPY INVERTED NOT source

D OR INVERTED NOT source OR destination

E NAND NOT source OR NOT destination

F SET 1 (one)
7-4 Reserved Must be zeroes when written to, and undefined when read from.
3-0 OP Operation

Specifies the operation to be executed.

Value
(Hex) Operation

0 NOP No operation

1 BITBLT Bit block transfer

2 LINE Draw line

3 CLINE Continue line after clip

4 POLY Polygon assist

5 Reserved

6 RXFER Transfer from frame buffer to host
7 WXFER Transfer from host to frame buffer
8-F Reserved

(concluded)

014-001800 5-33



Programming the Color Graphics Subsystem

Table 5-4 describes several Command register bit settings. Within the table, the dash
(—) indicates that the value of this bit does not affect the command.

Table 5-4 Color Graphics Command Bits

Line Command Register Bits
Stipple Ptn Mbus Data
Command| Bit" Bit Bit | LU_OPSOLIDSTIPPLE TRANS | Source?| Description
LINE - 0 — JACT® 0 - 0 BACK | Normal draw
- 1 - ACT 0 — 0 FORE
- 0 — ACT 0 — 1 DEST | Draw
transparent
- 1 — ACT 0 - 1 FORE
— - — — 1 - - FORE | Draw solid
(pattern = —)
POLY - —_ - ACT 0 0 - FORE | Normal POLY
- - — — 1 - —_ FORE | Solid fill POLY
0 — - ACT 0 1 0 BACK | Stipple mode
1 - - ACT 0 1 0 FORE
0 — — ACT 0 1 1 DEST | Stipple mode
1 — — ACT 0 1 1 FORE (transparent)
BITBLT - - — ACT 0 0 — SORC | Normal
BITBLT
— —_ — - 1 — - FORE | Solid fill
0 — - ACT 0 1 0 BACK | Stipple mode
1 — - ACT 0 1 0 FORE
0 — — ACT 0 1 1 DEST | Stipple mode
1 — — ACT 0 1 1 FORE | (transparent)
W/RXFER — — — ACT 0 0 — DPORT | Z-Mode
(Z-Mode) - — — - 1 0 -— DPORT | Z-Mode
WXFER - — 0 ACT 0 1 0 BACK | XY-Mode
(XY-mode) - — 1 ACT 0 1 0 FORE | (Mbus bit 0)
— - 0 ACT 0 1 1 DEST | Transparent
XY-Mode
- — 1 ACT 0 1 1 FORE | (Mbus bit 0)
- — - — 1 1 — FORE | XY-Mode
(fill solid)
WXFER — — — — — — — MDATA | Host !
frame buffer

' Stipple Bit:

POLY: Single bit selected from a one-plane stipple pattern.
BITBLT: Multiple-bit word selected from a one-plane stipple pattern.

2 Data Source: Frame buffer write “data source”; this data may be modified by the LU opcode.

BACK

= Background color.

FORE = Foreground color.
DEST = Pixel data prefetched from frame buffer.

DPORT = Dataport Register.

SORC = BITBLT source data.
MDATA = Host-to-frame-buffer write data.

® ACT: Datapath logic unit “active”; source data is subject to modification according to current
ALU operation code (LU_op).

5-34

014-001800



Programming the Color Graphics Subsystem

Color Graphics Commands

This section describes the color graphics commands.

LINE Line draws a straight line within clipping boundaries.

CLINE Continue Line After Clip draws a straight line that was previously drawn
by LINE, but CLINE ignores clipping boundaries.

POLY Polygon draws a filled polygon.

BITBLT Bit Block Transfer moves blocks of data within the frame buffer.

RXFER Read Transfer transfers data from the frame buffer to system memory.

WXFER Write Transfer transfers data from system memory to the frame buffer.

To execute a graphics command, the graphics program must write to the command
and parameter registers. When the CPU writes the last parameter, the subsystem
executes the requested command without further CPU intervention.

014-001800 5—35



Programming the Color Graphics Subsystem

LINE

Line Draw

The LINE command draws straight lines, solid or patterned, single—color or shaded

within a clipping rectangle. This command uses a modified Bresenham’s Algorithm to
ensure that lines drawn from point A to point B exactly match lines drawn from point
B to point A. LINE directly accepts the X-Y coordinates of a source and destination
point, together with the X-Y origin they are identified with.

Command capabilities include

The use of a pattern and pattern control registers to control stippling of each pixel
in the line.

The use of 16 standard logic operations, as defined by the X Window System™.

Optionally drawing the last pixel in the line.

Shaded or solid color lines.

WID clipping.

PARMO Window

| The dotted portion
— | s not drawn.

4
~ 7

PARMBE 7’ knmz
PARM1

~

PARM7
N
AN

N\

Clipping Rectangle

Initial Parameter Registers

Register MSBytes LSBytes Description

PARMO Origin_X Origin_Y  Upper-left coordinates of drawing window.
PARM1 Source_X Source_Y Line starting coordinates.

PARM2 Dest_X Dest_Y Line ending coordinates.

PARM3 Fore Foreground pixel color for nonshaded lines.
PARM4 Fore_I Fore_F Initial foreground color for shaded lines.
PARMS Finc_I Finc_F Foreground color increment for shaded lines.
PARMS6 ClipTL_X ClipTL_Y Upper-left coordinates of clipping rectangle.
PARM?7 ClipBR_X ClipBR_Y Lower-right coordinates of clipping rectangle.
NOTE  _I = Integer and _F = Fraction.

5-36

014-001800



Programming the Color Graphics Subsystem

Working Registers

Register MSBytes LSBytes Description

PARMS CP_X CP_Y Current pointer (coordinates of the last pixel drawn).
PARMY Delta_X Delta_Y  Current number of pixels in the X and Y direction.
PARM10  Error_X Error_Y Bresenham'’s Error in X and Y direction.

PARMI11  Einc_X Einc_Y Bresenham'’s Error increment in X and Y direction.

PARM14  Fcurr_I Feurr(_F) Current foreground color — In shaded lines, the MSB
contains the integer part; in nonshaded lines, the LSB is the
same as the initial foreground color value (in PARM4).

The LINE command calculates the next pixel address using a modified Bresenham’s
Algorithm. PARMS (current pointer) contains the last pixel drawn, and at the end of
the command will equal origin+destination.

Global Registers
The LINE command uses the following global registers:
BACK
MASK
LPAT
PC_WID

Command Register

The LINE command uses the following Command register bits.

Bit Mnemonic

30 SHADE

29 NO_LAST

28 PAT_RESET

27 ZBUF_ENABLE
26-24 SOURCE_PLANE
23 SOLID

22 TRANSPARENT
19 WID_ENABLE
18-16  Attributes: CLIP_CONTROL (17-16), CLIP_STOP (18)
11-8  LU_OP

3-0 OP=2

The NO_LAST attribute leaves the CP at the destination pixel, but does not draw it.
If PAT_RESET is set, the pattern pointer and counter will reset to the first pattern bit
before drawing any pixel; otherwise, the line will be drawn with a pattern which is a
continuation of the previous command.

014-001800 5-37



Programming the Color Graphics Subsystem

Executing the LINE Command

Follow this procedure to execute the LINE command:

1. If it is necessary to update the global registers, PARM7, PARM6 or PARM4,
continue with steps 1a and 1b, otherwise continue with step 2.

a. Poll the DIP bit in CSRO, wait for it to clear to 0.

b. Write the necessary parameters to the global registers (MASK, BACK, LPAT
and PC_WID), PARM7, PARM6 and PARM4.

2. Poll the BSY bit in CSRO for 0.

3. Program the Command register.

4. Program PARMO, PARM1 and PARM3.

5. Program PARM2; the command will execute automatically.
Interrupts

When the controller completes the LINE command, it generates a drawing done
interrupt (DDI).

If clipping is enabled and a pixel is drawn outside the clipping boundaries, the
controller generates a clip interrupt. This depends on the clip control attributes in the
CMD register; when the CLIP_STOP bit is set, line drawing stops and the BND bit in
CSRO is set.

Notes/Exceptions

If you specify the NO_LAST function, the pattern pointer will not increment for the
pixel not drawn. This is consistent with the desired functionality.

Although the XY frame buffer and the WID/overlay frame buffer share a common
coordinate system (with the WID/overlay below the XY and starting at X =0, Y =
4096), lines must be drawn either completely in the XY or in the WID/overlay
sections. That is, no lines can be specified that extend from the XY into WID/overlay
section or vice-versa.

You can not pipeline the Finc (foreground color increment) parameter in PARMS for
shaded lines.

If transparency is enabled, transparent pixels are not drawn, that is, no memory cycle
is executed for them. In 400 series stations, if Z-buffering is enabled, transparency
takes precedence over Z-buffering, resulting in transparent pixels retaining their old
Z-value, regardless of the Z-comparison.

5-38 014-001800



Programming the Color Graphics Subsystem

CLINE
Continue Line After Clip

Continue Line After Clip (CLINE) redraws a line that was previously drawn using the
LINE command, but was cut by clipping boundaries. CLINE needs no no new
parameters, and the setup phase of the LINE command is not executed.

CLINE draws straight lines in a window that is partially obscured. Every time the line
steps outside the current boundaries, the host should update PARM6 and PARM?7
with the next rectangular area that the line goes into, and issue a CLINE command.
Since there is no knowledge of whether the line will step outside of the window, or
into which area it will go next, the CLINE command should not be pipelined.

™ pARMO Window
~ 7
7 O
PARM6 1 PARM2

PARM1
~

PARM7

~
N\

Clipping rectangle

Initial Parameter Registers

Register MSBytes LSBytes Description

PARM6 ClipTL_X ClipTL_Y Upper-left coordinates of clipping rectangle.
PARM?7 ClipBR_X ClipBR_Y Lower-right coordinates of clipping rectangle.

Working Registers

Register MSB LsSB Description

PARMS CP_X CP_Y Current pointer (coordinates of the last pixel drawn).
PARMY Delta_X Delta_Y  Current number of pixels in the X and Y direction.
PARM10  Error_X Error_Y Bresenham'’s Error in X and Y direction.

PARMI11 Einc_X Einc_Y Bresenham'’s Error increment in X and Y direction.

PARM14  Fcurr_I Fcurr(_F) Current foreground color — In shaded lines, the MSB
contains the integer part; in nonshaded lines, the LSB is the
same as the initial foreground color value (in PARM4).

014-001800 5-39



Programming the Color Graphics Subsystem

Global Registers
The CLINE command uses the following global registers:
MASK
BACK
LPAT
PC_WID

Command Register

The CLINE command uses the following Command register bits.

Bit Mnemonic

30 SHADE

29 NO_LAST

27 ZBUF_ENABLE

23 SOLID

22 TRANSPARENT

19 WID_ENABLE

18-16  Attributes: CLIP_CONTROL (17-16), CLIP_STOP (18)
11-8 LU_OP

3-0 OP=3

Modes of Operation

The CLINE command calculates the next pixel address using a modified Bresenham’s
Algorithm. The CP (PARMS) register contains the last pixel to be drawn, and at the
end of the command will equal origin+destination. The pattern register is always
referred to, so solid lines must have the pattern of FFFF FFFF. The same argument
applies to shaded lines. The NO_LAST attribute leaves the CP at the destination
pixel, but does not draw it.

Command Procedure
Follow this procedure to execute the CLINE command:
1.  Wait for the DIP bit in CSRO to clear and the BND bit in CSRO to be set.

2. Update the global registers and Parameter registers (PARM6 and PARM7).
PARMS6 and PARM?7 are the clipping boundaries.

3. Poll the BSY bit in CSRO; wait for it to clear to 0.

4. Write the CLINE opcode, logic opcode, and desired attributes into the Command
register. The Command register triggers the operation.

5. To execute another LINE command, repeat the procedure from Step 1. To
execute another graphics command see the appropriate command procedure.

5-40 014-001800



Programming the Color Graphics Subsystem

Interrupts

When the controller completes the CLINE command, it generates a drawing done
interrupt (DDI).

If clipping is enabled and a pixel is (possibly) drawn outside (or inside) the clipping
boundaries, the controller generates the clip interrupt. (This is dependent on the
setting of the clip control attributes.) If the CLIP_STOP bit is also set, line drawing
stops and the BND bit in CSRO is set.

Notes/Exceptions

If you specify the NO_LAST function, the pattern pointer will not increment for the
pixel not drawn.

Although the XY frame buffer and the WID/overlay frame buffer share a common
coordinate system (with the WID/overlay below the XY and starting at X = 0, Y =
4096), lines must be drawn either completely in the XY or in the WID/overlay
sections. That is, no lines can be specified that extend from the XY into WID/overlay
section or vice-versa.

You can not pipeline the Finc (foreground color increment) parameter in PARMS for
shaded lines.

If transparency is enabled, transparent pixels are not drawn; that is, no memory cycle
is executed for them. If Z-buffering is also enabled, transparency takes precedence
over Z-buffering, resulting in transparent pixels retaining their old Z-value, regardless
of the Z-comparison. Note that only 400 series stations support Z-buffering for
hidden surface removal.

014-001800 5-41



Programming the Color Graphics Subsystem

POLY
Polygon Assist

The POLY command draws a filled polygon. The polygon must be a trapezoid (i.e.,
a four-sided figure with two parallel sides) with the parallel sides on horizontal planes.
Two trapezoids are needed to draw a triangle (see Figure 5-5).

Command capabilities include

Flat shading and Gouraud shading (linear interpolation).
Stippling and transparency.
WID clipping.

Any combination of the above.

The following figure illustrates the global parameters that must be defined when
drawing a polygon.

ﬁM:{MO ~ y PARM6 \

_— Screen

Window
Clipping rectangle

PARM7

Figure 5-5 Global Elements of the POLY Command

Figure 5-6 illustrates some of the local parameters used in drawing a polygon.
PARMO, the initial scan, defines where in the clipping rectangle to begin the scan.
The graphics controller increments PARMY after each scan to scan down through the
clipping rectangle. If the top of the polygon is clipped, PARMY should start with the
same value as PARMS6 (shown in Figure 5-5), the top left corner of the clipping
rectangle.

§5-42 014-001800



Programming the Color Graphics Subsystem

——————

-7 PARM10 and ~ ~~
e PARM11 are the <
v same at this point. \\
// o ) \
[ ° o Pixels \,
\ o o /
\ PARM10 o _ PARM11 /
-~ N /
- N //
~ - ~ P
-~
— // N ~——— —
X,y X
-~
PARM1 PARM2
left slope\ _ right slope

POLY writes the polygon fill into memory using repetitive seeks and scans as
defined by the upper and lower bounds of the polygon.

o

$ O 0O 0 O O

(o] o
o o Pixels
o
o

\ \
PARM11

PARMS and PARM 10

Seek - Seeks the representative row in memory from
right to left through the polygon until it reaches
location outside the left edge of the polygon. As the

Seek seek passes through thre polygon, it sets the pixels
within the polygon.

0 0 0 0 0O

o o
o o Pixels
o o ~

Scan - Scans the representative row in memory from
° ° left to right and sets the characteristics of the pixels.
) o Pixels that fall within the polygon are assigned the
o ° Scan appropriate characteristics for that location. The line

is scanned until it reaches a pixel located outside the

\ polygon.
PARM11

PARMY and PARM 10

Figure 5-6 Local Elements of the POLY Command

014-001800 5-43



Programming the Color Graphics Subsystem

Initial Parameter Registers

Register MSBytes LSBytes Description

PARMO Origin_X Origin_Y  Upper-left coordinates of drawing window.

PARM1 DX1_1 DX1_F Slope of left edge (dx/dy).

PARM2 DX2_1 DX2_F Slope of right edge (dx/dy).

PARM3 — Flat Foreground pixel color for flat shading (unused, integer).
PARM4 DIX_I DIX_F Intensity change for a positive step in the X-direction.
PARMS DIY_I DIY_F Intensity change for a positive step in the Y-direction.

PARMG6 ClipTL_X ClipTL_Y Top-left coordinates of clipping rectangle.
PARM?7 ClipBR_X ClipBR_Y Bottom-right coordinates of clipping rectangle.

PARMY Sp_X Sp_Y Initial scan leftmost pointer (X, Y).

PARM10 E1_l E1_F X-value of left edge in initial scan.

PARM11 E2_1 E2_F X-value of right edge in initial scan.

PARM13 Is_I Is_F Intensity at scan pointer (Sp).

PARM14 nn_1 nn_2 Number of scans in left and right edges (integers).

PARM1S5  Patrn_X Patrn_Y Stipple pattern pointer (X, Y).

NOTE  _I = Integer and _F = Fraction when shown under MSB and LSB.

Working Registers

Register MSBytes LSBytes Description

PARMS Cp_X Cp Y Current pixel pointer (X, Y).

PARM9 Sp_X Sp_Y Current scan leftmost pointer (X, Y).
PARM10 E1_1 E1_F X-value of the left edge in current scan.
PARM11 E2_1 E2_F X-value of the right edge in current scan.
PARMI12  Ic_I Ic_F Intensity at current pixel.

PARM13 Is_I Is_F Intensity at scan pointer (Sp).

NOTE  _I = Integer and _F = Fraction when shown under MSB and LSB.

Global Registers

The POLY command uses the following global registers:

BACK
MASK
PC_WID (WID fields only)

5-44 014-001800



Programming the Color Graphics Subsystem

Command Register

The POLY command uses the following Command register bits.

Bit Mnemonic
30 SHADE
27 ZBUF_ENABLE

26-24 SOURCE_PLANE

23-21  Fill style bits: SOLID (23), TRANSPARENT (22), STIPPLE (21)
19 WID_ENABLE

18-16  Attributes: CLIP_CONTROL (17-16), CLIP_STOP = 0 (18)

11-8  LU_OP

3-0 OP=4

Modes of Operation

To calculate addresses for pixels inside the triangle, the POLY command steps through
every scan line and executes first a seek, and then a scanning phase. During the seek
phase, the Sp (PARMY) pointer (with intensity Is) is first moved left until it points to
the pixel just to the left of the left edge, and then right, until it is at the first pixel
with an X-value greater than the left edge (at the same time, the intensity is
adjusted). The Cp (PARMS) is assigned the value of Sp, and scanning starts,
incrementing the X-value of Cp and the intensity Ic (PARM12) until all pixels to the
left or at the right edge are drawn. When the end of the scan line is reached, the
Y-value of Sp is incremented, and Is adjusted, and nn_1 and nn_2 (PARM14) are
decremented. If either nn_1 or nn_2 become 0, execution stops. Otherwise, the edge
pointers E1 (PARM10) and E2 (PARM11) are adjusted by DX1 (PARM1) and DX2
(PARM2), and the next scan line is then drawn.

If stippling is enabled, every pixel will be drawn in either the foreground color (flat or
shaded) or the background color (transparent). The Pattern pointer must point to a
tile aligned in a 32 ® 32 boundary. The § least significant bytes of the calculated
pixel address are added (modulo 32) to the pattern pointer, and then the
SOURCE_PLANE is used to select a bit in the pattern pixel, which then selects
foreground or background.

Command Procedure
Follow this procedure to execute the POLY command:
1. Poll the DIP bit in CSRO; wait for it to clear to 0.

2.  Write the POLY opcode, logic opcode, and desired attributes into the Command
register.

3. Write the POLY operands into the Parameter registers PARMO0-PARM7,
PARMY9-PARM11, and PARM13-PARM15. Write to PARM2 last; it triggers the
command. PARMS5-PARMY7 are optional.

014-001800 5-45



Programming the Color Graphics Subsystem

4. For the second half of the triangle, wait for the DIP bit in CSRO to clear; then
update PARM1, PARM2, PARM10, PARM11, and PARM13. Write to PARM2
last; it triggers the command.

5. To execute another POLY command, repeat the procedure from step 1. To
execute another graphics command see the appropriate command procedure.

Interrupts

When the controller completes the POLY command, it generates a drawing done
interrupt (DDI).

If clipping is enabled and a pixel is (possibly) drawn outside (or inside) the clipping
boundaries, the controller generates the clip interrupt. (This is dependent on the
setting of the clip control attributes.)

Notes/Exceptions

If transparency is enabled, transparent pixels are not drawn; that is, no memory cycle
is executed for them. If Z-buffering is also enabled, transparency takes precedence
over Z-buffering, resulting in transparent pixels retaining their old Z-value, regardless
of the Z-comparison. Note that only 400 series workstations support Z-buffering for
hidden surface removal.

The CLIP_STOP bit must be 0 for this command.
The SOLID bit will override the SHADE bit and flat shading will occur.

5-46 014-001800



Programming the Color Graphics Subsystem

BITBLT
Bit Block Transfer

The BITBLT command moves blocks of data within the frame buffer. The transfer
parameters are upper-left coordinates of the source and destination areas and the
height and width of the areas. The color graphics controller computes other
parameters.

BITBLT can copy from font tables, icons, and patterns stored in an off-screen
portion of the frame buffer, and can set window ID and/or color overlay values in the
ID/overlay frame buffer planes.

Command capabilities include

® The use of 16 standard logic operations, as defined by the X Window System.
® Fast area fills with selectable pixel values.

® 32 pixel x 32 pixel patterns.
°

Color expansion (stippling) from a single selectable source plane into multiple
planes, with or without patterning.

Screen-door transparency in stipple mode.

e Clipping under control of Window ID planes.

PARMO PARM2

>
-~

P

PARM4

Initial Parameter Registers

Register MSBytes LSBytes Description

PARMO Origin_X Origin_Y  Upper-left coordinates of drawing window.
PARM1 Source_X  Source_Y Upper-left coordinates of BITBLT source rectangle.
PARM2 Dest_X Dest_Y Upper-left coordinates of BITBLT destination rectangle.

PARM3 Fore Foreground pixel color (for solid fills and foreground color
during stippling).
PARM4 Size_X Size Y Width and height of BITBLT rectangle.

014-001800 5-47



Programming the Color Graphics Subsystem

Working Registers

Register MSBytes LSBytes Description
PARMS NRows Number of rows remaining to be transferred.
CurWr Number of pixels words remaining to be written to the
current destination row.
PARMY9 Color Copy of foreground color register.
CurRd Number of pixels words remaining to be read from the
current source row.
PARMI10  CurSrc_X  CurSrc_Y Current source transfer coordinates.
PARMI11 CurDst_X  CurDst_Y Current destination transfer coordinates.
PARMI12 WRwds Number of destination pixel words to be written to each row.
PARM13 RDwds Number of source pixel words to be read from each row.
PARM14  TXsrc_X TXsrc_Y  Translated coordinates of source rectangle after adjusting for
scan direction.
PARM15  TXdst_X TXdst_Y  Translated coordinates of destination area rectangle after
adjusting for scan direction.

Global Registers

The BITBLT command uses the following global registers:

BACK
MASK

PC_WID (WID fields only)

Command Register

The BITBLT command uses the following Command register bits:

Bit Mnemonic

27 ZBUF_ENABLE

26-24 SOURCE_PLANE

23-21  Fill style bits: SOLID (23), TRANSPARENT (22), STIPPLE (21)
20 AREA_PATTERN

19 WID_ENABLE

11-8§  LU_OP

3-0 OP =1

5-48

014-001800



Programming the Color Graphics Subsystem

Modes of Operation

The Command register defines which of four modes the BITBLT command uses —
Normal, Area_fill, Stipple, or Pattern.

Normal

Area_fill

Stipple

Pattern

014-001800

Used when none of the Command register bits is set. This mode
modifies pixel values within the destination rectangle according to the
current logic unit operation code (LU_OP). The pixel values written are
a Boolean function of source and destination pixel values.

Used when the SOLID bit is set. Results in the destination rectangle
being filled with the pixel color value specified in the least significant byte
of PARM3 (FORE). The STIPPLE, TRANSPARENT, and LU_OP bits
are ignored. Area_fill operations do not need to access source data.

Used when the STIPPLE bit is set. Expands the color of a single-bit
plane into multiple-bit planes. Select the source plane to be expanded
with the 3-bit SOURCE_PLANE field of the Command register. The
pixel values used for color expansion are supplied by the PARM3
(FORE), and BACK registers. The FORE and BACK colors correspond
to 1s and Os respectively, as read from the source plane. Similarly, with
the STIPPLE and TRANSPARENT bits set, a “screen-door”
transparency will result by using existing destination data in place of the
BACK color for source plane Os.

In multiple color graphics workstations, each controller must have a copy
of the stipple pattern in one of its frame buffer planes. Patterning and
LU_Op bits affect the operation of this mode; and the SOLID bit must
be clear.

The BITBLT destination rectangle is modified based on a source pattern,
normally stored in an off-screen portion of the frame buffer. The source
patterns are restricted to a 32 pixel x 32 pixel rectangle and must be
aligned to 32-pixel frame buffer boundaries in both X and Y, such that
screen coordinate bits X4-X0 and Y4-Y0 must equal 0. Patterns are
full-depth pixel values; with the STIPPLE bit set, single-plane patterns
can be used as sources for stippling, using FORE and BACK as described
in the previous Stippling description. The STIPPLE, TRANSPARENCY,
and LU_Op bits affect the pattern mode;, and the SOLID bit must be
cleared to 0. Patterns within the destination rectangle can be aligned by

specifying the upper-left coordinate of the source, alignment of patterns

will be on a per object basis, whereas specifying the appropriate point
within the pattern will result in alignment on a screen basis.

5-49



Programming the Color Graphics Subsystem

Command Procedure

Follow this procedure to execute the BITBLT command:

1. If necessary, update the global registers as follows, otherwise continue with step 2.
a. Poll the DIP bit in CSRO; wait for it to clear to 0.
b. Update the global registers; then proceed to step 2.

2. Poll the BSY bit in CSRO; wait for it to clear to 0.

3. Program the Command register with the BITBLT opcode, logic opcode, and
attributes.

4. Program the Parameter registers (PARMO0-PARM4). Write to PARM?2 last; it
executes the BITBLT command.

5. To execute another BITBLT command, repeat the procedure from step 1. To
execute another graphics command see the appropriate command procedure.

Interrupts

When the controller completes a bit block transfer, it generates a drawing done
interrupt (DDI).

Notes/Exceptions

The BITBLT command can move text to from tables stored in an off-screen portion
of the frame buffer. To achieve optimum character transfer rates, align the characters
in the frame buffer on 8-pixel column boundaries so that the screen coordinates
X2-X0 = 0.

During a BITBLT, the XY Clipping mode is not available. However, Window ID
clipping is supported.

Setting the Command register Z_Enable bit does not affect BITBLT operations. If
the SOLID bit is also set, the combination selects the Z-buffer gate array “fast Clear”
mode to quickly set the Z-buffer to a desired value.

BITBLT operations will fail if a source area starts within 40 pixels of a bank boundary
in the X direction. The bank boundary occurs every 512 horizontal pixels for 64K x 4
VRAMs and every 2K horizontal pixels for 256K x 4 VRAMs.

5-50 014-001800



Programming the Color Graphics Subsystem

RXFER
Read Transfer

The RXFER command controls the transfer of data from the frame buffer to the
Mbus. To perform a read transfer:
1. Specify the height, width, and upper-left coordinates of the transfer area.

2. Read the resulting data from the Dataport register (DATA).

3. The graphics controller generates the frame buffer addresses and memory cycles,
prefetches the requested data, and awaits the subsequent Mbus access.

Initial Parameter Registers

Register MSBytes LSBytes Description

PARMO Origin_X Origin_Y  Upper-left coordinates of drawing window.
PARM2 Pntr_X Pntr Y Upper-left coordinates of transfer rectangle.
PARM4 Size_X Size_Y Width and height of transfer rectangle.

Working Registers

Register MSBytes LSBytes Description

PARMS Cadrs_X Cadrs_Y  Current address of frame buffer read data.

PARMY Csize_X Csize_Y Current size of remaining transfer area.
PARM10  Xent Number of pixels per row of transfer area.
PARMI11 Left_X X address at left edge of transfer area.

PARMI12  Ladrs_X Ladrs_Y  Address of last fetched frame buffer word (used as current
address when resuming command).

PARM13  Lsize_X Lsize Y Size of transfer rectangle prior to last frame buffer read (used
as current size when resuming command).

Global Registers
The RXFER command uses only the DATA register.

Command Register

The RXFER command uses the following Command register bits.

Bit Mnemonic

3-0 OP =6

014-001800 5-51



Programming the Color Graphics Subsystem

Modes of Operation

The RXFER command has no special modes of operation. Once the command is
initiated, the requested frame buffer data can be immediately read from the Dataport
register. You do not need to poll the BSY or DIP bits in CSR0O. The read data
ordering will be from left-to-right, top-to-bottom within the specified transfer area.
Each read access will result in one data bit per memory plane; data will be right
justified within the word, such that bit 0 corresponds to plane 0, bit 1 to plane 1, and
so on. Note that you can not pipeline RXFER commands. Once the command is
triggered, it must complete (DIP = 0) before you issue another command.

Command Procedure

You should follow this procedure for proper operation of the RXFER command:
1. Poll the BSY bit in CSRO for 0.

2. Write the RXFER opcode into the Command register.

3.  Write the Parameter registers PARM4, PARM2, and PARMO with RXFER
operands. (PARM?2 is the command “trigger” and must be written last.)

4. Read the requested frame buffer data from the Dataport register. All specified
words must be read, otherwise it will be necessary to reset the color graphics
controller to terminate the command.

5. Wait for the DIP bit in CSRO to clear before executing the next command.

Interrupts

When the controller completes the RXFER command, it generates a drawing done
interrupt (DDI).

Notes/Exceptions

You must read all pixels requested before starting any other command, otherwise it
will be necessary to reset or stop the color graphics controller.

5-52 014-001800



Programming the Color Graphics Subsystem

WXFER

Write Transfer

The Write Transfer (WXFER) command controls the transfer of data from system
memory to the frame buffer. The host application first specifies the height, width,
and upper-left coordinate of the target frame buffer area, then writes the required
data into the Dataport register. The controller generates the actual frame buffer
addresses and memory cycles and performs buffered writes of the Mbus data. The
operation of the WXFER command resembles that of a BITBLT command with the
host rather than the frame buffer as the data source. Accordingly, most of the
BITBLT drawing modes are available.

Initial Parameter Registers

Register MSBytes LSBytes Description

PARMO Origin_X Origin_ Y  Upper-left coordinates of drawing window.
PARM2 Pntr_X Pntr Y Upper-left coordinates of transfer rectangle.
PARM3 Fore Foreground color value (used in XY-mode).
PARM4 Size_X Size_Y Width and height of transfer rectangle.
PARMS6 ClipTL_X ClipTL_Y Upper-left coordinates of clipping rectangle.
PARM?7 ClipBR_X ClipBR_Y Lower-right coordinates of clipping rectangle.

Working Registers

Register MSBytes LSBytes Description

PARMS Cadrs_X Cadrs_Y  Current address of frame buffer write data.

PARM9 Csize_X Csize Y Current size of remaining transfer area.

PARM10 Xent Number of pixels per row of transfer area.

PARMI11 Left X X address at left edge of transfer area.

PARM13 Lsize_X Lsize_Y Size of transfer rectangle after the last frame buffer write
(used as current size when resuming command).

Global Registers

The WXFER command uses the following global registers:

BACK
DATA
MASK

PC_WID (WID fields only)

014-001800

5-53



Programming the Color Graphics Subsystem

Command Register

The WXFER command uses the following Command register bits.

Bit Mnemonic

23-21  Fill style bits: SOLID (23), TRANSPARENT (22), STIPPLE (21)
19 WID_ENABLE

17, 16  Attribute: CLIP_CONTROL

11-8  LU_OP

3-0 OP =7

Modes of Operation

Depending on the setting of certain bits in the Command register, the WXFER
command operates in one of four modes — Z-mode, XY-mode (without
transparency, XY-mode (with transparency), and Clipping.

The following details apply to all modes of the WXFER command. Once a WXFER
command is triggered, the Mbus data can be immediately written into the Dataport
register. You do not need to repeatedly poll the CSRO BSY or DIP bits. You can
not pipeline WXFER commands. Once the command is triggered, it must complete
(DIP = 0) before you issue another command.

Z-MODE
In this mode the frame buffer is written with data words supplied by the Mbus.
The write data ordering will be from left-to-right, top-to-bottom within the
specified transfer area. The BACK and PARM3 foreground colors are ignored
and need not be specified in this mode. Each Mbus write will result in one data
bit written per memory plane; data will be right-justified within the word, so that
bit 0 corresponds to plane 0, bit 1 to plane 1, and so on.

XY-MODE (without transparency)
Activate this mode by setting the STIPPLE bit in the Command register. The
value of data words written to the frame buffer will be specified by the Mbus data
bit 0: where a value of 1 and 0 correspond to the FORE and BACK color
registers respectfully as data sources. Mbus data bits 31-1 are ignored in this
mode.

XY-MODE (with transparency)
Activate this mode by setting the STIPPLE and TRANSPARENT bits in the
Command register. As in the nontransparent mode, the value of data words
written to the frame buffer will be specified by the Mbus data bit 0: where a value
of 1 corresponds to the FORE color register as the data source; a value of 0,
however, specifies that the original data at the destination remain unmodified.
Mbus data bits 31-1 are ignored in this mode.

5-54 014-001800



Programming the Color Graphics Subsystem

CLIPPING

Clearing the CLIP_ENABLE bit in the Command register will turn on the clip
function; the CLIP_IN/OUT bit in the Command register controls clipping relative
to the defined clip rectangle. Clipped Mbus data words are flushed within the
color graphics controller, and if enabled, a Clip Interrupt will be generated at this
time. Note that the STOP_CONTINUE function (Command register) is ignored,
and that the BND bit in CSRO has no significance during execution of the
WXFER command.

Command Procedure

You should follow this procedure for proper operation of the WXFER command:

1. Poll the BSY bit in CSRO for 0.

2.  Write the WXFER opcode and associated parameters into the Command register.
3. Write the Parameter registers PARM4, PARM2, PARMO (defining transfer area),
PARM3 (foreground color — for XY-mode only), PARM7 and PARMS6 (clip
rectangle — only with clipping enabled) with RXFER operands. (Note that

PARM?2 is the command “trigger” and must be written last.)

4. Perform successive Mbus writes to the Dataport register. All specified words must
be written, otherwise it will be necessary to reset the color graphics controller to
terminate the command.

5.  Wait for the DIP bit in CSRO to clear before executing the next command.

Interrupts

The WXFER command generates drawing done (DDI) and Clip interrupts. The DDI
interrupt is asserted after transfer of the last word from the host. The Clip interrupt
will be generated when clipping is enabled and a clip boundary is encountered during
frame buffer writing.

Notes/Exceptions

You must write all pixels requested before starting any other command, otherwise it
will be necessary to reset or stop the color graphics controller.

014-001800 5-55



Programming the Color Graphics Subsystem

Programming the Frame Buffer (8-bit)

A graphics program may write to the frame buffer. If configured to do so, the
graphics subsystem can manipulate the frame buffer directly.

The frame buffer is accessed as 32 bit words.

The color graphics controller addresses the frame buffer via eight multiplexed row and
column addresses lines. Four RAS lines select banks; each bank is 512 columns of
1024 pixels. The controller writes data to the frame buffer via a 64-bit data path. In
8-bit systems, this data represents eight 8-bit pixels. In 24-bit systems, this data
represents three 24-bit pixels.

The frame buffer is a contiguous block of memory, organized into two sections that
representing the 4K x 4K pixels. One section is color data and the other includes
overlay data window identification (WID) data. Color data occupies addresses 8000
0000 - 83FF FFFF, and overlay/window ID data occupies addresses 8400 0000 -
87FF FFFF.

The RAMDAC merges the overlay and window ID information to provide 8 bits/pixel
plus 2 bits/pixel overlay and WID information.

The frame buffer is 2048 x 1024 pixels with 8 bits/pixel in the color data area and 2

bits/pixel in the overlay/WID area. Only the leftmost 1280 x 1024 pixels in this 1536
x 1024 area actually appear on the screen. The “extra” 256 x 1024 x (8+2) bits that
are not displayed are available for storing the following:

® Font information (including the Kanji character set).

® Stipple patterns.

® Tile patterns.

® DPalette (LUT) information.
Two bits of overlay/WID are for

® Cursor.
® Pop-up menus.

® Clipping to nonrectangular window boundaries.

The CPU can access the frame buffer only in 32-bit words. All other accesses are
disallowed and may generate unusable data. Since the 8-bit and 2-bit portions of the
10-bit pixels are at different memory addresses, the CPU cannot access both at the
same time. When accessing words, pixels are packed one per access with the 8 bits
of the pixel in the least significant byte of the word. This is generally known as
Z-format.

5-56 014-001800



Programming the Color Graphics Subsystem

Accessing the Frame Buffer

The frame buffer memory consists of two blocks, each with as much as 4K pixels x
4K rasters. The size depends on the system configuration.

Each block is implemented as 1536 pixels x 1024 rasters, with the first 1280 pixels of
each raster being displayed.

Each pixel address may be calculated as
address = base address + ( ( (Y * 4096 ) + X ) * 4)

where X and Y are the screen coordinates of the pixel (X and Y are 0 at the top left
pixel and increment across (X) and down (Y) the screen.

Frame buffer accesses must be word (32-bit) accesses aligned on word boundaries.
Each access reads or writes data for one pixel. The unused bits are ignored when
read or driven onto the Mbus (write) to allow parity checking. Unimplemented bits
are driven with data from the least significant Mbus byte.

Read and write frame buffer accesses on the Mbus operate directly on all planes.
The graphics registers do not affect the data when the CPU reads from or writes to
the frame buffer.

Frame Buffer Access Restrictions

Before you can access the frame buffer you must disable the data cache for the frame
buffer memory block. For information on disabling the cache, see the MC88200
User’s Manual.

A data transfer must be complete before you access the frame buffer.

Accessing the frame buffer slows drawing and auto LUT operations. If you
continually and rapidly perform frame buffer accesses, this may cause the auto LUT
option to not complete during VBLANK.

014-001800 5-57



Programming the Color Graphics Subsystem

Programming the Lookup Table

If drawing a field that is all one color, the frame buffer pointers for that color point to
the same LUT location. This enables the programmer to change the color of a field
by changing the one color value in the LUT.

The LUT can be loaded during vertical blank intervals. This reduces CPU overhead
that results from responding to vertical blank interrupts. Video memory cycles are
needed when loading the LUT, therefore the drawing in progress will slow down while
loading the palette.

Automatic LUT Load (ALL) Function

The automatic LUT load (ALL) function is an optimized color palette loading
mechanism supporting the Bt458 RAMDAC and compatible units. The ALL function
automatically loads frame-buffer resident color palettes into the RAMDAC. The
Palette_0 Pointer (PLTO), Palette_1 Pointer (PLT1), and BLINK registers control the
look-up table auto-load functions of the controller.

The ALL function supports two modes of operation: Palette Loading and Blinking.

e The Palette Loading operation begins at the leading edge of the vertical blank
period following an ALL command and continues without further host intervention.
The color graphics controller fetches the palette entries from the specified
frame-buffer address and generates the appropriate RAMDAC control and palette
addresses. The entire palette transfer completes within this blanking interval,
thereby preventing undesirable on-screen artifacts.

e The Blinking operation functions like the Palette Loading mode, but instead of
loading the palette once, the loading takes place continuously, alternating between
two different color palettes, thus producing the blinking effect. The display period
of each palette is an independent programmable function of the monitor frame
rate, and thus allows complete control of palette blink-rate and duty-cycle.

Palette Storage Restrictions

You must store palettes on 256-pixel column boundaries and on 8-pixel row
boundaries. Accordingly, frame buffer palette X-coordinate bits 7-0 and
Y-coordinate bits 2-0 must equal 0. Every row of the palette table will have 256
columns loaded with successive color values. The number of rows specified is
dependent on the palette size of the RAMDAC in use. For example, the Bt458
requires three rows, or 768 entries. There are no restrictions (except for memory
size) on the number of palette tables you can use.

ALL Registers

Three registers govern the operation of the ALL unit: Palette_0 Pointer (PLTO),
Palette_1 Pointer (PLT1), and BLINK. At reset time, the contents of these registers
are unknown and unchanged.

5-58 014-001800



Programming the Color Graphics Subsystem

The two color palettes pointed to by PLTO and PLT1 are alternately loaded into the
RAMDAC lookup table according to the values in the BLINK register. The timing
value in either PIFA or POFA is loaded into the BDC bits. The BDC value counts
down at vertical frequency. When BDC reaches 0, the other pallette is loaded into
the RAMDAC, and its timing value is loaded into BDC. This cycle continues until
the BLINK_ENABLE bit in CSR2 is set to 1. Note that only the primary LUT is
loaded, not the overlay RAM or the control registers.

Blinking

The subsystem has a blinking function that automatically switches between two palettes
at a specified frame rate to blink colors. Blinking is controlled via the BLINK
register. Turning the blink function off and putting the palette change operation
under program control loads the palette at the next vertical interval following program
command.

Double-Buffering

double buffering, for example, using 4 bits/pixel for each buffer, and setting up more
palettes for more complex multiple buffering, such as four separate screens of 2
bits/pixel each. Since the palettes are active for all pixels on the screen, double
buffering affects programs running in all open windows.

014-001800 5-59



Programming the Color Graphics Subsystem

PLTO Palette_0 Pointer

Address FFF8 90A4 Read/Write

The Palette_0 Pointer (PLTO) register contains the starting X and Y coordinates of
palette 0 in the frame buffer. The coordinates force the palette table origins to the
upper-left corner of the palette. The register contents are as follows:

31 28 | 27 24 |23 16
Reserved PO_X Reserved
15 13| 12 312 0
Reserved PO_Y Reserved
Bit Mnemonic Function
31-28  Reserved Must be zeroes when written to, and undefined when read from.
27-24 PO_X X field starting coordinate for palette 0
Corresponds to screen X-coordinate bits 11-8 (bits 7-0 are always 0).
23-13  Reserved Must be zeroes when written to, and undefined when read from.
12-3 PO_Y Y field starting coordinate for palette 0

Corresponds to screen Y-coordinate bits 12-3 (bits 2-0 are always 0).

2-0 Reserved Must be zeroes when written to, and undefined when read from.

5-60 014-001800



Programming the Color Graphics Subsystem

PLT1 Palette_1 Pointer

Address FFF8 90AS8 Read/Write

The Palette_1 Pointer (PLT1) register contains the starting X and Y coordinates of
palette 1. The coordinates force the palette table origins to the upper-left corner of
the palette. The register contents are as follows:

31 28 |27 24 |23 16
Reserved P1_X Reserved
15 13 |12 3 |2 0
Reserved P1_Y Reserved
Bit Mnemonic Function
31-28  Reserved Must be zeroes when written to, and undefined when read from.
27-24 P1.X X field starting coordinate for palette 1
Corresponds to screen X-coordinate bits 11-8 (bits 7-0 are always 0).
23-13  Reserved Must be zeroes when written to, and undefined when read from.
12-3 P1_Y Y field starting coordinate for palette 1

Corresponds to screen Y-coordinate bits 12-3 (bits 2-0 are always 0).

2-0 Reserved Must be zeroes when written to, and undefined when read from.

014-001800 5-61



Programming the Color Graphics Subsystem

BLINK Blink

Address FFF8 90AC Read/Write

The Blink (BLINK) register contains four fields to control palette loading (PL, RPAB,
FBR, and PP) and three fields to control blinking (BE, BDC, and .

The four control fields contain bits to enabe either Palette Load or Blink mode
operation, select palette_0 or palette_1 for Palette Loading (PP), specify the number
of transfer rows, and set palette address bits 9 and 8 when using 1024-entry
RAMDACSs (RPAB).

BDC, PP, The three 8-bit Blink mode fields specify the active periods for palette 0
and palette 1, and indicate the time remaining for the current palette. These fields
provide the means for controlling the blink-rate and duty-cycle during palette
blinking.

Bit Mnemonic Function

31, 30 RPAB Palette Address Bits
RAMDAC palette address bits 9 and 8 (required for DACs with more
than 256 color entries).

29-27 FBR Frame Buffer Rows
Number of frame buffer rows to transfer.
26, 25 BE, PL Blink Enable, Palette Load

01 Enables Palette Load mode, disables Blink mode.
10 Enables Blink mode, disables Palette Load mode.

24 PP Palette pointer
0 Selects palette 0.
1 Selects palette 1.

23-16 BDC Blink Duration Count
15-8 P1FA Palette 1 Frames Active

Number of active palette 1 frames.
7-0 POFA Palette 0 Frames Active

Number of active palette 0 frames.

5-62 014-001800



Programming the Color Graphics Subsystem

Notes

When an ALL command executes, it continues until all palette entries are transferred
to the RAMDAC.

The palette is loaded during vertical blank (VBLANK) periods. Palette Load transfers
begin at the leading-edge of the first VBLANK following the setting of the Palette
Load (PL) bit.

The color graphics controller clears PL immediately after completing a palette load.

The ALL registers are not pipelined; their contents should not be modified while the
LUT is active. See the following “Command Procedure” section. The exception to
this is that during Blink mode, the palette register of the inactive palette may be
loaded with a new address if the blink duration count (BDC) bits in the Blink register
are equal to or greater than 2 (this gives the host a minimum of 15 milliseconds to
load the new palette address before the LUT accesses it). This procedure enables
blinking with more than two colors.

All Blink mode transfers start with palette 0, and begin execution at the leading edge
of the first VBLANK following the setting of the Blink Enable (BE) bit.

Command Procedure

The command procedures for the Palette Load mode and the Blink mode differ only
in the contents of the Blink register. For either mode, perform the following:

1. Check the Palette Load bit for 0 (LUT unit is inactive). Ensure the Blink
Enable bit is 0.

2. Load the color palette entries into the frame buffer. If the desired LUT color
map is not already resident, load the map into the frame buffer. Note the
previous restriction on modifying the ALL registers.

3. Load the appropriate palette pointer register (Palette_0 Pointer or Palette_1
Pointer) with the address of the color map specified in Step 2.

4. Enable either the Palette Load or Blink operation by writing the following
command word into the Blink register:

014-001800 5-63



Programming the Color Graphics Subsystem

Accessing the RAMDAC

This section discusses how to program the RAMDAC. For details on RAMDAC
operation, consult the Brooktree® Product Databook. The RAMDAC registers and
memory are not initialized during powerup.

The RAMDAC registers and color/overlay palette RAM locations are accessed through
the following addresses (these registers exist within the RAMDAC):

Address Name Function

FFF8 90C0 DACO RAMDAC Address register.
FFF8 90C4 DAC1 RAMDAC Color Palette RAM.
FFF8 90C8 DAC2 RAMDAC Control register.
FFF8 90CC DAC3 RAMDAC Overlay Palette RAM.

The Address register (DACO) allows you to access memory and registers within the
RAMDAC. Write the address of the desired register into DACO, then write or read
the data.

To write data to the color palette RAM, write the RAM address to be modified into
DACO. Then perform three sequential write operations to DAC1, one each for red,
green, and blue data for that RAM address. Within the RAMDAC, the third write
operation causes all three color values to be written into the palette RAM
simultaneously — thus you must perform three Mbus writes to change a palette RAM
location. At the same time, an address pointer in the RAMDAC is incremented to
the next palette RAM location in preparation for another write operation. To write to
consecutive palette RAM locations it is only necessary to write DACO with the address
of the first location to be modified, and then to make the appropriate number of
triple writes to DAC1.

Reading data from the color palette RAM is similar to writing data. Place the address
of the first location to be read into DACO; then read DAC1 three times to provide
red, green, and blue data (in that order) for that location. The RAMDAC internal
address pointer increments each time reading from consecutive locations.

Reading and writing the overlay RAMs is similar. After placing the address into
DACO, read or write DAC3 for the data transfer. Again, the RAMDAC internal
pointer automatically increments after each access.

The RAMDAC contains four control registers that you also access indirectly by placing
their address in DACO, and then reading or writing the data through DAC2. The
RAMDAC internal address pointer does not increment when you access the control
registers. The four control registers and their functions are as follows:

5-64 014-001800



Programming the Color Graphics Subsystem

Address Name Function

04 Read Mask Enables or disables a bit plane from addressing the color palette
RAM. Bit 0 corresponds to plane 0, bit 1 to plane 1, and so on.

0 Disables bit plane addressing.
1 Enables bit plane addressing.

05 Blink Mask Enables or disables a bit plane from blinking at the rate specified in
the Command register. Bit 0 corresponds to plane 0, bit 1 to plane
1, and so on.

0 Disables blinking.
1 Enables blinking.

06 Command Specifies a RAMDAC command. The bits and their values are as
follows:

Bit Function

7 Pixel multiplexing
0 4:1 (color graphics controller value)
1 5:1

6 Source of color data
0 Use overlay color O if the overlay input is 0.
1 Use color palette RAM.

5,4 Controls blink rate cycle time and duty cycle (in units of vertical
syncs)
00 16 on, 48 off
01 16 on, 16 off
10 32 on, 32 off
11 64 on, 64 off

3 Enables/disables blinking of overlay plane 1.
0 Disables.
1 Enables.

2 Enables/disables blinking of overlay plane 0.
0 Disables.
1 Enables.

1 Enables/disables display of overlay plane 1.
0 Disables.
1 Enables.

0 Enables/disables display of overlay plane 0.
0 Disables.
1 Enables.

07 Test Allows testing of the data path through the RAMDAC. See the
BrooktreeR Product Databook for details.

RAMDAC Access Restrictions

You should not access the RAMDAC when the auto LUT load feature is in use
(contention may result) or a drawing operation is in progress (test the DIP bit in
CSRO for 0).

Before you access the RAMDAC, execute the following line of C code to check for
DIP = 0:

while (reg ! csr0 & 0x02) {}

014-001800 5_65



Programming the Color Graphics Subsystem

Initializing the Registers

After a hardware reset, the power-up code initializes the display. The program
enables the drivers for the frame buffer control signals, initializes the RAMDAC so
that only planes 2-0 are valid and may be written to, initializes the look-up tables so
that each one corresponds to one of the three primary colors (red, green, blue),
enables the sync pulses to pass to the monitor, clears the screen, and sets the
FORCBLNK bit in CRT2 high.

Sample C Program
The following C program initializes the color graphics subsystem.
/***ttltl###*****ttt**#**#****##*#*****“"***###*******!*l*#*t!**#/

/* Constants defining the screen physical characteristics */
#define XMIN 0

#define YMIN 0

#define XMAX 1279

#define YMAX 1023

/#*#***#****tt**#*t##ti‘**##*t##*tt**#ti‘*#tt*****t**t#*‘##’k****l**/

/* Global variables */

int PC_WID_COPY;
int LUOP;
int ATTRIBUTES;

/l#**t*tt*t*tt***t****#***#tl**l*#*l*t****##ttt**##*t*#ttlt*t*tt‘**/

/* Data structure for color graphics controller internal registers */
struct color_controller_reg

{
int csr0; /* adr 00 */
int stop; /* adr 04 */
int csrl; /* adr 08 */
int cmd; /* adr OC */
int mask; /* adr 10 */
int back; /* adr 14 */
int lpat; /* adr 18 */
int pc_wid; /* adr 1C */
int crt0; /* adr 20 */
int crtl; /* adr 24 */
int crt2; /* adr 28 */
int reservedl; /* adr 2C */
int stateO; /* adr 30 */
int statel; /* adr 34 */
int reserved2; /* adr 38 */
int reserved3; /* adr 3C */
int parmO; /* adr 40 */
int parm1; /* adr 44 */
int parm2; /* adr 48 */
int parm3; /* adr 4C */
int parm4; /* adr 50 */
int parm$; /* adr 54 */
int parmé; /* adr 58 */
int parm?7; /* adr 5C */
int parm§; /* adr 60 */
int parm9; /* adr 64 */

5-66 014-001800



Programming the Color Graphics Subsystem

int parm10; /* adr 68 */
int parm11; /* adr 6C */
int parm12; /* adr 70 */
int parm13; /* adr 74 */
int parm14; /* adr 78 */
int parm15; /* adr 7C */
int filler1[8]; /* adr 80-9C */
int dataport; /* adr AQ */
int plt0; /* adr A4 */
int pltl; /* adr A8 */
int bink; /* adr AC */
int filler2[4]; /* adr BO-BC */
int dacO; /* adr CO */
int dacl; /* adr C4 */
int dac2; /* adr C8 */
int dac3; /* adr CC */
int filler3[4]; /* adr DO-DC */
int zga[8]; /* adr EO-FC */

IS

/‘****#*****t*********‘**t#**t****##t*****t*#**##**tt***‘**#tt***t*/

/* This macro defines the pointer to the internal register structure. */

#define GRAPH() register struct color_controller_reg *reg \
= (struct color_controller_reg *) 0xfff89000

/t#**#****#**t*****#***t*‘#*******#*‘******#****t#*‘*tt********#t**/

/* Logical Drawing Operations */

#define ZERO_DEST 0
#define AND_SRC_DEST 1
#define AND_SRC_NOTDEST 2
#define SRC_DEST 3
#define AND_NOTSRC_DEST 4
#define EXOR_ONE_DEST S
#define EXOR_SRC_DEST 6
#define OR_SRC_DEST 7
#define AND_NOTSRC_NOTDEST 8

#define EXOR_NOTSRC_DEST 9

#define EXOR_ZERO_DEST 10
#define OR_SRC_NOTDEST 11
#define NOTSRC_DEST 12
#define OR_NOTSRC_DEST 13
#define OR_NOTSRC_NOTDEST 14
#define ONE_DEST 15

/tl##‘##**#‘**tt‘t**tt‘tt*ttt*tt#*****#t#*##t****t*‘t‘***t**t**t**#/

/* Macros that use the color graphics controller directly. */

#define COL_MODE((lu_op) LUOP = lu_op

#define SET_ORG(x,y) while (reg->csr0 & 2) {} \
reg->parm0 = x<<16 | y

#define SET_FORE(color) while (reg—>csr0 & 2) {} \
reg->parm3 = color

#define SET_BACK(color) while (reg->csr0 & 2) {} \
reg->back = color

#define SET_MASK (pmask) while (reg->csr0 & 2) {} \
reg->mask = pmask

014-001800 5-67



Programming the Color Graphics Subsystem

#define SET_PCWID (pcwid) while (reg->csr0 & 2) {} \
reg->pc_wid = pcwid;

#define SET_LPAT (pattern) while (reg->csr0 & 2) {} \
reg->lpat = pattern

#define SET_PATRPT (pat_rpt) while (reg->csr0 & 2) {} \
pewid_copy = reg->pc_wid;\
reg->pc_wid = (PCWID_COPY & Oxfff8ffff) | ((pat_rpt & 0x7)<<16)

#define SET_WIDKEY (key) while (reg->crs0 & 2) {} \
pewid_copy = reg->pc_wid;\
reg->pc_wid = (PCWID_COPY & O0xffff00ff) | ((key & 0x3)<<8)

#define SET_WIDMASK (mask) while (reg->crs0 & 2) {} \
pcwid_copy = reg->pc_wid;\
reg->pc_wid = (PCWID_COPY & O0xffffff00) | (mask & 0x3)

#define SET_CLIPRECT(x,y,w,h) while (reg->csr0 & 2) {} \
reg->parmé = x<<16 | y;\
reg->parm7 = (x+w)<<16 | ((y+h) & Ox1fff)
/* Set clipping rectangle */

#define FILL() while(reg->csr0 & 1) {} \
reg->cmd = 0x00010f01;\
reg->parm4 = 0x05000400;\
reg—>parml = 0x00000000;\
reg->parm2 = 0x00000000 /* BITBLT X-set */

#define BLANK() while(reg—>csr0 & 1) {} \
reg—>cmd = 0x00010001;\
reg->parm4 = 0x05000400;\
reg->parml = 0x00000000;\
reg->parm2 = 0x00000000 /* BITBLT X-clear */

#define LINE(x1,y1,x2,y2) while(reg->csr0 & 1) {} \
reg->cmd = ATTRIBUTES | LUOP<<8 | 0x02;\
reg->parml = x1<<16 | (y1 & Ox1fff);\
reg->parm2 = x2<<16 | (y2 & 0x1fff) /* Line */

/* SHADED LINE (must SHADE_ENABLE before calling) */
#define SLINE(x1,y1,x2,y2,fore,finc) while(reg->csr0 & 1) {} \
reg->cmd = ATTRIBUTES | LUOP<<8 | 0x02;\
reg->parm4 = fore;\
reg->parm$ = finc;\
reg->parml = x1<<16 | (y1 & Ox1fff);\
reg->parm2 = x2<<16 | (y2 & Ox1fff);\
while (reg->csr0 & 2)

#define BITBLTUL (xd,yd,yc,ws,hs)\
while (reg—>csr) & 1) {}
reg->cmd = ATTRIBUTES | LUOP<<8 | 0x01;\
reg->parm4 = ws <<16 | hs;\
reg->parml = xc¢ <<16 | (yc & Ox1fff);\
reg->parm2 = xd <<16 | (yd & Ox1fff); /* BITBLT */

#define RXFER(x,y,w,h)\

reg->cmd = ATTRIBUTES | LUOP<<8 | 0x06;\

reg->parm4 = w <<16 | h;\

reg->parm2 = x <<16 | (y & Ox1fff); /* Read transfer */
#define WXFER(x,y,w,h)\

reg->cmd = ATTRIBUTES | LUOP<<8 | 0x07;\

reg->parm4 = w <<16 | h;\

reg->parm2 = x <<16 | (y & O0x1fff); /* Write transfer */

5-68 014-001800



Programming the Color Graphics Subsystem

#define CHK_BLANK() while(reg—>csr1 & 0x80000) {} \
while (! (reg->csr1 & 0x80000)) {}

#define POINT(a,b) while(reg—>csr0 & 1) {} \
reg->cmd = ATTRIBUTES | LUOP<<8 | 0x02;\
reg->parml = a<<16 | (b & Ox1fff);\
reg->parm2 = a<<16 | (b & Ox1fff) /* Single-pixel line */

#define RECT(x,y,w,h) while(reg->csr0 & 1) {} \

reg->cmd = ATTRIBUTES | LUOP<<8 | 0x02;\

reg->parml = x<<16 | (y & Ox1fff);\

reg->parm2 = (x+w)<<16 | (y & Ox1fff);\

reg->cmd = ATTRIBUTES | LUOP<<8 | 0x02;\

reg->parml = (x+w)<<16 | (y & Ox1fff);\

reg->parm2 = (x+w)<<16 | ((y+h) & Ox1fff);\

reg->cmd = ATTRIBUTES | LUOP<<8 | 0x02;\

reg->parml = (x+w)<<16 | ((y+h) & Ox1fff);\

reg->parm2 = x<<16 | ((y+h) & Ox1fff);\

reg->cmd = ATTRIBUTES | LUOP<<8 | 0x02;\

reg->parml = x<<16 | ((y+h) & Ox1fff);\

reg->parm2 = x<<16 | (y & Ox1fff) /* 4 lines = rectangle */
/*Il**#***‘*t*#*****t‘****.**t***********#*#t*******‘******‘*‘*****/
#define CLIP_ON ATTRIBUTES = ATTRIBUTES & Oxfffeffff
#define CLIP_OFF ATTRIBUTES = ATTRIBUTES. | 0x00010000
#define CLIP_INSIDE ATTRIBUTES = ATTRIBUTES & Oxfffdffff
#define CLIP_OUTSIDE ATTRIBUTES = ATTRIBUTES | 0x00020000
#define CLIP_CONTINUE ATTRIBUTES = ATTRIBUTES & Oxfffbffff
#define CLIP_STOP ATTRIBUTES = ATTRIBUTES | 0x00040000
#define WID_DISABLE ATTRIBUTES = ATTRIBUTES & Oxfff7ffff
#define WID_ENABLE ATTRIBUTES = ATTRIBUTES | 0x00080000
#define PATTERN_DISABLE ATTRIBUTES = ATTRIBUTES & Oxffefffff
#define PATTERN_ENABLE ATTRIBUTES = ATTRIBUTES | 0x00100000
#define STIPPLE_DISABLE ATTRIBUTES = ATTRIBUTES & Oxffdfffff
#define STIPPLE_ENABLE ATTRIBUTES = ATTRIBUTES | 0x00200000
#define TRANSPARENT _DISABLE ATTRIBUTES = ATTRIBUTES & Oxffbfffff
#define TRANSPARENT_ENABLE ATTRIBUTES = ATTRIBUTES | 0x00400000
#define SOLID_DISABLE ATTRIBUTES = ATTRIBUTES & Oxff7fffff
#define SOLID_ENABLE ATTRIBUTES = ATTRIBUTES | 0x00800000

#define SET_SOURCEPLANE (plane) ATTRIBUTES =
(ATTRIBUTES & O0xf8ffffff) | (plane & 0x7)<<24

#define ZBUF_DISABLE ATTRIBUTES = ATTRIBUTES & Oxf7{fffff
#define ZBUF_ENABLE ATTRIBUTES = ATTRIBUTES | 0x08000000
#define PAT_CONTINUE ATTRIBUTES = ATTRIBUTES & Oxefffffff
#define PAT_RESET ATTRIBUTES = ATTRIBUTES | 0x10000000
#define DO_LAST ATTRIBUTES = ATTRIBUTES & Oxdfffffff

#define NO_LAST ATTRIBUTES = ATTRIBUTES | 0x20000000
#define SHADE_DISABLE ATTRIBUTES = ATTRIBUTES & Oxbfffffff
#define SHADE_ENABLE ATTRIBUTES = ATTRIBUTES | 0x40000000

014-001800 5-69



Programming the Color Graphics Subsystem

/***##*#********t!#*****it***#t##***t*****t**tt***t#***#*#**'***#**/

/* Initialize graphics subsystem. */
void InitGraph()
{ int i;

GRAPH();

/* Initialize palette with gray scale. */

reg->dac0 = 0x00;
for (i=0; i < 256; i++)

{
reg->dacl = i;
reg—>dacl = i;
reg->dacl = i;
}

SET_MASK(0xff);
SET_BACK(0x00);
SET_FORE (0xff);
SET_LPAT (Oxffffffff);
SET_PCWID(0x0);
SET_ORG(0,0);

SET_CLIPRECT(0,0,XMAX,YMAX);
/* Clear screen and overlay planes. */

BLANK();

SET_ORG(0,4096);
BLANK();
SET_ORG(0,0);

ATTRIBUTES = 0;
CLIP_OFF;
COL_MODE(SRC_DEST);

while (reg—>csr0 & 2) {};
/* Initialization done. */

5-70

014-001800



/*t****************t*#**t****t**l***1!*tt**************t*t*##**#**t*/

Programming the Color Graphics Subsystem

/* Random line generator — generates nn thousand random lines in gray scale. */

void random (nn)

int nn;

{

register x1,y1,x2,y2,xmax,ymax,seed,loop,loop1,zero,p,pc;

register vall,val2,val3,val4;

int color;
GRAPH();

zero = 0;

xmax = XMAX,;
ymax = YMAX;
seed = 3;

vall = 31421,
val2 = 6927,
val3 = 65535;
val4 = 16;
p=1

color = 1;

pc = 0;

loop = nn;

while (loop-- > zero) {
SET_FORE(color);
COL_MODE(SRC_DEST);
loop1 = 1000;
while (loopl->zero) {

seed = (seed * vall + val2) & val3;
x1 = (seed * xmax) >> val4;
seed = (seed * vall + val2) & val3;
x2 = (seed * xmax) >> val4;
seed = (seed * vall + val2) & val3;
yl = (seed * ymax) >> val4;
seed = (seed * vall + val2) & val3;
y2 = (seed * ymax) >> val4;
LINE(x1,y1,x2,y2);
if (++pc > 40)

{

pc = 0;

if (++color > 255) {color = 0;}

SET_FORE(color);

}
}
p=-p;
}
}
main()
InitGraph();
random (3);
}

/tt##t*‘*#***#****#*t*t*t#t**#*****t************t**tt*t*#*‘*tt#*t*‘/

014-001800

5-71



Programming the Color Graphics Subsystem

Programming the Z-Buffer Controller

The optional Z-buffer controller, available on 400 series stations, supports
three—dimension applications, providing hidden line removal and hidden surface
removal, and Hither and Yon clipping. The Z-buffer is a slave to the color graphics
controller, and sits on the Mbus. The Z-buffer registers are 32-bit; some bits can be
accessed by the color graphics controller. The Z-buffer controller also features

® A 25-MHz Mbus interface.
Direct read/write access to the Z-buffer array from the host CPU.
Selectable 24-plane Z-buffer support using 256K x 4 DRAMS.

Fixed internal 24-bit resolution.

Hardware configurable memory organization and resolution supporting all color
graphics controller screen resolutions.

Fast rectangular Clear/Set mode with color graphics controller assistance.
® Programmable Hither and Yon clipping planes.

® Support for color graphics controller Stop/Resume operations (context switching).

Components of the Z-Buffer

As shown in Figure 5-7, the Z-buffer gate array is partitioned into four main
functional modules: an Mbus interface, Z-controller, Datapath/ALU, and a memory
controller.

< Mbus (32 Bits Address/Data) >

Mbus Interface

> Z-Controller - —» Color Graphics
Controller

A A \

Datapath/ALU »{ Memory Controller

Figure 5-7 Z-Buffer Gate Array Components

5-72 014-001800



Programming the Color Graphics Subsystem

Mbus Interface

The Mbus interface provides address decoding and access to the Z-buffer registers
and memory. All registers and memory are accessed as 32-bit words. When read,
the Z-buffer generates parity bits, but when written to, it ignores parity bits.

The Z-buffer registers are located at FFF8 90E0 - FFF8 91F0. The Z-buffer
memory array consists of 32 million words located at 8800 0000 - 8FFF FFFC.

The color graphics controller also decodes the register and array addresses and
generates some of the Mbus control signals for the Z-buffer controller.

Z-Controller

The Z-controller monitors and interprets the Z-protocol bits. Depending on the state
and sequencing of these bits, the Z—controller directs data steering and ALU opcode
selections within the Datapath unit. For ex<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>