
dy DataGeneral

Customer Documentation

AViiON 300 and 400 Series Stations:

Programming System Control and I/O Registers

AViiON "300 and 400 Series Stations:

Programming System Control and

/O Registers

014-001800-05

Ordering No. 014-001800

Copyright © Data General Corporation, 1989, 1990

All Rights Reserved

Printed in the United States of America

Rev. 05, June 1990

Notice

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE BY DGC
PERSONNEL, CUSTOMERS, AND PROSPECTIVE CUSTOMERS. THE INFORMATION
CONTAINED HEREIN SHALL NOT BE REPRODUCED IN WHOLE OR IN PART WITHOUT
DGC’S PRIOR WRITTEN APPROVAL.

DGC reserves the right to make changes in specifications and other information contained in this
document without prior notice, and the reader should in all cases consult DGC to determine whether any
such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS
AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE
WRITTEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRESENTATION OR
OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT NOT
LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE,
SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE
DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY
LIABILITY OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST
PROFITS) ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE INFORMATION
CONTAINED IN IT, EVEN IF DGC HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN
OF THE POSSIBILITY OF SUCH DAMAGES.

CEO, DASHER, DATAPREP, DESKTOP GENERATION, ECLIPSE, ECLIPSE Mv/4000,
ECLIPSE Mv/6000, ECLIPSE MV/8000, GENAP, INFOS, microNOVA, NOVA,

PRESENT, PROXI, SWAT, and TRENDVIEW are U.S. registered trademarks of

Data General Corporation; and AOQSMAGIC, AOS/VSMAGIC, AROSE/PC, ArrayPlus,
AViiON, BaseLink, BusiGEN, BusiPEN, BusiTEXT, CEO Connection,

CEO Connection/LAN, CEO Drawing Board, CEO DXA, CEO Light, CEO MAILI,

CEO Object Office, CEO PXA, CEO Wordview, CEOwrite, COBOL/SMART,

COMPUCALC, CSMAGIC, DASHER/One, DASHER/286, DASHER/286-12c,

DASHER/386, DASHER/386-16c, DASHER/386-25, DASHER/386sx, DASHER/LN,

DATA GENERAL/One, DESKTOP/UX, DG/500, DG/AROSE, DGConnect, DG/DBUS,
DG/Fontstyles, DG/GATE, DG/GEO, DG/HEO, DG/L, DG/LIBRARY, DG/UX, DG/XAP,

ECLIPSE MV/1000, ECLIPSE MV/1400, ECLIPSE MV/2000, ECLIPSE MV/2500,
ECLIPSE MV/5000, ECLIPSE MV/5500, ECLIPSE MV/7800, ECLIPSE MV/9500,

ECLIPSE MV/10000, ECLIPSE MV/15000, ECLIPSE MV/18000, ECLIPSE MV/20000,

ECLIPSE MV/40000, FORMA-TEXT, GATEKEEPER, GDC/1000, GDC/2400,
microECLIPSE, microMV, MV/UX, PC Liaison, RASS, REV-UP, SLATE,

SPARE MAIL, SUPPORT MANAGER, TEO, TEO/3D, TEO/Electronics, TURBO/4,

UNITE, WALKABOUT, WALKABOUT/SX, and XODIAC are trademarks of

Data General Corporation.

AT is a U.S. registered trademark of International Business Machines Corporation.

Brooktree is a registered trademark of Brooktree Corporation.

RAMDAC is a trademark of Brooktree Corporation.

Timekeeper and Zeropower are trademarks of SGS-Thomson Microelectronics.

X Window System is a trademark of the Massachusetts Institute of Technology.

AViiONTM 300 and 400 Series Stations:

Programming System Control and I/O Registers

014-001800-05

014-001842-05 (Japan only)

Revision History:

Original Release — April 1989

First Revision - June 1989

Second Revision — July 1989

Third Revision -—- September 1989

Fourth Revision - March 1990

Fifth Revision —- June 1990

A vertical bar in the margin of a page indicates substantive technical change

from the previous revision.

Preface

This manual describes the AVHiWONTM 300 and 400 series station architecture and their

system control and input/output (I/O) registers. This manual is written for systems

and applications designers familiar with assembly language and C programming and

conventions. The manual does not assume that you are familiar with a particular

operating system or have specific knowledge about AViiON products.

This manual contains the following chapters:

Chapter 1 System Board Architecture

This chapter describes the system board architecture, including the CPU, main

memory, system buses, system control logic, graphics subsystems, and integrated I/O

subsystem.

Chapter 2 Programming the System Board

This chapter describes address mapping, bus arbitration, how to address the system

board resources, and how to program the time-of-boot clock, nonvolatile RAM,

programmable interval timer and time-of-day clock. The chapter concludes with

descriptions of the boot PROM and the System Control Monitor (SCM).

Chapter 3 Interrupts, System Errors and Bus Faults

This chapter describes interrupts, system errors and bus faults; where they originate,

how the system board handles them, and what registers are involved in interrupts.

Chapter 4 Programming the Monochrome Graphics Subsystem

This chapter describes the 300 series station monochrome graphics subsystem and how

to program the subsystem.

Chapter 5 Programming the Color Graphics Subsystem

This chapter describes the color graphics subsystem and how to program the

subsystem. It also describes the optional Z—-buffer gate array and its registers.

Chapter 6 Programming the Keyboard Interface

This chapter describes the keyboard port and how to program it.

Chapter 7 Programming the Serial Ports and Parallel Port

This chapter describes the serial ports and parallel ports, and how to program the

ports. The serial ports include the mouse port.

Chapter 8 Programming the Local Area Network Interface

This chapter describes the local area network (LAN) interface and how to program it.

014-001800 iii

Preface

Chapter 9 Programming the Small Computer System Interface

This chapter describes the small computer system interface (SCSI) and how to

program it.

Appendix A Workstation Address Map

This appendix lists each accessible register in the workstation with its address.

Appendix B- Workstation Power-Up Flowchart

This appendix graphically presents the power-up procedure the workstation performs.

Appendix C_ Boot File Format

This appendix describes the format necessary for booting successfully using non—Data

General magnetic media.

Appendix D- 1/O Connections and Specifications

This appendix lists the workstation connections and provides some related

specifications.

Symbols and Conventions

The following conventions and symbols are used in this manual:

Symbol Means

Ox In C programming examples, the combination of “0” and “x”

indicates the values that follow are in hexadecimal. Note that the

address and register values in this manual are given in

hexadecimal unless indicated otherwise.

IRQ_CIO Indicates a signal is a logical true (1) when asserted low. This

IRQ CIO* manual uses the overbar in figures and the asterisk (*) in text

and tables.

.PRINTER BOLDFACE CAPITAL letters indicate a System Control Monitor

system call.

Id Boldface lowercase letters indicate an assembly language

instruction.

SCM> The default System Control Monitor prompt on single processor

systems.

Jp#n/SCM> The default System Control Monitor prompt on multiple processor

systems, where n is the number of the attached job processor.

* A signal name or mnemonic followed by an asterisk (*) indicates

that the signal is true when asserted low (0).

All addresses are in hexadecimal unless otherwise noted.

All data is in binary unless otherwise noted.

iv 014-001800

Preface

Related Documents

This section lists manuals that provide more information about your AViiON computer

system. For a complete list of AViiON 300 and 400 series documentation, see the

“Documentation Set” following the Index.

Documents Available from Data General

MC88&100 RISC Microprocessor User’s Manual (014-001809)

Describes the Motorola 88100 Central Processing Unit (CPU), including the

registers, addressing modes, internal and bus timing, and assembly—language

instruction set.

MC88200 Cache/Memory Management Unit User’s Manual (014-001808)

Describes the Motorola 88200 Cache/Memory Management Unit (CMMU),

including the CMMU registers, the cache and cache coherency, memory

management and user/supervisor space, the Processor bus (Pbus) and the

Memory bus (Mbus).

Using the AViiONt System Control Monitor (SCM) (014-001802)

Describes how technical users can use the commands and menus of the

firmware monitor program to bring up software, control their system

environment, and debug programs.

880pen Binary Compatibility Standard (069-701043)

Describes the binary standards for developing portable 88K code using the C

programming language.

Other Organizations’ Documents

The following documents are available from other organizations.

mPD72120 Advanced Graphics Display Controller User’s Manual

Describes the mPD72120 graphics controller and how to program it. This

document is available from NEC Electronics, Inc.

AIC-6250 High-Performance SCSI Protocol Chip

Describes the AIC-6250 SCSI controller and how to program it. This

document is available from Adaptec, Inc.

AM7990 Local Area Network Controller (LANCE) Technical Manual

Describes the AM 7990 LAN controller and how to program it. This document

is available from Advanced Micro Devices, Inc.

Brooktreer Product Databook

Contact Brooktree Corporation to obtain this manual.

014-001800 Vv

Preface

Memory Products Databook

Describes the MK48T02B 2Kx8 Zeropower/Timekeeper RAM and how to

program it. This document is available from SGS-Thompson Microelectronics.

SCN2661 Enhanced Programmable Communications Interface (EPCI) Product

Specification

Describes the SCC2692 universal synchronous/asynchronous data

communications controller and how to program it. This document is available

from Signetics, Inc.

SCC2692 Dual Asynchronous Receiver Transmitter (DUART) Product Specification

Describes the SCN2661 DUART and how to program it. This document is

available from Signetics, Inc.

The VMEbus Specification

Describes Motorola’s Versa Modula Europa bus (VMEbus), and how to

program using the VMEbus. This document is available from Motorola Corp.

Z8536 CIO Counter/Timer and Parallel I/O Unit

Describes the Z8536 CIO and how to program it. This document is available

from Zilog, Inc.

vi 014-001800

Preface

Contacting Data General

Data General wants to assist you in any way it can to help you use its products.

Please feel free to contact the company as outlined below.

Manuals

If you require additional manuals, please use the enclosed TIPS order form

(United States only) or contact your local Data General sales representative.

If you have comments on this manual, please use the prepaid Comment Form that

appears at the back. We want to know what you like and dislike about this manual.

Telephone Assistance

If you are unable to solve a problem using any manual you received with your system,

and you are within the United States or Canada, contact the Data General Service

Center by calling 1-800-DG-HELPS for toll-free telephone support. The center will

put you in touch with a member of Data General’s telephone assistance staff who can

answer your questions.

Free telephone assistance is available with your warranty and with most Data General

service options. Lines are open from 8:30 a.m. to 8:30 p.m., Eastern Time, Monday

through Friday.

For telephone assistance outside the United States or Canada, ask your Data General

sales representative for the appropriate telephone number.

Joining Our Users Group

Please consider joining the largest independent organization of Data General users, the

North American Data General Users Group (NADGUG). In addition to making

valuable contacts, members receive FOCUS monthly magazine, a conference discount,

access to the Software Library and Electronic Bulletin Board, an annual Member

Directory, Regional and Special Interest Groups, and much more. For more

information about membership in the North American Data General Users Group, call

1-800-877-4787 or 1-512-345-5316.

End of Preface

014-001800 vii

Contents

Chapter 1 - System Board Architecture

Workstation Architecture and Configuration 0... cee cee eee eee eee 1-2

System Board Architecture and Configuration 6.00 cece eee eee eee 1-3

The CPU Set... ccc ee eee ee eee een ee eee ee eens 1-5

The CPU 2... ce eee ee ee ee ee ee ee eee ee ees 1-5

The Cache/Memory Management Unit (CMMU) 0. cece eee 1-6

Memory .. 0... Ee eee eee ee ees 1-9

Main Memory cee eee eee ee ee te eee ee eee eee ee eee 1-9

Main-Memory Interface cc ccc ee eee eee eee eee eee 1-10

Battery Backed Up (BBU) SRAM and PROM.............. 0. eevee 1-10

The System Control Logic 2.1... ... cece ccc eee cee eee eens 1-11

The Mbus and the Sbus........ eee ce ee ee eee ee eee eee eens 1-12

The MbuS 0. cece eee eee eee ene ee eee ee ee eee eee 1-12

The SbuS 2.0... cc ee ee eee eee eee eee eee eee ee ees 1-13

The Mbus/Sbus Interface 0. cece cent ee ee eee eee ees 1-13

The Graphics Subsystem cece ce eee ee eens 1-14

Monochrome Graphics 0. cece eee eee ee eee eee ee eee 1-14

Color Graphics 0.0... ccc eee ee ee ee eee eee eee 1-14

Z—-Buffer Controller 2... 0... cece eee eee eee eee ee ee eee eee 1-15

The I/O Subsystem ... 1... . cee ee ee ee ee ee eee eee ees 1-15

Keyboard Port «0... cc ee ee ee eee ee eee eee eee eee eee 1-15

Mouse Port cece ee eee eee ee eee eee ee ee eee eee 1-15

Serial PortS 2... 0. cee ee ee te ee eee eee eee eee eee eee 1-15

Parallel] Port 0.0... ccc ec ee eee ee ee ee eee eee eee eens 1-15

Small Computer Systems Interface (SCSI) Port 0. cee ee eee 1-15

Local Area Network (LAN) Interface ccc cee ee eee ees 1-16

The VMEbus Interface (400 Series Only) 0... cece eee eee 1-16

Registers oe eee eee eee eee ee eee EEE ee eS 1-18

Timers Available to System Programmers 0... ccc cece ee eee eee 1-19

Interrupts and the Interrupt Logic cee eee eee eee 1-19

Chapter 2 - Programming the System Board

Programming the CPU .. 1... ec ec ee eee eee eee eens 1. 2-2

Addressing Memory ee eee eee tee eee eee ee eee eee nes 2-3

Data Transfers to/from Memory 00. ccc ee eee eee ee ene teens 2-3

Address Map... eee cece eee te eee ee eee eee eee eens 2-4

Mbus and Sbus ccc ee eee ee ee eee ee ee eee teen 2-5

Mbus and Sbus Arbitration 0.0. ee cee eee eee eee eee 2-5

Master and Slave DeviceS cece eee eee eee eee eee eens 2-6

Data Alignment ... 2.0... ccc eee ee nee e nes 2-6

Addressing System Board Resources and System Memory5eeeees 2-7

Addressing VME Controllers (400 Series Only) 0... cee ee eee nena 2-9

014-001800 ix

Contents

Addressing System Board Resources from a VME Controller (400 Series Only) . 2-12

Programming the System Control Registers 0... ccc eee eee eee 2-16

The Time-of-Boot (TOB) Clock and Nonvolatile RAM (NOVRAM) 2-23

Programming the CIO... 1... ee ee ee ee eee eens 2-25

The Boot PROM 1... cece ee ee ee eee ee eee eee ee ees 2-26

Power-—Up and Boot Code cece eee ee ee teens 2-26

The System Control Monitor (SCM) ccc ccc eee ee tee teens 2-27

Chapter 3 - Interrupts, System Errors, and Bus Faults

Types of Interrupts .. 1... ee ee ee ee eee e eee eees 3-2

Condition-Specific Interrupts 0... eee ee eee ee eee ees 3-2

Multiple-Use Interrupts (400 Series Only) 0... 0c cee eee ee eee ee 3-2

How the CPU Is Interrupted ccc eee eee eee eee ee eee 3-3

Handling Interrupts eee 3-4

Programming the CPU Interrupt Registers 0... ccc eee eee eee eee 3-6

300 Series CPU Interrupt Registers eee ce ee ee eens 3-7

400 Series CPU Interrupt Registers cece ee cee eee eee 3-12

Programming the VME Interrupt Registers 0... cece eee tees 3-22

IRQ[7-0] Level Interrupts 0... . cc eee ee ee eee eee ee eee 3-24

System Errors 2... ee ee eee eee eee ee eee eee 3-27

Bus Faults 2.0... ec eee eee ee eee ee eee een ee ees 3-28

Chapter 4 - Programming the Monochrome Graphics

Subsystem

Features of the Monochrome Graphics Subsystem cece eee cee eee 4-2

Components of the Monochrome Graphics Subsystem 0.0.00 cee eee 4-3

Mbus Interface cece ee eee eee ene ens 4-4

Monochrome Graphics Controller 0... 0... cece eee ee eee eee 4-4

Display Memory BuS......... cc cee ee eee eee eee ees 4-4

Display Memory Bus Control 0... . cee ee eee eee eee eee 4-4

Frame Buffer... . 0... ee te ee ee eee ee ee eee 4-5

Parallel-to—-Serial Shift Register cee ee eee ee nes 4-5

D/A Converter and Video Output Driver 0... cee eee ens 4-5

How This Implementation Differs from NEC Specifications0005 4-6

Horizontal Front and Back Porches cece eee eee eee ees 4—6

Reading Data from the Frame Buffer 0... cee ee ee eee eee 4-6

Addressing theRegisters and Frame Buffer 0. cee eee ee eens 4-6

Word Count 2... ccc ee ee ee ee ee ee eee ee eee eee ee 4-6

Programming the Monochrome Graphics Subsystem 0... eee cence 4-7

Drawing Commands cece eee eee eee teen e eee 4-7

Graphics Controller Interrupts 0.0 cece ce eee cee eee tees 4-8

Programming the Monochrome Graphics Registers0:ee eves 4-9

Initializing the Registers 2... cece ee eee ee ete eens 4-11

Programming the Frame Buffer cece ec cee eee ee eee ens 4-18

X 014-001800

Contents

Chapter 5 - Programming the Color Graphics Subsystem

Features of the Color Graphics Subsystem 0.0 cece cence 5-1

Components of the Color Graphics Subsystem cee eee eee eee eee 5-2

The Color Graphics Controller 2... 0... cee eee eee eens 5-3

The Frame Buffer 0... ec ee eee ee eee tenes 5-4

RAMDAC .. 0... ccc ee ee eee eee eee ee eee tees 5-5

The Clock Generator cc cece cee eee eee eee tenes 5-5

The Z—Buffer 2.0... 0... ccc ce ee ee ee eee eee ee eee eee eens 5-5

Programming Conventions ccc ccc eee cee eee eee eee eens 5-6

Handshaking cece ec eee ee eee ee ee eee eee ens 5-7

Context Switching cee eee eee eee eee ees 5-8

Accessing Color Graphics Resources 0. eee eee eens $-9

Fixed-Point Numbers 0... cee cece ee eee eee ee teens 5-13

INterrupts 2... ee ee ee eee eee ee eee teen 5-13

REgQistErs 2. ee ee eee ene eee eee ene EEE 5-14

Global Registers... 0... . ce eee eee eee eee ees 5-15

Command and Status Registers ... 0.0... . cee eee eee ee tenes 5-20

Color graphics Commands 0... cece eee eens 5-35

Programming the Frame Buffer (8—-bit) ... 0... . ce eee eee 5-56

Accessing the Frame Buffer 0... 0... ccc cece et ee eens 5-57

Frame Buffer Access ReStrictionS cece eee ee eee ee eens 5-57

Programming the Lookup Table cc eee ce eee ee eee tee ees 5-58

Automatic LUT Load (ALL) Function 0... 0... cece eee eee 5-58

Blinking 2.6... eee eee eee eee eee eee eee 5-59

Double—Buffering 0. cece ce eee ee eee eee eee eee 5-59

Accessing the RAMDAC ce eee eee tee eee eens 5-64

Initializing the Registers 2... cee eee eee eee eee eens 5-66

Programming the Z-Buffer Controller... 0.0... cc ee eee eee 5-72

Components of the Z-Buffer .. 0.0... 0... eee eee 5-72

Programming the Z-Buffer Registers ccc ccc ee eee 5-74

Chapter 6 - Programming the Keyboard Interface and

Speaker

OVEFVIEW 20 ee eee eee eee eee e ees 6-1

Components of the Keyboard Interface ce cece eee te ee 6-2

UART oo ee ee eee ee eee eee eee tenes 6-2

Clock and Timing Logic 0... cece eee ee ee eee eee ene 6-2

Keyboard Speaker 0... cece ee nee te eee eee eee eens 6-2

Keyboard Connector ec ee eee eee ne eee eee ees 6-3

Programming the Keyboard Interface ccc ce eee eee eee 6-3

Clock and Data Lines........... ec cee eee tenet eens 6-4

Data Format 0. cece ee ee eee ee eee ene een e ene 6-4

REQIStETS ©. ee ee ee ee ee eee ee eee ee ee ee 6-5

Keyboard Scan Codes cece cece eee tenet teen eens 6-10

Interrupts 2... ee ee ee ee eee eee ee ee eee eee 6-20

Receiving Data from the Keyboard 0... cece ee eee eee eee 6-20

Transmitting Data to the Keyboard ccc eee ee cee ee eee 6-22

Programming the Speaker cece eee eee ee eee e ene 6-24

014-001800 Xi

Contents

Chapter 7 - Programming the Serial Ports and Parallel Port

Overview of the Serial and Parallel Ports ©... 0. . eects 7-1

Components of the Serial and Parallel Ports eee eee eee 7-2

DUART .. 0. ec ee eee ee eee ee eee eee eee eens 7-3

Parallel Port 2.0... ccc ee ee eee eee eee eee eee ees 7-3

Programming the Serial Ports eee ccc ccc ee eee ee teens 7-4

Initializing the Serial Ports ... 0... . ce ee eee ee eens 7-4

Resetting the Serial Ports 2.0.0... ee cee ee eee eee eee 7-4

IMterrupts 6... ee ee ee ee ee ee ee eee eee 7-4

Programming the Mouse Port ccc cece eee eee eee tte 7-19

Initializing the Mouse Port ccc cc eee eee ee eens 7-19

Data Protocol cece ee eee eee eee ee eee eee eens 7-19

Tracking Software 2.1... ce eee ee eee eee eee eee ene 7-20

Programming Hints cece eee eee ee eee ee eens 7-20

SEMSItIVILY 6 eee ee eee ee eee eee ee ees 7-20

Programming the Parallel Port 0... cece cee eee ee eee tees 7-21

ReQist€Ts oe ee ee ee ee ee eee eee eee eee 7-21

Interrupts and Transmitting Data cee ee ee ee ee ee 7-21

Programming the Data Strobe and Data Select Signals 7-22

Chapter 8 - Programming the Local Area Network

Interface

Components of the LAN Interface 0... 0. . eee cee eee eee 8-2

Sbus Interface 1... ec eee eee ee eee ee eee eee 8-2

Address Extension Logic cece ccc eee eee ee eee eee eens 8-3

Ethernet Controller... .. 0... cc cece eee eee eee rer 8-3

Serial Interface 2.0... cece ee eee eee eee eee eee eee 8-3

AUI Connector and Cable 0... ccc cc ee nee ee eens 8-3

Medium Attachment Unit (MAU) ce cee eee ee ee eens 8-3

Ethernet Frame Transfers 0... cece cee eee ee eee eee ee eee ee 8-4

Incoming Frame Path ce eee ee ee eee tee eee eee 8-4

Outgoing Frame Path cece eee eee eee eee 8-4

Programming the LAN Interface 0... eee cc ee ee eee ee ene 8-5

Programming the Ethernet Controller Registers 0... eee eeee 8-5

Allocating Memory to the LAN Interface 0... ce eee ee ene 8-14

LAN Interface Data Structures 0... ce cee eee eee ee eee 8-15

Software Environment 0... cece eee te eee eee ee ee eens 8-16

Initializing the LAN Interface cece ee ee ee eens 8-16

Resetting the LAN Interface eee ee ee ee eee ee eens 8-17

LAN Interface Interrupts 0... ccc eee eee ee ee ee teens 8-17

xii 014-001800

Contents

Chapter 9 - Programming the Small Computer System

Interface Port

Overview of the SCSI Port ec ce ee ee ee eet eens 9-1

Components of the SCSI Port 2... 0... ee ee eee eet 9-2

SCSI Slave Interface... 0... . cece ee eee ee eee eee tees 9-2

SCSI Protocol Controller 2... ... 0... cee eee ee teen eens 9-2

DMA Controller 2.0... 0. cece ee ee eee eee ee ee eee eens 9-3

Programming the SCSI Controller 20... cee eee eee eee 9-3

Resetting and Initializing the SCSI Controller 0. eee eee 9-17

SCSI Controller Interrupts 0.0... cc cee ee ee nent eens 9-17

Programming the DMA Controller 0. eee eens 9-18

Manipulating Pointers and Counters cc ccc cee eee eee teens 9-26

Implementing a Selection Time—Out Function 0... eee ee eee ees 9-26

DMA Controller Interrupts 0... ccc ee ee ee eee eee nes 9-27

Appendix A - Address Map

Appendix B - Power-Up Flowchart

Appendix C - Boot File Format

Appendix D - System Board Connectors

Index

Documentation Set

014-001800 xiii

= Ss = Se SS N aN & WH PH e

m= me (OO CO JIN Nn Bh WO NHNre ©
i ft 4WW DNSPP WWW NHNNNNNNN NN ND WY Ne

I | td 4UM & W NHN ke

i ot §@ t ttcon NN RW NDON QD DN NHDDND DW AD Mm Mm NNN

Tables

Workstation Configurations 0.0... cee ee ee tee teens 1-2

CPU Clock Frequencies and Periods cee cece cette eens 1-6

Memory Read and Write Cycles... 1... cece eens 1-10

Mbus Signals cee eee ee te eee eee eee nes 1-12

Sbus Signals 2.6.0... eee nes 1-13

VMEbus Signals 0.0... eee ete ee ee tenet tenes 1-17

System Memory Space 0. eee ee eee eee 2-4

Sbus Master Priorities 0... cee eee eee eee eee ee eee 2-5

Address Modifiers (VME Space) 00. cece eee eee ee eee eens 2-11

Address Modifiers (Transfer Type) 0.0 cece eee eee eee eee 2-11

Memory Map of the System Control Registers 0. eee eee eee 2-16

Memory Map for the Time-of-Boot Clock Registers 2-23

NOVRAM Addresses cee eee eee ee eee eee eee eee eae 2-24

CIO Register Addresses 0... ccc cc eee eee eee ees 2-25

SCM System Calls ccc eee eee eee ees 2-27

Environment Control Word (ECW) Contents 0.0.0 e eee eee 2-30

SCM Subroutines 0... eee eee eee ee eee eens 2-31

Memory Map of the Interrupt Registers 0c cece eee ee ees 3-6

Memory Map of the VME Interrupt Registers00 ee eee 3-22

System Error Conditions and Respunses cece eee eens 3-27

Monochrome Graphics Controller Commands 0... eee eueeee 4-7

Address Map for the Monochrome Graphics Controller Registers 4-9

Frame Buffer Size 2.0... . ee ee ee eee eens 5-4

Base Addresses of the Color Graphics Controllers 0.000. 5-9

Color Graphics Registers 0. cece ee ee ete eee 5-11

Color Graphics Command Bits cee eee eee 5-34

Color Graphics Register Set Address Map cece cee eee eee 5-74

Keyboard Signals 0... cece ee eee ete eee eee 6-3

Keyboard Clock and Data Lines cece ee eee eee 6-4

Keyboard Data Format 0... ccc eee eens 6-4

Keyboard Register Addresses ccc eee ee eee eee eee eee 6-5

Keyboard Responses cece ce eee ee eee eee eens 6-6

Commands cece eee ee ee eee ee ee eee eee eee 6-7

Scan Code Sets 2 and 3 ww... ce ec eee te eee eee eee eee 6-12

Speaker Register Addresses... 0.0... cece ccc cee eee eens 6-24

014-001800 XV

re PPTNoe & W NO ee
oO oO

1 bYNe _

STOOD OUUUOUOD >>BO OIUAH AWN
D-11

D-12

D-13

D-14

Xvi

Tables

Serial Port Register Addresses 0c cece ccc e ete eee tenes 7-5

Baud Rate Generator Characteristics ccc cece eee ee ee eee 7-8

Mouse Data Protocol 0... cece ee ete eee tee eee eens 7-19

Addresses of Parallel Port Registers ce ee eee eee ene 7-21

Required LAN Register Configurations cee eee eee ees 8-13

Conceptual CMMU Page Descriptor Produced by the LAN Interface ... 8-15

Memory Map of the Protocol Controller Registers06. 9-4

Memory Map of the DMA Controller Registers 9-18

300 Series Station Address Map cece cee ee eee eee eens A-1

400 Series Station Address Map cece ccc eee eee eee n teense A-8

Connectors on the System Board cee ccc eee teens D-1

Serial Connector Signals (300 Series) cc cece eee eens D-6

Serial Connector Signals (400 Series) 0. cc cece eee eee D-6

Parallel Connector Signals (300 Series) cee eee eee ees D-7

Parallel Connector Signals (400 Series) 0... ee cee cee ees D-7

Keyboard Signals .. 1... ... ccc ee eee eee ee eee eens D-8

Speaker Signals 20... . cece cee eee teen eee eee ee neees D-8

Mouse Signals cee eee eee eee ee eee e eee enna D-8

Power Connector (300 Series) 0... ccc ce eee eee e eee D-9

SCSI Connector (300 Series) cece cece cee tee ences D-10

SCSI Connector (400 Series) cece ee ec ee teeta D-10

LAN Interface Connector Signals 0... ee cee cee eee D-11

VMEbus Connector J1 ee eee eee teen enes D-13

VMEbus Connector J2 0... cc ee eee nt ee eee n ees D-14

014-001800

i t &§ FT = Ft ft 4Oo on nN Nn BW NDfm ffm ffm feck fk feel
ep ienen en enen IHN HB WN
T Oo

\O

i ¢ t Ut 4a ff WH HN

i «§ FF F FT 4 1d 4SINAN HA B&B W NH W NO -NAN WN ON Mm MAMAN NM” NM > ff Ww WW WwW Ww No m& W NO Re

Figures

System Board Architecture —- 300 Series ccc cee eee eee 1-3

System Board Architecture - 400 Series cece cece eee 1-4

CPU Set and Main Memory cece eee eee eee ene 1-5

Mbus Snooping and Cache Coherency 0c cee eee eee eee eee 1-7

CMMU Data Block .. 0.0... ee ee eee eee eens 1-8

Main Memory cece eee eee eee eee ee eee ee ee 1-9

System Control Logic 2.0... . ee eee ee eee ee eee eens 1-11

Address Decoding 0... .. cc cee cece ee eee eee eee eee 1-16

VMEbus Grant Daisy—Chain cee eee eee ee ee 1-18

Big-Endian Byte Ordering 0... . cece eee ee eee i)

How the CPU Addresses System Memory 2... cece eee e evens 2-7

Decoding Addresses from the CPU cee eee eee ee 2-8

Addressing the VMEbus from the CPU cee eee ee 2-10

Decoding Addresses to the VMEbus cc cee eee eee ees 2-10

Structure of Addresses from VME Controllers to System Memory 2-12

How a VME Controller Addresses System Board Resources and

System Memory (Flowchart) 0.0... cece eee eee eee eee eee 2-13

How a VME Controller Addresses System Board Resources and

System Memory cee ee ee ee eee eee eee eee eens 2-14

External Timer Connections 0... cece ee ee eee eee ens 2-25

Handling Interrupts with a Single-CPU System Board 3-4

Handling Interrupts with a Dual-CPU System Board 3-5

VME Interrupts to the System Board eee eect ene 3-23

VME Controller Initiating a Level-1 Interrupt to System Board 3-24

VMEbus Grant Daisy—Chain 0... 0. ec eee eee 3-25

The Monochrome Graphics Subsystem cece ee eee ee ees 4-3

Monochrome Graphics Video Memory Coordinate System 4-12

Frame Buffer Organization 0 eee eee eee eee eens 4-18

Color Graphics Subsystem (8-Bit) 2.2.0... . cece eee cee eee eee 5-2

Color Graphics Subsystem (24-Bit) 2.0.0... .. 0. cece eee 5-3

Broadcast Data Transfers of 8-bit Registers with 24-bit Color 5-10

Graphics Subsystem Registers 0... cece eee eee eee ee eee 5-14

Global Elements of the POLY Command 0... cee eee, 5-42

Local Elements of the POLY Command 000 eee, 5-43

Z-Buffer Gate Array Components cc cece eee cee eee eens 5-72

Keyboard Interface ComponentsS 0c cece eee eee eens 6-2

Position of Keys on Keyboard cece eee ee eee eee teens 6-11

Receiving Data from the Keyboard... cece eee ee ee eee eee 6-21

Transmitting Data to the Keyboard cece cee eee 6-23

014-001800
XVI j

DwWwWmW Se 3 9 o© 7yrPif ft 4Rone »& wNHe & WN be
UUUUSnA bh WN Be

XVviii

Figures

300 Series Serial and Parallel Ports cc cece cee ee eens 7-2

400 Series Serial and Parallel Ports 0. cece eee eee eee 7-2

Data Strobe Timing for a Data Products Interface 7-22

Data Strobe Timing for a Centronics Interface000 ee 7-22

Components of the LAN Interface cece eee eee es 8-2

Sbus Addresses Produced by the LAN Interface 8-14

Conceptual CMMU Page Descriptor Produced by the LAN Interface ... 8-14

SCSI Port Components 0... . cece cee ee eee e teen anes 9-2

Initial Power-Up Flowchart... ccc cece eee eee eens B-1

Reset Flowchart 0... ccc ccc ee eee ee eee eee eens B-2

Initialize Flowchart 0... . cece eee eee eee eee enna B-3

PROM-Resident Testing Flowchart cc cece cee ee eens B-4

300 Series External Connectors cc eee eee tee eens D-2

300 Series System Board Connectors cece cece eens D-3

400 Series External Connectors 0... cece ee eee eee ees D-4

400 Series System Board Connectors cece ee eee eee D-5

VMEbus Slots, Connectors, and Pin Designations D-12

014-001800

Chapter 1

System Board Architecture

This chapter describes the system board architecture, including the following topics:

System architecture and configuration.

System board architecture and configuration.

The CPU set, including the CPU and CMMUs and cache coherency.

Main memory and the memory interface.

The Mbus and Sbus, and the interface between them.

The graphics subsystem, including monochrome graphics, color graphics and the

Z-buffer controller (400 series only).

@ The I/O subsystem, including the keyboard port, serial ports, parallel port,

Ethernet LAN interface, SCSI interface, and VMEbus interface (400 series only).

The VMEbus section discusses VMEbus arbitration and VMEbus data transfers.

@ Timers available to system programmers.

@ Interrupts and the interrupt control logic.

014-001800 1-1

System Board Architecture

Workstation Architecture and Configuration

Data General’s AViiONTM 300 and 400 series stations use the Motorola 32-bit

MC88100 RISC (Reduced Instruction Set Computing) processor and the Motorola

MC88200 CMMU (Cache/Memory Management Unit). They run either Data

General’s DG/UXTM operating system or industry-available operating systems for

MC88000-—based systems.

The workstations consist of a system board, expansion memory modules, a fan, and a

power supply in a desktop package. Using 4-Mbyte memory modules, 300 series

stations support a maximum of 28 Mbytes of memory and 400 series stations support

a maximum of 32 Mbytes of memory.

The workstation base configuration has no disk or tape storage and requires a remote

file server for mass-storage. A compact, free-standing, mass-storage subsystem is

available for workstations requiring local disk or tape storage.

Graphics subsystems differ between workstations. The 300 series system board comes

with either a monochrome or color graphics subsystem, a frame buffer, and optionally

with an additional 4 Mbytes of dynamic random access memory (DRAM) for

applications that require extensive font storage such as the Kanji character set. The

graphics subsystem for the 400 series station includes either an 8-bit or 24-bit color

board with frame buffer, plus an optional Z—-buffer board for three—dimensional

applications requiring hidden line and hidden surface removal.

The monochrome graphics subsystem drives a 1280 x 1024 pixel, flicker-free display

on a monochrome monitor; the color graphics subsystem drives a 1280 x 1024 pixel,

flicker—free display on either a color monitor or a grayscale monitor.

Table 1-1 summarizes the configurations for each workstation.

Table 1-1 Workstation Configurations

Item 300 Series 400 Series

CPU set (1 CPU, 2 CMMUs) 1 1 or 2

CPU clock speed (MHz) 16.67, 20 16.67, 20

Physical memory range (4-—Mbyte modules) 4 - 28 Mbytes 4 - 32 Mbytes

Graphics support 1-bit monochrome or 8-bit color or

8-bit color 24-bit color

24-bit Z—-buffer (option)

VMEbus interface — 1

Integrated I/O

Parallel port (Centronics or Data Products)

Asynchronous ports (RS-232-C)

Mouse port RS-232-C

Keyboard port

SCSI port

LAN interface ee ee ee ee ee ee ee ee ee Oe

1-2 014-001800

System Board Architecture

System Board Architecture and Configuration

Each system board contains the following functional components: one or two CPU

sets, main memory, system control logic, integrated I/O subsystem, and a monochrome

or graphics subsystem. The 400 series stations also support a VMEbus and,

optionally, a color graphics subsystem and a Z-buffer board. Two buses, the Memory

bus (Mbus) and the System bus (Sbus), link the system board resources to each

other. Figure 1-1 and Figure 1-2 illustrate the system board architecture. The

shaded components apply only to the 400 series stations.

it!

; Memory BoardsCPU

(4 Mbytes eae.
max 32-Mbytes

; Main Memory ytes)
i<—piinstruction | ' =| | «lolol le le te Le ee CL Ue ee Lee eee
<———»» | CMMU

Graphics Subsystem

CPU set ;

Graphics

<——* | Controller

System Control Logic y

I/O Subsystem| Mbus/Sbus Arbitration Logic |

<>| Keyboard Controller Je Keyboard
Interrupt Control Logic

<-> Mouse

<——» Serial Port
(RS-232-C)

DUART1ECIO (Timing) <—

Vv

System Control Registers| Parallel Interface [> Parallel
i ‘ Printer

| Boot PROM <> «>| SCSI Controller be SCSI Bus

BBU SRAM > <>] LAN Controller kK Ethernet
' ae | Transceiver

Figure 1-1 System Board Architecture -— 300 Series

014-001800 1 -3

System Board Architecture

i<—___»>

<<_—_—_—}>

CPU

————» | Instruction
lg —__—__-» | CMMU

CPU set

os SESE GASES

CPU

~~ mem we wee wee ee ee Fe © © we

System Control Logic y

Mbus/Sbus Arbitration Logic |

DRAM

Control

interface

Graphics
A

Interrupt Control Logic <>

ft

(4-Mbytes each,

Memory Boards
(

max 32-Mbytes)

<> Keyboard

— CIO (Timing) DUART1 and <—» Mouse
' —— > DUART2 <_.> Serial Ports
' a <—~> (RS-232-C)

| System Control Registers |-—> v

' | Parallel Interface b> Parallel
‘

Printer

| Boot PROM > — 4
] <> SCSI Controller /e-— SCSI Bus

| BBU SRAM | Lo

Pe! >| LAN Controller > Ethernet
Lt , Transceiver

Figure 1-2 System Board Architecture - 400 Series

1-4 014-001800

System Board Architecture

The CPU Set

As shown in Figure 1-3, each CPU set consists of one Motorola MC88100 CPU and

two Motorola MC88200 Cache/Memory Management Units (CMMU). The CPU uses

the 32-bit Reduced Instruction Set Computing (RISC) architecture with an internal,

32/64 bit floating-point processor. The CPU set supports a virtual address space of 4

Gbytes, bringing instructions and data into the processor over separate 32-bit paths.

One CMMU provides caching and address translation for the instruction path while

the other CMMU provides these functions for the data path. The CPU set

communicates with the rest of the system using the Mbus. The 400 series station

supports a second CPU set. Throughout this manual we refer to the CPU set as the

CPU, except where necessary to differentiate between the components of the CPU set.

prec rrrrr errr eer ee ees Ow re

D|<——————_>] pata

' Data Data Pbus CMMU \<—~ >| Memory interface ;
; Al<—_———___—_—__>

CPU —
_ | :

Dis | >I instruction |g: ’ J
' | Instructions al Instruction Pbus | Gyny :

L 3 ; Drivers Drivers '

CPU Set '

vs

DRAM

Mbus '

(32 bits)

Lt Main Memory

Figure 1-3 CPU Set and Main Memory

The CPU

The CPU uses the Harvard architecture with separate instruction and data ports.

Each port consists of a 32-bit address bus, a 32-bit data bus, and bus control signals

that together form the nonmultiplexed Processor bus (Pbus). Each Pbus connects a

CPU Pbus port (instruction or data) to a respective CMMU (instruction or data).

The CPU has thirty-two 32-bit internal data registers that reduce data path traffic to

approximately one load or store operation every four cycles. It has an internal

32/64-bit floating-point processor that shares the data registers with the processing

unit.

For more information on the CPU, see Motorola’s MC88100 User’s Manual.

014-001800 1 -5

System Board Architecture

The Cache/Memory Management Unit (CMMU)

The Motorola MC88200 Cache/Memory Management Unit (CMMU) combines

segmented, demand-paged virtual memory management with high-speed memory

caching. Each CMMU contains 16 Kbytes of cache memory, 10 block address

translation cache (BATC) entries, and 56 page address translation cache (PATC)

entries. The CMMU provides 4 Gbytes of virtual memory space per process.

The cache prefetches and stores instructions and data. The cycle time is dependent

on the CPU speed. Table 1-2 shows the clock frequencies and periods.

Table 1-2 CPU Clock Frequencies and Periods

Clock Frequency Clock Period

(MHz) (ns)

16.67 60

20 50

The CMMUs communicate with the CPU via the Processor bus (Pbus) and with main

memory via the Memory bus (Mbus).

NOTE: Software must disable parity checking before reading some registers, such as

those for the color graphics subsystem, SCSI interface, and LAN interface.

For further information, see the MC88200 User’s Manual.

The CMMU cache memory is temporary storage that speeds up both the execution of

instructions and the reading and writing of data. If the cache is turned off, the CPU

interacts directly with system memory. When the cache is turned on, the CPU reads

from and writes to system memory through the cache. With the cache on, the

CMMUs update system memory using either Writethrough or Copyback mode. When

the cache is operating in

® Writethrough mode, all modifications to the cache are immediately written to

system memory.

@ Copyback mode, only the first modification of each cache location is written to

system memory.

When a device reads system memory, the device expects to receive current accurate

data. CMMU cache coherency makes sure that devices receive the most recent data

when reading memory. Cache coherency is the ability of a CMMU to update obsolete

data in system memory when a device reads a system memory location whose data is

also resident in the CMMU cache. Cache coherency is valid only when the CMMU

communicates with the CPU in Copyback mode. If the cache is turned off, or if the

cache is on and updated in Writethrough mode, all modifications to the cache are

immediately written to system memory. When a device addresses a memory location

whose cache-equivalent data has been modified, the CMMU updates the data in

memory before the device reads the data from memory.

1-6 014-001800

System Board Architecture

Figure 1-4 illustrates cache coherency and Mbus snooping. Snooping is the

comparison of Mbus global addresses with data cache tags. If the tag and the Mbus

address match, and the cache data line has been modified, the cache data line is then

written to memory. For a more detailed description of cache coherency and Mbus

snooping, see Motorola’s MC88200 User’s Manual.

Device writes

address to Mbus

CMMU snoops Mbus address and

checks cache location to determine

if data has been modified.

Has cache data

been modified?

| Device memory read is aborted. |

CMMU updates memory location

by writing cache data to memory.

Y
| CMMU clears cache modify bit to 0. |

Vv

ly Device reads cet)(from memory.

Figure 1-4 Mbus Snooping and Cache Coherency

The workstation’s hardware supports only data cache coherency and not instruction

cache coherency. Software can set up the data cache in either Writethrough or

Copyback mode. Copyback mode greatly increases performance, while Writethrough

mode continuously updates both the cache and memory. Since all SCSI DMA

transfers are snooped, software should mark all SCSI DMA transfers as global

(high-use, shared data). Correspondingly, since no LAN DMA transfers are snooped,

software should mark all LAN DMA transfers as local, and be responsible for

maintaining cache coherency of the LAN buffers.

014-001800 1-7

System Board Architecture

Since the workstation’s hardware does not support instruction cache coherency, the

instruction cache does not snoop on the Mbus. As a result, software must maintain

instruction cache coherency by invalidating the cache during I/O DMA transfers to

instruction space.

The CMMUs define a block of data as four contiguous words (16 bytes). As shown

in Figure 1-5, if the first word of the block is aligned on an address whose least

significant nibble (4 bits) is 016 (such as FFF8 F12016), the CMMU completely reads

or writes the block within one bus cycle. If this transfer crosses from one block

address range to another, the transfer requires an additional bus cycle.

For more information on the CMMU, see Motorola’s MC&8&200 User’s Manual.

FFF8 F120

FFF8 F124

FFF8 F128

FFF8 F12C

FFF8 F130

FFF8 F134

FFF8 F138

FFF8FI3C |

‘> CMMU Data Block

Block Address Range = 0 - F
A

‘> CMMU Data Block

Figure 1-5 CMMU Data Block

1-8 014-001800

System Board Architecture

Memory

The memory system consists of main memory, which includes onboard dynamic

random-access-memory (DRAM), expansion DRAM boards and the associated

memory interface logic, plus static RAM (SRAM) and programmable

read-only-memory (PROM).

Main Memory

Main memory consists of dynamic random-access-memory (DRAM) and the memory

interface logic needed to control accesses to the DRAM (see Figure 1-6). DRAM

memory consists of 4-Mbyte memory modules that plug into the system board. Each

4-Mbyte memory module has 36 1-Mbit, fast-page 100-ns DRAMs that provide 32

data bits and 4 parity bits for each address. The 300 series stations accept as much

as 28 Mbytes of RAM, while 400 series stations accept as much as 32 Mbytes of

RAM.

If the workstation has 16-Mbyte memory modules, it can support either 112 Mbytes

(300 series stations) or 128 Mbytes (400 series stations) of DRAM. Each 16-Mbyte

memory module has 36 4-Mbit, fast-page 100-ns DRAMs that provide 32 data bits

and 4 parity bits for each address.

Main memory is contiguous and begins at address 0000 0000. Each location has 36

bits: 32 bits for the data word and 4 bits for parity. The parity logic, located on the

system board, generates and checks the parity bits.

The DRAM uses byte parity; one parity bit for each byte of data. The parity bits

have separate data-in and data—out connections to the DRAMs, and the write parity

data is driven to the DRAMs in a way that allows diagnostic software to force parity

bits high during a write to memory. This logic also provides the control signals for

refreshing the DRAM array.

=

Mbus Latches

Buffers (Read Data)

|

iatcnes an a

Multiplexors

V

Address I Memory
Latches and | »| Board
Multiplexors RAS,

: CAS, WE

Figure 1-6 Main Memory

014-001800 1-9

System Board Architecture

Main-Memory Interface

The memory interface connects the DRAM to the Mbus, controlling data transfers to

and from the DRAM. When a device addresses memory, the memory interface

enables the memory module that contains the addressed location; then reads from or

writes to the location. The interface consists of the following:

Address and data latches.

@ Address and data drivers.

@ Control logic and memory timing to regulate the memory strobes (RAS and CAS)

and write enable (WE).

The memory interface responds only to addresses in the lower 128 Mbytes of system

address space. Table 1-3 shows the number of clock cycles it takes to execute reads

and writes.

Table 1-3 Memory Read and Write Cycles

Number of Clock Cycles

at CPU Speed:

Type of Access 16.67 (MHz) 20 (MHz)

Single-word write 5 6

Single-word read 6 7

Block write (4 words) 11 12

Block read (4 words) 12 13

The memory interface sends status signals to the workstation’s Parity Address Register

(PAR) to indicate when one or more modules has 100 ns DRAMs installed and the

number of modules with 4-Mbit DRAMs. For information on these status bits, see

the description of the Parity Address Register (PAR) later in this chapter.

Battery Backed Up (BBU) SRAM and PROM

The BBU SRAM provides 2 Kbytes of nonvolatile storage for diagnostics, system

configuration, and boot information. (Note that within this manual we also refer to the

BBU SRAM as NOVRAM or nonvolatile RAM.) The 128-Kbyte PROM contains

powerup diagnostic and initialization code, including the local code for booting the

system over an Ethernet. The diagnostic registers provide information that allow

diagnostic software to control the state of the system board, determine system board

Status, and obtain Mbus parity error status information.

1-10 014-001800

System Board Architecture

The System Control Logic

The system control logic allocates and controls the system board resources, and

includes the following: Mbus and Sbus arbitration logic, interrupt control logic, timing

services, boot (PROM), battery-backed-up static RAM (BBU SRAM, also called

nonvolatile RAM or NOVRAM), and system control registers. The timing services

include the time-of-day (TOD) clock, time-of-boot (TOB) clock and the

programmable interval timer (PIT). The NOVRAM contains the system configuration

information. The system control logic resides on the Sbus. Figure 1-7 illustrates the

system control logic.

Timekeepert RAM (MK48T028)

Mbus/Sbus Battery Backed-up Time-of-Boot '

Arbitration Logic | | BCot PROM |. | NOVRAM (TOB) Clock !

Vv Vv ' \
(Sbus (32 bits address/data) »

A

v es oy | /

Programmable
interrupt System Control

Control Logic | '

Time-of-Day

TOD Registers
Interval Timer

IT) Counter

Counter/Timer (28536)

Interrupt

Requests

v
Interrupt Line

to CPUs INT

Pin

Figure 1-7 System Control Logic

014-001800 1-11

System Board Architecture

The Mbus and the Sbus

The Memory bus (Mbus) and the System bus (Sbus) pass address, data, and status

between the CPU, memory, system control logic, and I/O controllers.

The Mbus is a 32-bit, multiplexed address/data bus generated by the CPU. It

connects the CPU, main memory and graphics subsystem to each other and to the

Sbus. The Mbus supports block transfers and cache coherency.

The Sbus is a 32-bit, multiplexed address/data bus that connects I/O controllers

(except the video controller), system control logic and registers to each other and to

the Mbus. The Sbus is a “subset” of the Mbus, providing a 32-bit address/data path,

but not supporting block transfers or cache coherency protocols.

The Mbus

The Mbus connects all of the system board resources to each other. The Mbus

includes a 32-bit multiplexed Data/Address bus and Arbitration/Control lines. The

Mbus links the central processing components (the CPUs and CMMUs) to the

memory, I/O, control logic and registers. Table 1-4 lists and describes the signals on

the Mbus.

Table 1-4 Mbus Signals

Signal Description

Data Transfer:

AD[31-00] Address/data

Bus Arbitration:

BR Bus request

BA Bus acknowledge

BB* Bus busy

AB* Arbitration busy

Control and Status:

C[6-0] Control

ST [3-0] Local status

SS[3-0]* System status

When two or more devices try to access the Mbus at the same time, bus arbitration

logic determines which device is granted the Mbus. The Mbus can be accessed by a

system board CPU or by any VME controller.

1-12 014-001800

System Board Architecture

The Sbus

Sbus masters cannot transfer data to/from Sbus slaves. If a device on the Sbus needs

to communicate with another device on the Mbus, it must do so through the CPU.

Table 1-5 defines the Sbus signals.

Table 1-5 Sbus Signals

Signal Description

Data Transfer:

S1[31-0] Address/data

Control and Status:

STRB[1-0] Strobe

AS* Address strobe

G

READ Read data

WAIT Wait

PAUSE Pause

The Mbus/Sbus Interface

The Mbus/Sbus interface links the Mbus and Sbus to each other. Arbitration logic

regulates requests to access the Mbus and the Sbus.

The Mbus/Sbus interface performs the following tasks:

Provides a bidirectional data path between the two buses.

Defines the system memory map and decodes addresses.

Performs bus arbitration.

Generates and checks parity.

Notifies the CPU of system error conditions.

The Ethernet and SCSI controllers support Direct-Memory Access (DMA) and have

16-bit interfaces. To avoid leaving “holes” in the memory, these DMA devices need

to address memory on half-word (16-bit) boundaries. Since the Mbus supports only

word-aligned accesses to memory, the Mbus/Sbus interface allows Sous DMA masters

to access memory on half-word boundaries. The Mbus/Sbus interface consists of all

the logic necessary to interface the Sbus to the Mbus, so that it need not be replicated

for each 16-bit peripheral. Sbus masters are half-words aligned on even addresses

(i.e., 0, 2, 4, 8, A, C, E).

014-001800 1-13

System Board Architecture

The Graphics Subsystem

The graphics subsystem controls the bit-mapped display device — the monitor. The

subsystem resides on the Mbus and consists of a graphics display controller, a frame

buffer, and a CRT interface circuit that creates and sends the video signals to the

monitor. Two types of graphics subsystems are available: monochrome, or color. The

300 series system board contains either a monochrome graphics subsystem or an 8-bit

color graphics subsystem. The 400 series station uses separate boards for the color

graphics subsystem supporting either 24-bit or 8-bit color graphics and an optional

Z-buffer for hidden line and hidden surface removal.

Both the color graphics subsystem and the monochrome graphics subsystem generate

parity bits when they write data to the Mbus, but they do not check parity when they

receive data.

Monochrome Graphics

A NEC uPD72120 advanced graphics display controller drives the monochrome

graphics subsystem. This controller is a slave to the CPU, and it performs drawing

and Bit Block Transfer (BITBLT) operations that the CPU would otherwise have to

perform. The controller also refreshes the Video RAMs (VRAMs) and the screen.

The VRAMs make up a 1280 (horizontal) by 1638.4 (vertical) pixel single—plane

frame buffer. This buffer provides for a 1280 by 1024 pixel screen display plus extra

off-screen memory for storing fonts, icons, and pull-down windows.

The CPU can directly access the frame buffer to manipulate the video image and to

use software that runs with a dumb frame buffer. However, because the CPU

accesses the frame buffer through the display controller, video memory accesses take

considerably longer than accesses to main memory.

For more information on the monochrome graphics subsystem, see Chapter 4,

“Programming the Monochrome Graphics Subsystem.”

Color Graphics

One or more Data General Complementary Metal Oxide Semiconductor (CMOS) gate

arrays display and control the video display and video memory for the color graphics

subsystem. The gate arrays are slaves on the Mbus that off load the CPU from

performing vector drawing and pixel block transfer operations. The 8-bit color

subsystem uses a single color graphics gate array; the 24-bit color subsystem contains

three gate arrays.

VRAMs make up a 1536 by 1024 pixel frame buffer. The frame buffer provides a

1280 by 1024 pixel screen display and extra off-screen storage for fonts and menus.

The color units differ in the number of planes available to store color information and

the amount of simultaneous colors each can display from a 16.7-million color palette.

The 8-bit color subsystem has 8 planes and provides 256 simultaneous colors. The

24-bit color subsystem uses 24 planes, providing 16.7-million colors. Both color units

have two planes for storing overlays or window information.

For more information on the color graphics subsystem, see Chapter 5, “Programming

the Color Graphics Subsystem.”

1-14 014-001800

System Board Architecture

2-Buffer Controller

The 24-bit Z-buffer controller, an option in 400 stations, supports hidden line and

hidden surface removal for three-dimensional applications. The Z-buffer consists of a

gate array that displays and controls the video display and video memory for the

frame buffer. The Z—buffer board plugs into the color graphics board.

The color graphics controller decodes addresses to registers and arrays within the

Z-buffer, and also generates control signals for the Z-buffer controller. The Z-buffer

controller includes the logic for performing Hither and Yon clipping, and supports

color graphics screen resolutions and context switching. The Z-buffer generates parity

when read.

The I/O Subsystem

The I/O subsystem contains integrated controllers that provide communication between

the system board and peripheral devices. The I/O subsystem resides on the Sbus and

consists of a keyboard port, a mouse port, one or more serial ports, a parallel port, a

SCSI port, and a LAN interface, and in 400 series stations, a VMEbus interface.

Keyboard Port

The keyboard interface supports both AT-compatible and Japanese AX-compatible

keyboards. The interface converts the serial input from the keyboard into parallel

data; converts parallel data into a serial output for the keyboard; generates the start,

stop, and parity bits; and controls keyboard line protocol.

Mouse Port

The mouse port uses an RS-—232-C interface to communicate with a mouse. The

mouse port is one channel of a dual universal asynchronous receiver/transmitter

(DUART).

Serial Ports

The 300 series station has one serial port that supports either an RS-232-C interface

or an RS-422 interface. The 400 series station has two RS-232-C ports that support

modems. Each serial port (RS-232-C and RS-—422) is one channel of a DUART.

Parallel Port

The parallel port supports peripherals with either a Centronics interface or a Data

Products interface.

Small Computer Systems Interface (SCSI) Port

The SCSI port supports access to mass-storage devices on the external SCSI bus. It

connects to an ANSI-standard SCSI bus. The SCSI port resides on the Sbus, and

consists of a DMA controller and a SCSI controller. The DMA controller supports

16-bit data transfers between the SCSI controller and main memory.

014-001800 1-15

System Board Architecture

To start a SCSI bus task, the CPU programs registers in the DMA and SCSI

controllers. The SCSI controller signals the DMA controller when it is ready for a

data transfer, and again when it completes the transfer or requires CPU intervention.

Local Area Network (LAN) Interface

The Ethernet LAN interface resides on the Sbus, and functions as either an Sbus

slave or a master. It consists of an Ethernet controller and a serial interface. An

external Ethernet transceiver box may be connected directly to the serial interface

using a D1S connector.

The CPU acts as the I/O controller for the Ethernet controller, using a special part of

main memory as the data buffer. The Ethernet controller has direct-memory access

(DMA) channels for transferring data between itself and main memory, and it

supports 16-bit data transfers.

The VMEbus Interface (400 Series Only)

The Versa Modula Europa bus (VMEbus) links the VME controllers and the system

board to each other. The 400 station VMEbus interface logic supports Revision C.1

of The VMEbus Specification. The system board’s VME interface logic provides

address decoding (see Figure 1-8), bus arbitration, and interrupt handling.

When any VME controller, including the system board, is master of the VMEbus, it

can transfer words, halfwords and bytes to another VME controller; they can not send

blocks of data over the VMEbus. The system board registers and memory are

mapped to regulate accesses by other VME controllers. Address decode logic enables

access to portions of the address space (i.e., utility space, the Ethernet LAN interface,

or a specific expansion memory board).

CPU LAN SCSI VME

l | | | The address map and address
Address Map and Address Decode Logic decode logic control accesses

between the system resources.

Memory Utility Serial and
Space Parallel Interface

Figure 1-8 Address Decoding

1-16 014-001800

System Board Architecture

Table 1-6 lists the VMEbus signals. The system board provides the 16-MHz system

clock to the SYSCLK line of the VMEbus. The system board also monitors and

handles the interrupt, bus arbitration, and ACFAIL lines.

Table 1-6 VMEbus Signals

Signal Description Signal Description

Data Transfer: Clocks:

A[31-01] Address SERCLK Serial clock

AM[5-0] Address modifier SYSCLK System clock

D[31-00] Data Failures:
DS[1, 0]* Data strobe ACFAIL* Ac failure
AS" Address strobe SYSFAIL* System failure
LWORD" Long word SYSRESET* System reset
SERDATTM* Serial data
WRITE* Write Interrupts:

DTACK* Data transfer acknowledge IRQ{7-1]" Interrupt request
IACK* Interrupt acknowledge

Bus Arbitration: IACKIN* Interrupt acknowledge in
BR[3]* Bus request IACKOUT* Interrupt acknowledge out
BG[3]IN* Bus grant in

BG[3]OUT* Bus grant out Power:
BBSY* Bus busy +5V +5 V de
BCLR* Bus clear +12V +12 V de
BERR* Bus error GND Ground

VMEbus Arbitration

VME controllers, including the system board, communicate through the VMEbus.

Before communicating over the VMEbus, a VME controller requests access to the

VMEbus by asserting the bus request line BR3*. WMEbus arbitration logic, located

on the system board, detects this request and grants the bus, when available, via the

bus grant lines BG3IN* and BG3OUT*. According to The VMEbus Specification, the

VMEbus has four sets (or levels) of bus request and grant signals to regulate bus

access. This implementation of the VMEbus uses only level 3 (BR3*, BG3*IN and

BG3*OUT). The bus grant lines are daisy-chained from VME controller to VME

controller; the board in slot 1 of the VMEbus has the highest access priority, and the

board in slot 2 is next in priority. The system board has the lowest VMEbus priority.

Therefore if all the VME controllers request access to the VMEbus at the same time,

When a controller accepts control of the

VMEbus, it holds BG3OUT* High and asserts BBSY* Low. When it releases the

VMEbus, it deasserts BBSY*, and the arbitration process repeats. This daisy—chain

configuration is illustrated in Figure 1-9. The VMEbus Specification describes these

signals in greater detail.

the board in slot 1 will access the VMEbus.

014-001800 1-17

System Board Architecture

Mbus | Mbus/Sbus System
CPU Interface Board

Sbus
Bus Arbitration Logic

|

VME Interface, Slot 1

BG3O0UT* BGS3IN*

BG30UT* BGS3IN*

BG3IN* BG30OUT*

AL 7~ Slot 2 A <> Slot 3

VME Controller VME Controller

NOTE: If Ais 1, the VME controller passes the bus grant to
the next controller. If Ais 0, the VME controller

takes the bus grant and uses the VMEbus.

Figure 1-9 VMEbus Grant Daisy—Chain

Registers

The registers include

@ System control registers (see Chapter 2)

® Miscellaneous registers (see Chapter 2) include the time-of-boot (TOB) clock

registers and the Programmable Interval Timer (PIT) and time of day (TOD) clock

registers.

@ Interrupt registers (see Chapter 3) which include CPU interrupt registers and VME

interrupt registers.

Monochrome graphics registers (see Chapter 4).

Color graphics registers (see Chapter 5).

Keyboard port registers (see Chapter 6).

Serial port registers (see Chapter 7).

Parallel port registers (see Chapter 7).

Ethernet LAN registers (see Chapter 8).

SCSI registers (see Chapter 9).

1-18 014-001800

System Board Architecture

Timers Available to System Programmers

The Programmable Interval Timer (PIT), time of boot (TOB) and time of day (TOD)

clocks are available to the operating system.

The PIT provides internal timing functions for use by the operating system. This timer

is a write—only countdown timer that interrupts the CPU when the count reaches zero.

The TOB and TOD clocks provide timestamps for the operating system. On powerup

the TOB clock supplies the initialization software with the time and date. After

powerup, the TOD clock keeps the time.

Interrupts and the Interrupt Logic

Interrupt logic:

@ Receives and asserts interrupts

@ Manages the interrupt registers

@ Notifies the CPU of pending interrupt requests

End of Chapter

014-001800 1-19

Chapter 2

Programming the System Board

This chapter describes the following topics:

How to program the CPU.

How to read from and write to memory.

Address mapping.

Mbus and Sbus arbitration.

Bus masters and slaves.

How to address system board resources and system memory from the CPU.

How to address a VME controller from the CPU (400 series stations only).

How to address system board resources from a VME controller (400 series

stations only).

@ How to program the time-of-boot clock, nonvolatile RAM, programmable interval

timer, and time-of-day clock.

@ The boot PROM.

@ The System Control Monitor (SCM).

014~-001800 2-1

Programming the System Board

Programming the CPU

The CPU is programmed using the Reduced Instruction Set Computing (RISC)

instruction set.

The registers are memory-mapped (mapped to unique locations in the workstation

address space), therefore they are programmed using the Load Register from Memory

(ld) and Store Register to Memory (st) instructions.

NOTE: Programming a dual-—CPU or single-CPU workstation is identical; both types

of workstation use the same instruction set. The WHOAMI register

indicates the number of CPU chip sets the workstation contains.

For detailed information on the instruction set and the CPU programmable registers,

see Motorola’s MC8&8&100 User’s Manual. For detailed information on the CMMU

programmable registers, see Motorola’s MC88200 User’s Manual.

The CPU supports the big-endian scheme for ordering bytes in memory. In this

scheme, lower memory bits correspond to high-order bytes, as shown in Figure 2-1.

31 24] 23 16 | 15 8| 7 0

Byte 0 Byte 1 Byte 2 Byte 3

31 16} 15 0

Half-Word 0 Half-Word 1

63 32 | 31 0

Word 0 Word 1

Figure 2-1 Big-Endian Byte Ordering

2-2 014-001800

Programming the System Board

Addressing Memory

Main memory occupies the lower 128 Mbytes of address space. All memory must be

contiguous, starting at address 0000 0000. If a vacant memory location, (i.e., one

that has no RAM) is read, the memory interface returns data of all 1s and parity of

all is, resulting in a parity error. If a vacant memory location is written to, the data

is lost and an error is not generated.

To avoid this problem, the system should size the memory by writing to and reading

from the memory and comparing the results. To do this, software needs only to

perform a write/read sequence at 4-Mbyte boundaries — the smallest increment of

memory expansion.

When the system is powered up or reset, the CPU reads its first instruction from

location 0000 0000. This address is normally the start of main memory, but during a

reset or a powerup, the system maps the boot PROM to 0000 0000. The memory

interface disables the DRAM output drivers during a powerup or reset; main memory

cannot be read from, but it can be written to.

Data Transfers to/from Memory

Mbus/Sbus masters can read from and write to system memory. When a device reads

from system memory, the memory sends the data one word (32 bits) at a time until it

receives an End of Request (EOR) signal from the requestor or until the read crosses

to a new block of data. If the block crossing occurs before the EOR, the memory

module asserts an end of data signal.

When a device writes data to memory, the memory receives the data (in bytes,

half-words, or words) until it receives an EOR or until a block crossing occurs.

When a CPU reads or writes a block (4 words) of data from system memory, the

following occurs:

1. The CPU writes the beginning address to memory.

2. The memory module receives the address.

3. If the memory module cannot respond to the address immediately (within one

clock cycle), it inserts wait states until it is ready to receive or send the data.

4. Ejither the CPU (write to memory) or the memory module (read from memory)

writes a word of data to the Mbus.

5. The memory module automatically increments the address to point to the next

word; then writes or reads the new data. This continues until the end of the

data block is reached.

014-001800 2-3

Programming the System Board

Address Map

The Mbus/Sbus interface contains the address decode logic that defines the address

map. This map consists of three main areas: main memory, video memory, and Mbus

utility space.

The system memory occupies a contiguous block in the lower 128 Mbytes of physical

address space, starting at address 0000 0000.

The video memory occupies a 128—Mbyte block at the beginning of the upper half of

the physical address space, starting at address 8000 0000. This space provides a

memory-mapped video frame buffer for the graphics subsystem.

The VMEbus address space consists of A32 and A24 space. The A32 space occupies

two blocks of physical address space, a 1.57—Gbyte block starting at 2000 0000, and a

1.8-Gbyte block starting at 9000 0000. The A24 space occupies a 16-Mbyte block

starting at FEOO 0000.

The Mbus utility space is mapped into the upper 4 Mbytes of physical address space,

starting at address FFCO 0000. This space is reserved for the memory-mapped

control and status registers of integrated I/O devices, the boot PROM, and other

system control functions.

When the workstation is powered up, or when a system reset occurs, the utility space,

which includes the boot PROM, is mapped to address 0000 0000. During a system

reset or boot, only the lower 20 address bits A[19:0] are used; the upper 12 address

bits A[31-20] are ignored. This points all addresses into the remapped 4-Mbyte

utility space. During reset, main memory will accept data from write operations. This

situation exists until the Diagnostic Control Register (DCR) bit 5 is set to 1.

Table 2-1 identifies system memory space for 300 and 400 series stations. Appendix

A, “Address Map,” has complete address maps for the 300 and 400 series stations.

Table 2-1 System Memory Space

Memory Resource Size (Bytes) Address Range

300 Series Stations

Boot PROM 128 K 0000 0000 - 0001 FFFF (During boot)

128 K FFCO 0000- FFC1 FFFF (After boot)

System memory 128 M 0000 0000 - O7FF FFFF (Write only during boot)

Video memory 128 M 8000 0000 - 87FF FFFF

400 Series Stations

Boot PROM 128 K 0000 0000 - 0001 FFFF (During boot)

128 K FFCO 0000- FFC1 FFFF (After boot)

System memory 256 M 0000 0000 - O7FF FFFF (Write only during boot)

Video memory 128 M 8000 0000 —- 87FF FFFF

VME A32 space 2G 1000 0000 - 7FFF FFFF

1.8G 9000 0000 - FDFF FFFF

VME A24 space 16M FE00 0000- FEFF FFFF

2-4 014-001800

Programming the System Board

Nibus and Sbus

The following sections describe the Memory bus (Mbus) and System bus (Sbus).

Mbus and Sbus Arbitration

The Mbus and Sbus support several controllers that can become master of these

busses. Access to the busses is regulated using the prioritized arbitration scheme.

Mbus and Sbus masters share the same arbitration unit, and the current master is the

master of both the Sbus and the Mbus. Sbus masters can communicate only with

Mbus devices, not with other Sbus devices. Mbus masters can communicate with

other Mbus devices or with Sbus devices. The Mbus/Sbus interface ensures that the

data, addresses, control, and status all flow in the proper directions to effect the

correct transfer.

Due to the strict latency requirements of the Ethernet LAN interface, Mbus masters

must restrict their transfers to less than 5 ms. They must yield the bus for at least

one cycle between word transfers, or in the case of block devices, between every

4-word block. This allows higher priority devices to access the bus in a timely

fashion.

The Mbus/Sbus interface incorporates a time-out mechanism that terminates a bus

cycle and returns an Mbus error when an Mbus wait does not allow the DRAMs to be

refreshed. The time interval varies depending on when the Mbus wait is asserted in

reference to the time from the previous DRAM refresh. For example, on 16.67-MHz

workstations, the time varies from 15-31 ys; on a 20-MHz workstation, the time

varies from 13-26 us.

The Mbus/Sbus interface’s Mbus arbitration logic uses a priority mechanism to grant

bus mastership. There is no fairness incorporated into this arbitration mechanism.

Table 2-2 lists the potential bus masters and their priorities. The Ethernet LAN

interface has the highest priority because it has the strictest bus latency requirements.

Table 2-2 Sbus Master Priorities

Device Priority

Ethernet LAN interface Highest

SCSI DMA controller

VME interface

Data CMMU 0

Instruction CMMU 0

Data CMMU 1

Instruction CMMU 1 Lowest

014-001800 2-5

Programming the System Board

Master and Slave Devices

A device is a master device when it has control of the system to read from and write

to other devices. Only intelligent devices, such as the CPU/CMMU or a VME

controller, can be a master. Slave devices (those accessed by a master) respond to

commands from the master. Masters and slaves vary from transaction to transaction,

and in many instances slaves become masters in response to commands from a

previous master.

For example, if a CPU/CMMU requests data from a disk, the CPU/CMMU is the

initial master device. The disk controller is the slave device that receives the read

command, obtains the data from the disk, and places the data into its buffer. The

disk controller then becomes the master, writes the data from its buffer to system

memory. System memory is the slave device which receives the data from the disk

controller. The CPU/CMMU is again the master device as it reads the data from

system memory.

Data Alignment

All data transfers using the System bus (Sbus) must be aligned on word boundaries;

all locations on the Sbus are word aligned. As a result, software must access Sbus

slaves as 32-bit quantities regardless of how many bits of data the register actually

contains. This ensures that the data is correctly aligned.

2-6 014-001800

Programming the System Board

Addressing System Board Resources and

System Memory

This section describes how to address the system board resources and system memory.

The following numbered steps, in conjunction with Figure 2-2 and Figure 2-3,

describe how the CPUs access the system board resources and the system memory.

1. The CPU puts a 32-bit address onto the Mbus.

2. The address decode logic decodes the address bits (2a) and enables access to a

device (2b) such as onboard memory, expansion memory boards, utility space,

and VME space.

3. The 32-bit address points to a location within the selected device.

Figure 2-2 shows how the CPU addresses memory, while Figure 2-3 shows how

addresses are decoded.

CPU

Instruction
CMMU Data CMMU | Master

Address &

(1) Data

Mbus

Address Address &

Address Memory

Decode Interface

Expansion Memory Address &
Board Select. (3) Data

Expansion
3 Memory Board Slave

Figure 2-2 How the CPU Addresses System Memory

014-001800 2-7

Programming the System Board

CPU

Instruction

CMMU

NOTE: Both instruction and data

Data CMMU
CMMuUs generate addresses,

but not at the same time.

A{31-00} \
Mbus

Address A[31-00]

Y
The address points to a location

within the system board or

expansion memory board.

Address

Decode Logic

The address decode logic points to and

selects the following address spaces.

Onboard RAM

Address Decode

Memory Board 6

Memory Board 1

Memory Board 2

Memory Board 7

Memory Board 3

Utility space

Memory Board 4

Memory Board B

Memory Board 5

VME A24 Space _

VME A32 Space _

VME Ai6 Space _

[___] = 300 and 400 stations

[_] = 400 stations only

‘See the section “Addressing a
VME Controller from a CPU" _

Figure 2-3 Decoding Addresses from the CPU

014-001800

Programming the System Board

Addressing VME Controllers (400 Series Only)

When the CPU addresses a VME controller, the address decode logic decodes address

bits A[31-16]. AM[S-—4] is translated from VME address space select. The address

modifier bits inform the VME controllers which VME space the address is written to:

A16, A24, or A32 space. See Table 2-3 and Table 2-4 in the description of the

EXTAM register for more information about the address modifier bits.

The following numbered steps in conjunction with Figure 2-4 and Figure 2~5 describe

how the CPUs access the system board resources and the system memory.

When the CPU addresses a VME controller, the system board decodes the address as

follows:

1. The CPU puts a 32-bit address onto the Mbus.

2. The address decode logic decodes the upper 10 address bits. If these 10 bits

point to the VMEbus, the following steps are performed simultaneously.

3. The VME interface performs the following tasks simultaneously:

Writes the address to the VMEbus from the Sbus.

Writes the address modifier AM[5-0] to the VMEbus. AM[5-4] is

translated from VME address space select (i.e., A32, A24, A16). AM[3-0]

comes from Extended Address Modifer (EAM[3-0]) of the EXTAM

register.

@ The address modifier bits AM[3-0] are put on the VMEbus from the

EXTAM register.

Figure 2-4 illustrates how an address passes from the system board to a VME

controller. In this example, the CPU is instructing a disk controller to send a block

of data to the expansion memory.

Figure 2-5 illustrates how the VMEbus decodes addresses, and where the address

modifier bits come from.

A description of the EXTAM register follows Figure 2-5.

014-001800 2-9

Programming the System Board

CPU System Board

Centction Data CMMU | Master

Address &
Data

Mbus

Address
A[31-22]

Address & Memory

Data Address
Decode

VMEbus
Interface Expansion

VME A32, Memory
A24, or
A16 Select

VMEbus

VMEbus

Slave

VME Controller

Figure 2-4 Addressing the VMEbus from the CPU

VMEbus

Address

Mbus Address Bits

VMEbus Address Bits

A[31:01] (A32)
A[23:01] (A24)
A[15:01] (A16}

Type of VMEbus
Access

EXTAM Register Bits:
EXTAM [3-0]

Y

VME Address Space
Select: A16, A24 or

Y
VMEbus Address Modifier
Bits AM[3-0]

VMEbus Address Modifier
Bits AM[5-4]

AM [3-0]

VMEbus

AM[5:4]

Figure 2-5 Decoding Addresses to the VMEbus

2-10
014-001800

Programming the System Board

EXTAM Extended Address Modifier

Address FFF8 8014 Write only

The Extended Address Modifier (EXTAM) register supplies the address modifier bits

AM[3-0] to the VMEbus when an Mbus controller accesses the VMEbus. The

address modifier bits AM[5-0] supply the VME devices with information such as

address size, type of access, and identification of the bus master. Address modifier

bits AM[S, 4] identify the VME address space, and are decoded (by logic) from

VME address space select as shown below. AM[5, 4] is put on the VMEbus.

Table 2-3 defines the address modifier (AM[5, 4]) bits.

Table 2-3 Address Modifiers (VME Space)

VME Space AM5 AM4

A32 0 0

A24 1 1

Al6 1 0

Table 2-4 defines the address modifier (AM[3-0]) bits.

Table 2-4 Address Modifiers (Transfer Type)

AM3 AM2 AM1 AMO Type of Access

1 1 1 1 Supervisor block transfer

1 1 1 0 Supervisor program access

1 1 0 1 Supervisor data access

1 0 1] User block transfer

1 0 1 0 User program access

1 0 0 1 User data access

NOTE: A user transfer or user access is the same as a nonpriveleged access defined in

the VMEbus specification.

EXTAM is not affected by system reset or local reset.

Initialize EXTAM before addressing a VME controller from the system board.

7 4 3 0

Unused EAM

Bit Mnemonic Function

7-4 Unused

3-0 EAM[3-0] Extended Address Modifiers.

Drives the address modifiers AM[3-0] onto the VMEbus when a CPU

writes an address to the VMEbus. The address modifier defines the

type of transfer or access (see Table 2-3, Address Modifiers).

014-001800 2-11

Programming the System Board

Addressing System Board Resources from a

VME Controller (400 Series Only)

This section describes how VME controllers address system memory. This addressing

process is invisible to the programmer. The following text and illustrations explain

how the CPUs access the system board resources and the system memory.

VME controllers have one of three address spaces: A16, A24, or A32 space, and are

respectively referred to as A16, A24, or A32 controllers. The number of address

lines driven by the controller defines the address space or range available.

Al6 controllers

A24 controllers

A32 controllers

have 16 address lines in and out, and therefore their addressing

range is limited to 64 Kbytes. A16 controllers can access other

VME controllers, but they cannot access the system board.

have 24 address lines in and out, and therefore their addressing

range is limited to 16 Mbytes. A24 controllers can access assigned

system memory only after the CPU has instructed them to do so.

When an A24 controller accesses system memory, the EXTAD

register appends the upper eight address bits to the A24 address.

This enables the A24 device to address the correct pages in

memory. When addressing system memory, the address modifier

bits AM[3-0] define the type of access: whether the transfer is to

user space or to supervisor space, and whether these accesses are

block, program or data accesses.

have 32 address lines in and out, and therefore their addressing

range extends throughout the limits of the system. A32 controllers

can access assigned system memory as well as other VME

controllers.

Figure 2-6 illustrates how VME controllers address system memory.

A VME A24 Address to System Memory

31 24 | 23 16

EXTAD 24-bit address

15

24-bit address

A VME A32 Address to System Memory

31 22 | 21 16

Address of 4-Mbyte page Address within 4-Mbyte page

15 0

Address within 4 Mbyte page

Figure 2-6 Structure of Addresses from VME Controllers to System Memory

2-12 014-001800

Programming the System Board

Figure 2-7 is a flowchart that illustrates how VME controllers address system board

resources and system memory.

A VME con troller generates

an address and address

modifier, and writes them to

the VMEbus.

The address decode logic determines

whether or not the address is valid.

Decodes to another

VME controller or

produces a bus error

through a bus timer.

Is the address

and address

modifier valid?

A24 address A32 address
A24 or A32
wee

The VME interface appends the The VME interface puts the 32-bit
EXTAD bits 31-24 to the VME address generated by the VME
address bits 23-01. The EXTAD bits controller onto the Mbus.
convert the A24 address into a 32-bit

address which is placed on the Mbus.

The address decode logic enables

the selected portion of the address

range.

Figure 2-7 How a VME Controller Addresses System Board Resources and

System Memory (Flowchart)

014-001800 2-13

Programming the System Board

Figure 2-8 illustrates how VME controllers address system board resources and system

memory.

CPU System Board

Instruction
CMMU Data CMMU

Address

Mbus and Data

Address

A[31-16]

acd Data Address Decode Memory
Logic Interface

Address

and Data

A Expansion Memory
Board Select

Expansion
_ Memory

System board select

Slave

ee Dus Address Decode
nterface Address Logic

Address

VMEbus | and Data

Device

A24 or A382 Master

Figure 2-8 How a VME Controller Addresses System Board Resources and

System Memory

2-14 014-001800

Programming the System Board

EXTAD Extended Address

Address FFF8 8010 Write only

The extended address register provides the upper eight Mbus address bits when an

A24 VMEbus device accesses the Mbus. EXTAD is loaded during powerup with a

base address for VME access to system memory.

EXTAD is not affected by either system reset or local reset.

7 0

EXT

Bit Mnemonic Function

7-0 EXT [31-24] Extended Address.

Supplies the address bits A[31-24] to the Mbus when an A24

VMEbus device accesses the Mbus.

014-001800 2-1 5

Programming the System Board

Programming the System Control Registers

The system control registers are memory-mapped and are accessed as 32-bit registers.

To access a system control register declare it as type int in a C program, or use the

Load Register from Memory (Id) or Store Register to Memory (st) instruction in an

assembly language program. Table 2-5 provides the memory map for these registers.

The rest of this section describes the diagnostic registers.

Table 2-5 Memory Map of the System Control Registers

Register or Component Address (hexadecimal) Type

Common to both Workstations

DCR (Diagnostic Control) FFF8 4008 (300 series stations) Write-only

FFF8 40CO (400 series stations)

DSR (Diagnostic Status) FFF8 400C (300 series stations) Read-only

FFF8 40C4 (400 series stations)

PAR (Parity Address) FFF8 4010 (300 series stations) Read-only

FFF8 40C8 (400 series stations)

400-specific

WHOAMI (CPU Configuration) FFF8 8018 Read-only

2-16 014-001800

Programming the System Board

DCR Diagnostic Control

Address FFF8 4008 (300 stations) Write Only

Address FFF8 40C0 (400 stations) Write Only

The Diagnostic Control Register (DCR) allows software to control the state of the

system board.

NOTE: All DCR bits are cleared to 0 after a power-on reset and system reset.

System components, such as the graphics subsystem, that reside on the Mbus must

provide their own software reset capabilities beyond the power-on reset and software

reset functions provided by the system board.

15 9 8 \ 6 5 4 3 2 1 0
Unused Mss | LED] RKB| LRD| FL1] RIO} RET| RSC | RSY

Bit Mnemonic Function

15-9 Unused Unused

8 MSS Monitor Speed Select (Available only on color graphics systems.)

1 Selects a 125 MHz video monitor.

O Selects a 107 MHz video monitor.

7 LED Diagnostic LED control.

1 Turns off the diagnostic LED.

0 Turns on the diagnostic LED.

6 RKB* Reset keyboard subsystem.

O Resets the keyboard interface. For information on the state of the

keyboard interface after reset, see Chapter 6 “Programming the

Keyboard Port.” After a power-on reset or system reset, this bit is

0, holding the keyboard interface in the reset state.

5 LRD Disable/enable low memory decoding of utility space.

1 Maps the utility space to the top of memory beginning at address

FFCO 0000. LRD is set after the system is powered up. When

mapped to this area, data can be read from and written to memory.

O Maps the utility space to the bottom of memory, beginning at

address 0000 0000. LRD is cleared during a powerup or reset so

that the CPU can execute the power-up code beginning at address

0000 0000. When in this mode, the upper ten address bits

(A[32:23] are ignored. Data can be written to but not read from

memory.

* Signal is a logical true (1) when asserted low.

(continued)

014-001800 2-17

Programming the System Board

Bit Mnemonic Function

4 FL1 Force a logical 1 into the parity bits.

1 Writes a logical 1 to all four byte parity bits when data is written to

main memory. The data written to each byte determines whether a

parity error is signaled when the data is read from main memory.

Since there is no effect during a read operation, this allows you to

force a parity error on any byte. For example, writing 0101 0100

produces a parity error for byte 0. In this case, byte 0 is the only

byte to have odd parity when all parity bits are forced to 1s (the

workstation uses even parity). Writing FFFF FFFF forces all bytes

to have a parity error.

Memory does not check for valid parity and treats parity bits for

data the same as data bits. It is the responsibility of the Mbus

master to check for parity errors.

3 RIO* I/O subsystem reset.

O Resets the mouse and serial ports’ DUART and the parallel port.

For information on the state of the DUART and the parallel port

after reset and the exact state of the various subsystems after reset,

see Chapter 7 “Programming the Serial Ports and Parallel Port.”

After a power-on reset or system reset, this bit is set to 0, holding

the DUART and parallel port in the reset state.

2 RET* Ethernet subsystem reset.

O Resets the LAN interface. For information on the state of the LAN

interface after reset, see Chapter 8, “Programming the Local Area

Network Interface.” After a power-on reset or system reset, this bit

is set to 0, holding the LAN interface in the reset state.

1 RSC* SCSI subsystem reset.

O Resets the SCSI port. For information on the state of the SCSI port

after reset, see Chapter 9, “Programming the Small Computer

Systems Interface Port.” After a power-on reset or system reset,

this bit is set to 0, holding the SCSI port in the reset state.

0 RSY System reset.

1 Initiates a system reset that puts the entire board, including the

CPU, in the reset state. The power-on reset bit (STS) in the

Diagnostic Status Register (DSR) is not set to 1, indicating that the

reset was initiated by software and not by system powerup.

* Signal is a logical true (1) when asserted low.

(concluded)

2-18 014-001800

Programming the System Board

DSR Diagnostic Status

Address FFF8 400C (300 stations) Read Only

Address FFF8 40C4 (400 stations) Read Only

The Diagnostic Status Register (DSR) allows software to determine the state of the

system board.

Reserved RSTITPRISTS

Bit Mnemonic Function

7-3 Reserved

RST*

TPR

STS

Ignored when the register is written, and undefined when the register

is read.

NOVRAM reset.

1 Indicates that the hardware jumper at locations TP2 and TP3 is not

installed. This jumper is not normally installed.

O Indicates that the jumper is installed so that firmware can initiate a

NOVRAM initialization sequence.

SCSI terminator power.

1 Indicates that the onboard SCSI terminators have power.

O Indicates that the fuse is blown and should be replaced.

Power-on reset.

1 Indicates that the last reset was a system reset initiated by a

power-on reset. When the DSR is read, this bit is set to 0, and is

not reset to 1 until the next power-on reset. It allows diagnostic and

power-up software to distinguish between a power-on reset and a

software initiated reset.

* Signal is a logical] true when asserted low.

014-001800 2-19

Programming the System Board

PAR Parity Address

Address FFF8 4010 (300 stations) Read Only

Address FFF8 40C8 (400 stations) Read Only

The Parity Address Register (PAR) monitors the addresses of each Mbus cycle and

supplies address and strobe information. A parity error interrupt is generated only if

the SCSI port or the LAN interface reads a memory location that contains bad parity

during a DMA transfer or if the CPU reads the SCSI Signal register (Register 9) while

it is in transition. All other parity error conditions are handled by the bus fault

mechanism when one of the CMMU chips is the bus master.

If the Mbus cycle is positively acknowledged, the latched information is discarded,

and the next Mbus cycle is monitored. If the cycle generates an Mbus parity

interrupt, the latched address is stored in PAR until the register is read. After PAR is

read, addresses can be latched again. Reading PAR clears the parity error interrupt

request in the appropriate interrupt status register, and resets any pending parity error.

15 14} 13 | 12 117 10 9 8 7 6 5 4 0

MS11|MS0O| PH | Reserved | A1 | PB1} PBO| 100 | MS2} DSP MMAD

Bit Mnemonic Function

15 MS1 Memory Size 1

14 MSO Memory Size 0

Together these bits indicate the number of memory modules with

4-~Mbit DRAMs.

13 PH Phase

1 The parity bus error terminated an address phase.

O The parity bus error terminated a data phase. In the workstation’s

current implementation this bit is always 0.

12,11 Res Reserved.

Ignored when written to, returns Os when read from.

10 Al Half-word Address.

This bit, along with the latched byte strobes, indicates which byte

caused the parity error interrupt.

1 Indicates that the error occurred on either or both bytes in the

bottom half-word (bits 15-0).

0 Indicates that the error occurred on either or both bytes in the top

half-word (bits 31-16).

(continued)

2-20 014-001800

Programming the System Board

Bit Mnemonic Function

9,8 PB1, PBO Parity Error Byte.

These bits indicate which byte strobes were active during a bus cycle

that was terminated by an Mbus parity error. PBO indicates that the

error occurred in the most-significant byte (either bits 7-0 or bits

23-16). PB1 indicates that the error occurred in the least-significant

byte (either bits 15-8 or bits 31-24). Use PBO and PB1 in conjunction

with Al (bit 10) to determine which byte caused the parity error.

7 100 100 ns DRAM indicator.

0 indicates that the memory modules use 100 ns DRAMs.

6 MS2 Memory Size 2

DRAM chips installed in the workstation (1-Mbit DRAM chips do not

affect this count). The bits are binary encoded with MSO being the

least significant bit. Modules with 4-Mbit chips must be installed

starting at physical address 0000 000016, and must occupy contiguous

physical memory space. These bits count down from 0. For example,

1112 indicates 0 modules installed; 1102 indicates 1 module installed.

5 DSP Parity Error Address Space.

1 Indicates that the Mbus parity error was caused during an access of

the lower 128 Mbytes of address space.

0 Indicates that the parity error occurred during an access to any

address space above the lower 128 Mbytes.

4-0 MMAD Memory Module Address.

These bits identify the memory module containingthe RAM location

that caused a parity error. Depending on which size DRAM is

installed, each module contains 4-Mbyte or 16-Mbyte locations, each

with 32 data bits and 4 byte parity bits. Software must use this

information in conjunction with bits 15, 14, 6 (MS2-0) to determine

the faulting memory module.

(concluded)

014-001800 2-21

Programming the System Board

WHOAMI (400-Series Only) CPU Configuration

Address FFF8 8018 Read Only

The CPU Configuration (WHOAMI) register contains the CPU configuration and

defines which CPU is currently master of the Mbus. The CPU configuration defines

how many CPUs and CMMUs are on the system board. The possible configurations

are given by the CPU Configuration (CPC) bits. The WHOAMI register is unaffected

by either system reset or a local reset.

CPC CMM

Bit Mnemonic Function

7-4 CPC CPU Configuration.

These bits define the current CPU configuration as follows:

CPC CPU Configuration

516 2 CPUs, 4 CMMUs

Al6 1 CPU, 2 CMMUs

3-0 CMM Current Mbus Master

The CMM bits indicate which CPU is currently the master of the Mbus

during a data cycle. These bits are valid only during a data cycle when

a CPU is initiating the read or write through its data CMMU. CMM is

not valid during an instruction read or write, or while a VME controller

is master of the Mbus.

CMM Mbus Master

1 CPUO is master of the Mbus.

2 CPU1 is master of the Mbus.

2-22 014~001800

Programming the System Board

The Time-of-Boot (TOB) Clock and

Nonvolatile RAM (NOVRAM)

The time-of-boot (TOB) clock is a battery-backed device that initializes the

time-of-day clock. The TOB clock is implemented using a SGS-Thomson

MK48T02B 2K X 8 Zeropowert/Timekeepert RAM chip. This chip provides total

nonvolatility for over 3 years of operation without power. Real-time clock is accurate

to within one minute per month at room temperature (25_C). The device provides a

programmable register for calibrating the timekeeping accuracy. In addition to the

timekeeping functions, this chip provides 2040 bytes of NOVRAM used for diagnostics

and system configuration/boot information.

Time-of-Boot Clock Registers

The eight TOB clock registers are 8-bit registers in the timekeeper RAM. Software

can adjust the TOB clock by writing the desired time and date to these registers.

They are aligned on word (32-bit) boundaries and occupy the last eight locations of

the 2048 words reserved for the NOVRAM. Table 2-6 shows the registers, their

addresses, and illustrates their use with an example.

Table 2-6 Memory Map for the Time-of-Boot Clock Registers

Range of Value Example

Address Register Hex. (Decimal) Hex. (Decimal)

FFF8 1FFC Year 00-63 (99) 59 (89)

FFF8 1FF8 Month 01-0C (12) 08 (08)

FFF8 1FF4 Date 01-1F (31) 11 (17)

FFF8 1FFO Day 01-07 (07) 05 (05)

FFF8 1FEC Hour 00-17 (23) 10 (16)

FFF8 1FE8 Minutes 00-3B (59) 19 (25)

FFF8 1FE4 Seconds 00-3B (59) 29 (41)

FFF8 1FEO Control — 40 (64)

The example returns: Thursday, August 17, 1989, 16:25:41.

The Control register (FFF8 1FEQ) allows you to read, set, or calibrate the TOB clock.

Before reading or writing the TOB registers, you must prevent the clock from updating

the registers by setting the appropriate bit: to read data set bit 6 of the Control

register to 1, to write data set bit 7 to 1. Halting the register updating does not affect

the TOB clock’s timekeeping. Resetting the read bit to 0 continues updating of the

registers; resetting the write bit to 0 transfers the register values to the TOB clock and

continues the timekeeping operations. The date/time values occupy the low-order bits

of the registers with any unused bits set to 0.

To calibrate the TOB clock, write a calibration value into bits 0-5 of the Control

register. Bit 5 is the sign bit: 0 indicates negative calibration, slowing the clock down,

1 indicates positive calibration, speeding the clock up. Bits 0-4 contain a binary

calibration value from 0-31. Each value modifies a number of minutes in each

64-minute cycle of the clock. A value of 000012 modifies the first 2 minutes by 1

014-001800 2-23

Programming the System Board

second per minute. A value of 001102 modifies the first 12 minutes by 1 second per

minute.

For detailed descriptions of these registers and further programming information, see

the SGS-Thomson, Memory Products Databook.

NOVRAM Addresses

The NOVRAM contains 2040 bytes of nonvolatile data for Data General diagnostics

and system configuration/boot information. The NOVRAM occupies two 4-Kbyte

pages in the Mbus utility space. Each NOVRAM byte is word aligned in Mbus

address space, and is accessed as the lowest order byte (bits 8-0) of each word.

Table 2-7 gives the address map for the NOVRAM bytes.

Table 2-7 NOVRAM Addresses

Address Byte Number Comments

FFF8 0000 0000

tae toa Reserved (not write—protected)

FFF8 01FF 0127

FFF8 0200 0128

tae tee Reserved (write-protected)

FFF8 03FF 0255

FFF8 0400 0256

Lae Lae General use (not write—protected)

FFF8 1FDC 2039

2-24 014-001800

Programming the System Board

Programming the ClO

A Zilog Z8536 Counter/Timer and Parallel I/O (CIO) is used as a counter/timer only,

generating an interrupt to the CPU when a countdown reaches terminal count. This

process can be used to generate, through software, a time-of-day (TOD) clock.

The counter/timer lines can be enabled or disabled by programming the control

registers. As shown in Figure 2-9, timers 1 and 3 are linked externally. To prevent

false triggers, all of the counter/timer I/O pins are pulled High.

Timer 1 Timer 2 Timer 3

Ck in Out Ck In Out Ck In Out

A . of 7

|

3.6864 MHz —>| 2 > 1--4—-4----- L_—_____—__~ _

Ck = Clock Input

in’ = Counter Input

Ot = Counter Output

Figure 2-9 External Timer Connections

The 3.6864-MHz PCLK input is internally divided by 2 and supplied to the counters,

providing a minimum resolution of 0.54 ms.

The counters can be programmed to generate an interrupt when they reach terminal

count. The program must read the counter often enough to detect a roll-over; the

counter does not generate an interrupt when it rolls over.

The 8~-bit CIO registers are aligned on word boundaries and are the low-order byte.

Table 2-8 defines the addresses of the CIO registers. For detailed descriptions of the

CIO registers, see Zilog Corporation’s manual Z8536 Z-CIO/Z8536 CIO

Counter/Timer and Parallel I/O Unit.

Table 2-8 CIO Register Addresses

Address Register

FFF8 3000 Port A Data register

FFF8 3004 Port B Data register

FFF8 3008 Port C Data register

FFF8 300C Control register

014-001800 2-25

Programming the System Board

The Boot PROM

The boot PROM contains 128 Kbytes arranged as 32 Kwords by 32 bits/word. The

boot PROM resides in the utility space at addresses FFCO 0000 through FFC1 FFFF.

During a power-on reset or a system reset, the boot PROM is mapped to 0000 0000

through 0001 FFFF. This mapping allows the CPU to fetch the boot code from

address 0000 0000.

NOTE: The remapping function is enabled by clearing bit 5 (LRD) of the

Diagnostic Control Register (DCR). See the Diagnostic Control Register in

an earlier section, “Programming the System Control Registers.”

During powerup, the CPU executes the System Control Monitor (SCM) program to

initialize and test the system board and memory modules. See the next section, “The

System Control Monitor (SCM).” When this power-up sequence is completed, the

system operator enters the BOOT command and the CPU boots the operating system

from the default boot device. The boot device can be a local disk or tape drive or a

server on Ethernet. For more information on the power-up sequence, see Appendix

B, “Power-Up Flowchart.”

If the CPU cannot boot the operating system from the default device, it runs the SCM

user interface and displays the boot menu on the system console (either the graphics

monitor or a terminal connected to the serial port). The boot menu allows a user to

specify the boot path. For information on the boot menu, see the manual Using the

System Control Monitor (SCM).

If performing an automatic program load, the load will not succeed unless a valid boot

path exists and the boot device contains the appropriate boot file. For information on

the boot file, see Appendix C, “Boot File Format.”

During powerup, the CPU also enters the SCM user interface when a system error

condition occurs or when one or more diagnostics test fails. During normal system

operation, the CPU accesses the SCM user interface when the operating system

encounters a problem that it cannot handle while running (i.e., a virtual halt or a

breakpoint not supported by a user program.) The SCM user interface consists of a

command interpreter and menus. These allow the system operator to display and

modify system configuration parameters.

For more information on the SCM user interface, see the manual Using the System

Control Monitor (SCM).

Power-Up and Boot Code

When a powerup reset occurs, the CPU executes power-up diagnostic code stored in

the PROM. After the system hardware passes diagnostic tests, the CPU boots from a

default storage device which may be on the Ethernet LAN, SCSI bus, or VMEbus

(400 series stations only.)

2-26 014-001800

Programming the System Board

The System Control Monitor (SCM)

Data General’s System Control Monitor (SCM) supports a standard set of system calls

that use CPU registers. Programs can pass control to and from the SCM using these

optional system calls. Operating system software may need to support the SCM system

calls for certain value-added functions.

The SCM currently provides the following services to the operating system via system

calls:

@ Access to standard input/output devices.

@ System configuration information.

@ Panic and error reporting.

Software accesses SCM system calls through vectors in the boot PROM vector space.

A program must do the following to access the SCM system calls:

1 Set CR7, the Vector Base Register (VBR), to the PROM VBR. If this changes

the value of CR7, software must save the changes to copy back later. The VBR

defaults to the PROM values after powerup.

2 Load register 9 (r9) and other argument-specified registers with the offset value

defined in Table 2-9 (the values are in hexadecimal unless indicated otherwise).

3 Execute the following trap instruction: tb0 0,R0,496

Table 2-9 SCM System Calls

System Call Argument(s) Data Returned Function

.BANNER r9=113 r2=Pointer to string Returns pointer to system banner string.

.CHAR r9=0 12(LSB)=ASCII Waits for an ASCII character from the
character default input port, reads it, and returns

the character in the least significant byte

of register 2. (A null indicates a break.)

.CHFLOW r9=116 12=Flow control flag Reads or writes the character flow control

r2=0 or non-0 (XON/XOFF) flag. If r2 = 0 initially,

r3=Value then r2 will contain the current flag

value. If r2 = non-O initially, then stores

value from r3. An r3 value of F816

indicates flow contro] enabled; any other

value indicates disabled.

.CHKSUM r2=Pointer to r2=Checksum Performs data checksum test and returns

data the value in r2. (Adds all the bytes and

r3=Byte count complements the result.)

r9=68

.CHSTAT r9=5 12(LSB)=Default Polls the standard input port for character
input status status and returns this value in the least

significant byte of r2.

-COMMID r9=114 r2=Pointer to address Returns pointer to Ethernet address.

.CPUID r9=102 r2=CPU ID Returns the CPU ID.

Note: If r2 is set to 1, an error has occurred.

(continued)

014-001800 2-27

Programming the System Board

Table 2-9 SCM System Calls

System Call Argument(s) Data Returned Function

.GDMP r9=105 r2=Pointer Reads video timing parameters into SPAD

r2=0 or non-0 buffer, and returns pointer as byte-packed

data in r2. If r2 original value not 0,

writes byte-packed data pointed to by r2

into BBSRAM.

.GTLINE 12=32-bit r2=String length Reads a character string of 256 characters

string buffer or less from the standard input port,

address echoes them, and places the character

r9=2 string in the buffer address in r2.

Terminator characters are: \n = New

Line, \l = Carriage Return, and \f =

Formfeed. The SCM screen edit control

functions are supported.

-HALT r9=63 None Halts the user program and enters the

SCM.

»-HOSTID 19=107 r2=Pointer to Returns to r2 a pointer to 4-byte binary

host ID host ID data.

-INVALID r9=112 None Invalidates the instruction cache

r2=JP# or -1 (Icache). If r2 = a JP number, then only

that JP Icache is invalidated. If r2 = -1,

then all JP Icaches are invalidated.

.KBLAN r9=106 r2=Language Returns language code to r2. The codes

and languages are

1 U.S. English 6 Spanish

2 German 7 Swiss

3. U.K. English 8 Italian

4 French 9 Japanese

5 Swedish

.MSIZE r9=103 12=Top of memory Returns top of memory to 12. If r2 = 0

r2=0 or non-0 initially; then r2 will contain top of

physical memory. If r2 = non-0 initially,

then r2 will contain top of user memory.

.NBLOCAL ss r9=115 r2=LAN port number’ Reads or writes the LAN port number. If

r2=0 or non-O r2 = 0 initially, then r2 will contain the

r3=Value LAN port number. If r2 = non-0 initially,

then stores value from r3.

-OCHAR r9=20 r2=0 Prints the value in the least significant

12(LSB)=ASCII character byte of r2 to the standard output device.

.-OCRLF r9=26 r2=0 Prints a Carriage Return/line feed to the

Standard output device.

.PANIC r9=110 r2=Error code Halts the user program, returns an error

code to r2, and enters the SCM.

.PRINTER r9=117 r2=Printer type Returns printer type to r2. A value of 0 =

Centronics; non-0 = Data Products.

.POLLKEY r9=5 r2=Key hit Returns an indication of whether or not a

key was pressed. If r2 = 0, no key was

pressed. If r2 = non-0O, a key was

pressed.

.PTLINE 1r9=21 r2=0 Prints the character string pointed to by

12=32-bit the address in r2 to the standard output

address of device. Does not return until it encounters

string the null terminator in the string. Note

that this call allows five additional

arguments and uses the C printf

characteristics.

Note: If r2 is set to 1, an error has occurred.

2-28

(continued)

014-001800

Programming the System Board

Table 2-9 (continued) SCM System Calls

System Cail Argument(s) Data Returned Function

.REBOOT r9=101 None Resets and reinitializes the workstation,
r2=0 or Pointer to initializes the boot time registers, and

boot path enters the boot menu. If r2 = 0, the call

uses the default boot path. If r2 = non-0,

the call uses the pointer in r2.

.REVNUM r9=104 r2=Revision Returns PROM revision to r2 in the
number format: bit 31 (if 1), engineering

revision; bits 30-16, major revision

number; bits 15-0, minor revision

number. For example,

80050002 = Rev E05.02

30000 = Rev 3.0

-RWDCR r9=111 t2=DCR Reads or writes a copy of the Diagnostic

r2=0 or non-0 Control Register (DCR) word in memory.

r3=New DCR If r2=0, returns DCR to 12. If 12 =
value non-0O, writes r3 value to DCR word. The

description of the Diagnostic Control

Register (DCR) in this chapter gives the

DCR values.

.JPSTART 12=JP# to start r2=Status Starts another processor (JP#) after an
r3=Starting initial boot (used only in multiprocessor

address systems). The status returned to r2 is

r9=100 0 Start successful

1 Illegal or missing JP

2 Single JP configuration

3 JP not halted

4 JP does not respond

.STDIO r9=70 12=1/O device Returns the standard input and output

number ports. Device number values are

QO Serial input and output

1 Serial input/serial and

graphics output

2 Keyboard input/graphics output

.TECW r9=108 r2=ECW Returns or sets Environment Control

12=0 or non-0 Word (ECW). If r2 = 0, returns ECW to

r3=New ECW r2. If r2 not = 0, writes r3 value to

value ECW. Table 2-8 lists the ECW bit

values, functions, and default states at

powerup.

Note: If r2 is set to 1, an error has occurred.

(concluded)

014-001800 2-29

Programming the System Board

Table 2-10 defines the contents of the Environment Control Word.

Table 2-10 Environment Control Word (ECW) Contents

State at

Bit Function Powerup

0 Reserved 0

Loop on error

0 Disables testing when program encounters an error.

1 Continues testing when program encounters an error.

2 Output to console 1

1 Directs program output to the system console.

3 Percent failure 0

0 Disables reporting of this error.

1 Enables reporting of percent of errors after looping (errors per

total number of loops). Note that bit 1 (loop on error) must also

be enabled.

4 Print pass messages 1

0 Disables printing of message.

1 Enables printing of messages to the system console after each

test pass completes.

5 Output to printer 0

0 Disables output to printer.

1 Enables program output to the default printer port.

6 Disassembler 1

0 Disables display.

1 Enables displaying an additional output field that contains the

mnemonics of memory address contents.

7 Print subtest message 0

0 Disables printing message.

1 Enables printing subtest messages to the system console.

8 Report all 1

QO Print brief messages to the system console.

1 Print verbose messages to the system console.

9 Halt on error 0

1 Enables halting the program after an error and returning the

SCM prompt.

10 Enable error logging 0

O Disables error logging.

1 Enables recording all errors in system error log.

11, 12 Reserved 0

13 Page mode 0

0 Disables Page mode.

1 Enables displaying output on the system console one screen

(page) at a time

14-31 Reserved 0

2-30 014-001800

Programming the System Board

In addition to the system calls, the System Control Monitor (SCM) supports hardwired

entry points to the subroutines in Table 2-11 (accessible with a jsr instruction

containing the appropriate entry point).

Table 2-11 SCM Subroutines

Entry Point

(Hex) Subroutine Argument Description

1000 putchar to stdio r2=char Outputs the character in 12.

1004 getchar from stdio r2=char Returns a character to 12.

1008 KBD reset r2=0 Performs a keyboard hard reset.

100C GDM_reset r2=0 Performs a graphics display monitor hard reset.

1010 GDM_load_fonts — Loads the fonts for the graphics display monitor.

1014 GDM_putchar r2=char Outputs the character in r2 to the graphics

display monitor.

End of Chapter

014-001800 2-31

Chapter 3

Interrupts, System Errors,

and Bus Faults

This chapter discusses the following topics:

@ Types of interrupts.

@ How the interrupting devices interrupt the CPU.

@® How the CPU handles the interrupts.

The workstation has two error reporting mechanisms: bus faults and interrupts. The

CMMUs inform the CPU of bus faults, and the interrupt control logic informs the

CPU of interrupts generated by the various subsystems.

Interrupts are a means for various system resources (memory, I/O controllers, power

supply, etc.) to notify the CPU of a condition that needs attention. Each interrupt

has an associated interrupt service routine that the CPU executes. Some interrupts

represent a specific interrupt condition (condition-specific interrupts), while others

represent one of many possible interrupt conditions (multiple-use interrupts). For

specific interrupts, the operating system developer may use a table to associate an

interrupt vector with the interrupt. For the multiple—use interrupts, the interrupting

device must supply an interrupt vector to the system board CPU.

Interrupt control logic provides the CPU with interrupt information. When devices

assert their interrupt request, the interrupt control logic first performs a logical AND

of the interrupt requests with the contents of the interrupt mask register; then it

asserts the interrupt line (INT) to the CPU. Workstations with two CPUs have two

interrupt lines (INTO and INT1), one for each CPU. In these systems, the interrupt

control logic asserts the appropriate line or lines, depending on the masks.

The interrupt service routine reads the interrupt status register (ISR or IST) and if

necessary the interrupt enable registers (IENn); then it isolates the interrupt(s).

The device faults for the I/O subsystems are discussed in the related chapters as

follows:

Chapter 6 “Programming the Keyboard Interface and Speaker”

Chapter 7 “Programming the Serial Ports and Parallel Port”

Chapter 8 “Programming the Local Area Network Interface”

Chapter 9 “Programming the Small Computer System Interface”

014~001800 3-1

Interrupts

Types of Interrupts

Interrupts fall into one of two categories: condition-specific interrupts and

multiple—use interrupts.

Condition-Specific Interrupts

Condition-specific interrupts span much of the system, including all of the local system

board interrupts and many VME interrupts. These interrupts represent specific

conditions such as the depressing of the abort switch or the occurrence of a single-bit

memory read error.

300 Series Interrupts

The condition-specific interrupts include Powerfail (PF), Parity Error (PE), CIO

Interrupt (CI), Keyboard Interrupt (KB), DUART Interrupt (DU), Parallel Port

Interrupt (PP), Ethernet Interrupt (ET), SCSI Interrupt (SC), SCSI DMA Terminal

Count (DT), SCSI DMA Write Protect Error (DW), SCSI DMA Valid BIT (DV),

Graphics Interrupt (GI), and Software Interrupt (SI). Of these, the DUART Interrupt

(DI) and the CIO Interrupt (CIO) may be one of several possible, but specifically

defined, interrupts from the related device.

400 Series Interrupts

The condition-specific interrupts include Abort Pushbutton (ABT), AC Failure

(ACF), Bus Arbiter Timeout (ATO), Z-Buffer Interrupt (ZBF), Video Interrupt

(VDI), Parity Error (PAR), Keyboard Interrupt (KBD), CIO Interrupt (CIO), System

Failure (SF), Parallel Port Interrupt (PPI), DUART1 Interrupt (DT1), DUART2

Interrupt (DT2), Ethernet Controller Interrupt (ECI), DMA Terminal Count (DTC),

DMA Write Protect Error (DWP), DMA Valid Bit (DVB), and SCSI Controller

Interrupt (SCI). Of these, the DUART Interrurts (DI1 and DI2) and the CIO

Interrupt (CIO) may be one of several possible, but specifically defined, interrupts

from the related device.

Multiple-Use Interrupts (400 Series Only)

Multiple-use interrupts include Signal High Priority (SHP), Signal Low Priority (SLP),

Software-—Generated Interrupts (SI[7-0]), and VME Interrupts (IR[7-1]). WME

interrupts are generated by VME controllers through seven interrupt request lines

(IRQ[7-1]*) on the VMEbus. A VME controller can choose which interrupt line to

use when it has an interrupt condition that requires servicing by the system board.

These interrupt lines are not limited to specific interrupts; any serviceable interrupt

can be generated through the VME interrupt request lines. To execute the correct

interrupt service routine, the system board CPU must obtain the interrupt vector from

the interrupting VME controller.

Besides being interrupted, the system board CPU can initiate interrupts to the VME

controllers using the VME-level interrupts. The CPU, when it interrupts a VME

controller, must define the interrupt level and provide the VME controller with an

3-2 014-001800

Interrupts

interrupt vector. This process is described later in this chapter in the section

“Interrupting a VME Controller.”

How the CPU Is Interrupted

This section describes how all interrupt requests are passed to the CPU from

interrupting devices throughout the system.

Interrupts originate from system board controllers and logic (i.e., the SCSI interface,

LAN interface, parity logic, address decode logic, etc.). In addition, in 400 series

Stations, the VME controllers generate interrupts to the system board.

When a device requires servicing by an interrupt service routine, the device asserts an

interrupt request. The system board contains interrupt logic that checks the interrupt

request lines and processes incoming interrupts. When an interrupt is received, the

interrupt logic sets the appropriate bit in the Interrupt Status register, and asserts the

Interrupt (INT) line to the CPU. In systems with more than one CPU, the INT line

is multiplexed, with one interrupt line per CPU. Interrupts originate from VME

controllers as well as the onboard Ethernet LAN, SCSI and Serial Interface

controllers.

The interrupt control logic monitors and processes interrupt requests. The interrupt

logic sets the appropriate bit(s) in the Interrupt Status (IST) register, compares the

IST register with the Interrupt Enable (IENn) registers, and when a bit in IST is set

and not masked by an IENn register, the logic asserts the interrupt line (INT) to the

CPU associated with that IENn register.

014-001800 3-3

interrupts

A device initiates an interrupt request.

Handling Interrupts

This section discusses some dynamics of developing software to service interrupts.

Because the CPU has one interrupt line (INT) to notify it of a pending interrupt, all

interrupts are stored in registers which the CPU reads and decodes. Figure 3-1 shows

how interrupts are handled by a system that has one CPU on the system board.

|
Interrupt logic on the system board sets a bit

in the Interrupt Status (ISR or IST) register,

and then asserts the INT line to the CPU.

The CPU halts the current process.

Interrupt

handler

\

|
Save the current processor state.

Load IST and find the interrupt.

Is the interrupt

one of the

seven VME

interrupt levels?

Get the interrupt vector from a

vector table. Use the position of the

interrupt bit in IST to point to the

vector.

Determine the VME interrupt level

from the position of the interrupt

bit in the Interrupt Status (IST)

register.

|
Read the VME Interrupt Acknowledge

and Vector (VIAVn) register for the

interrupt level to generate an IACK

to the VME controller and to obtain

the interrupt vector.

|
|

On the basis of this vector, the CPU selects and

executes the appropriate interrupt handler routine.

Restore the processor state.

Figure 3-1 Handling Interrupts with a Single-CPU System Board

014-001800

Interrupts

Figure 3-2 illustrates how to service interrupts in a system that has two CPUs on the

system board.

Ci devi initiates an interrupt request.

Interrupt logic on the system board sets a bit in the
Interrupt Status (ISR or IST) register, and then
asserts the INT line to the CPU.

One of the CPUs halts its current process.

|
The CPU reads the IST register and

the appropriate IEN register

The CPU compares IEN and IST. |

is the interrupt bit set

in both IEN and IST?
Restore the processor state.

Is the interrupt

one of the seven

Get the interrupt vector from a vector table.

Use the position of the interrupt bit in IST to

point to the vector.

VME interrupt

levels?

interrupt
handler Determine the VME interrupt level from

the position of the interrupt bit in the

interrupt Status (IST) register.

1
Read the VME Interrupt Acknowledge and
Vector (VIAVn) register for the interrupt

level to generate an IACK to the VME

controller and to obtain the interrupt vector.

1 In a multiprocessor system,

software should also check the

IBE bit in the VIACKVn register

to verify that another CPU is

not handling the interrupt.

Is the interrupt

already being

handled?

CPU returns to the

previous process.

Save the processor state.

the appropriate interrupt handler routine.
The CPU, on the basis of this vector, selects and executes

i Restore the processor state, |

Figure 3-2 Handling Interrupts with a Dual-CPU System Board

014-001800

Interrupts

Programming the CPU Interrupt Registers

The interrupt registers are memory mapped 32-bit registers. To access these registers

from a C program, declare them as type int. To access them from an assembly

language program, use the Load Register from Memory (Id) or Store Register to

Memory (st) instruction. Table 3-1 is a memory map for the interrupt registers.

Table 3-1 Memory Map of the Interrupt Registers

Register or Component Address Type

300 series registers

ISR (Interrupt Status) FFF8 4000 Read/Write

IER (Interrupt Enable) FFF8 4004 Write-only

SWIR (Soft Interrupt) FFF8 4014 Write-only

400 series registers

IENO (Interrupt Enable CPUO) FFF8 4004 Write-only

IEN1 (Interrupt Enable CPU1) FFF8 4008 Write-only

IST (Interrupt Status) FFF8 4040 Read-only

SETSWI (Set Software Interrupt) FFF8 4080 Write-only

CLRSWI (Clear Software Interrupt) FFF8 4084 Write-only

ISS (Interrupt Source Status) FFF8 4088 Read-only

CLRINT (Clear Interrupt) FFF8 408C Write-only

014-001800

Interrupts

300 Series CPU Interrupt Registers

This section describes the CPU interrupt registers in 300 series stations.

ISR (800 Series Only) Interrupt Status

Address FFF8 4000 Read/Write

The Interrupt Status Register (ISR) identifies the interrupts that are currently active.

Devices with the strict latency requirements are assigned to the highest order ISR bits,

but the interpretation of interrupt priority is left to the system software.

ISR and IER have the same bit assignments. ISR defines the current state of all

interrupt requests, and IER enables or masks the interrupts recorded in ISR.

Since the ISR bits reflect the state of interrupt requests, they are not directly affected

by a system reset. Software must clear individual interrupts only by clearing the

source of the interrupt in the specific I/O device.

The ISR bits are defined as follows:

31 | 30 | 29 | 28 22 | 21 20 19 | 18 | 17 | 16

Res| PF | PE Reserved Cl | Reserved] KB | DU | PP | Res

15 14 | 13 12 11 10 9 8 0

ET SC | DT | DW DV Gl | Sl Reserved

Bit Name Function

31 Reserved Ignore this bit.

30 PF Powerfail

1 Indicates that a power fail has occured.

0 No error.

29 PE Parity error

1 Indicates that a parity error has occured.

0 No error.

28-22 Reserved Ignore these bits.

21 Cl CIO interrupt

1 Indicates that the CIO has asserted an interrupt.

0 No error.

20 Reserved Ignore this bit.

19 KB Keyboard interrupt

1 Indicates that the keyboard controller has asserted

an interrupt.

0 No interrupt.

(continued)

014-001800 3-7

Interrupts

Bit Name Function

18

17

16

15

14

13

12

11

10

DU

PP

Reserved

ET

SC

DT

DW

DV

GI

SI

Reserved

DUART

1 Indicates that the DUART has asserted an interrupt.

0 No interrupt.

Parallel] port interrupt

1 Indicates that the parallel port has asserted an interrupt.

0 No interrupt.

Ignore this bit.

Ethernet interrupt

1 Indicates that the Ethernet controller has asserted an interrupt.

O No interrupt.

SCSI controller interrupt

1 Indicates that the SCSI controller has asserted an interrupt.

0 No interrupt.

SCSI DMA terminal count reached

1 Indicates that the SCSI terminal count has been reached.

0 No interrupt.

SCSI DMA write-protect error

1 Indicates that a SCS] DMA write-protect error has occurred.

0 No interrupt.

SCSI DMA valid bit

1 Indicates that the SCSI] DMA valid bit is set.

O No interrupt.

Graphics Interrupt

1 Indicates that the graphics controller has asserted an interrupt.

0 No interrupt.

Software interrupt

1 Indicates that software has asserted an interrupt.

0 No interrupt.

Ignore these bits.

(concluded)

014-001800

Interrupts

IER (300 Series Only) Interrupt Enable

Address FFF8 4004 Write Only

The Interrupt Enable Register (IER) contains interrupt enable bits for each interrupt

source, except for the Nonmaskable Interrupt (NMI) source. The only NMI source is

the Power Fail interrupt. Note that if software disables the single interrupt signal, the

NMI is also disabled.

ISR and IER have the same bit assignments. ISR defines the current state of all

interrupt requests, and IER enables or masks the interrupts recorded in ISR.

A system reset clears all IER bits to 0; therefore masking all interrupts.

The IER bits are defined as follows:

31 | 30 | 29 | 28 22 |21 | 20 | 19 | 18 | 17 | 16

Res| PF | PE Reserved Cl | Res} KB | DU] PP {| Res

15 | 14113 112 [114110 | 9 8 0

ET! SC}DT | DWI DV! Gi] SI Reserved

Bit Name Function

31 Reserved Write a 0 to this bit.

30 PF Powerfail

1 Enables the interrupt.

O Masks the interrupt.

29 PE Parity error

1 Enables the interrupt.

0 Masks the interrupt.

28-22 Reserved Write a 0 to these bits.

21 CI CIO interrupt

1 Enables the interrupt.

0 Masks the interrupt.

20 Reserved Write a 0 to this bit.

19 KB Keyboard port

1 Enables the interrupt.

O Masks the interrupt.

(continued)

014-001800 3-9

Interrupts

Bit Name Function

18

17

16

15

14

13

12

11

10

8-0

DU

PP

Reserved

ET

SC

DT

DW

DV

GI

SI

Reserved

DUART

1 Enables the interrupt.

O Masks the interrupt.

Parallel port

1 Enables the interrupt.

0 Masks the interrupt.

Write a 0 to this bit.

Ethernet interface

1 Enables the interrupt.

0 Masks the interrupt.

SCSI protocol controller

1 Enables the interrupt.

0 Masks the interrupt.

SCSI DMA termina] count reached

1 Enables the interrupt.

O Masks the interrupt.

SCSI DMA write-protect error

1 Enables the interrupt.

O Masks the interrupt.

SCSI DMA valid bit

1 Enables the interrupt.

O Masks the interrupt.

Graphics Interrupt

1 Enables the interrupt.

0 Masks the interrupt.

Software interrupt

1 Enables the interrupt.

0 Masks the interrupt.

Write a 0 to these bits.

3-10

(concluded)

014-001800

interrupts

SWIR (300 Series Only) Software Interrupt

Address FFF8 4014 Write Only

The Software Interrupt Register (SWIR) initiates software interrupts.

The SWIR bits are defined as follows:

7 1 0

Reserved SWI

Bit Name Function

7-1 Reserved Ignore these bits.

0 SWI Software interrupt.

1 Interrupts the CPU. The status of this bit is reflected by ISR bit 9

(SI). Writing a 0 to IER bit 9 masks this interrupt.

0 Clears the interrupt request. This bit is not set to 0 after system

reset Or power-on reset.

Even though a reset does not enable the software interrupt request, software must

ensure that bit 0 of the SWIR is set to 0 before enabling the interrupt after a reset.

014-001800 3-11

Interrupts

400 Series CPU Interrupt Registers

This section describes the registers used to interrupt the CPU in 400 series stations.

IENO, IEN1 (400 Series Only) Interrupt Enable

IENO Address FFF8 4004 Write

IEN1 Address FFF8 4008 Write

The Interrupt Enable registers (IENO and IEN1) enable and mask interrupts to the

CPUs. IENO and IEN1 enable interrupts to CPU0O and CPU1, respectively (a

single-processor system uses only IENO). To enable an interrupt, write a 1 into the

corresponding bit in IENO or IENi. To mask an interrupt, write a 0 into the

corresponding bit in IENO or IEN1. The bits in the IST register and the Interrupt

Enable registers are mirror images of each other. A system reset clears all Interrupt

Enable register bits to 0; a local reset does not affect these registers.

The IENn bits are defined as follows:

31 | 30 | 29 | 28 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16

ABT| ACF] ATG Reserved ZBF| VDI} PAR] IR7 | KBD] ClO| SF | IR6 | PPI | Dit | Di2

16 | 14{/13]12];,11}10;/9;8 7;],6;,5 |4,383 2414 0

ECI) IRS | OTC IR4| DWF IR3 | DVB Reserved] IR2 | SCi} IR1 | Reserved) Si1 | SiO

Bit Name Function

31 ABT Abort.

1 Enables the abort pushbutton interrupt.

0 Masks the abort pushbutton interrupt.

30 ACF Ac failure.

1 Enables the ac power failure interrupt.

0 Masks the ac power failure interrupt.

29 ATO VMEbus timeout.

1 Enables the VMEbus timeout interrupt.

0 Masks the VMEbus timeout interrupt.

28, 27 Reserved Write a 0 to these bits.

26 ZBF Zbuffer.

This bit only applies to systems containing the optional Z-buffer

board.

1 Enables the Zbuffer request interrupt.

0 Masks the Zbuffer request interrupt.

25 VDI Video.

1 Enables the video request interrupt.

0 Masks the video request interrupt.

(continued)

3-12 014-001800

interrupts

Bit Name Function

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

PAR

IR7

KBD

CIO

SF

IR6

PPI

DI1

DI2

ECI

IR5

DTC

IR4

DWP

IR3

Parity error.

1 Enables the parity error interrupt.

Q Masks the parity error interrupt.

VMEbus level 7.

1 Enables the level 7 interrupt from the VMEbus.

0 Masks the level 7 interrupt from the VMEbus.

Keyboard.

1 Enables the keyboard request interrupt.

0 Masks the keyboard request interrupt.

CIO.

1 Enables the CIO interrupt.

0 Masks the CIO interrupt.

System failure.

1 Enables the system failure interrupt.

Q Masks the system power failure interrupt.

VMEbus level 6.

1 Enables the level 6 interrupt from the VMEbus.

0 Masks the level 6 interrupt from the VMEbus.

Parallel port.

1 Enables the parallel port request interrupt.

0 Masks the parallel port request interrupt.

DUART1.

1 Enables the DUART1 interrupt.

0 Masks the DUART1 interrupt.

DUART2.

1 Enables the DUARTZ2 interrupt.

0 Masks the DUARTZ interrupt.

Ethernet controller.

1 Enables the Ethernet controller request interrupt.

0 Masks the Ethernet controller request interrupt.

VMEbus level 5.

1 Enables the level 5 interrupt from the VMEbus.

0 Masks the level 5 interrupt from the VMEbus.

DMA terminal count

1 Enables the DMA terminal count interrupt.

0 Masks the DMA terminal count interrupt.

VMEbus level 4.

1 Enables the level 4 interrupt from the VMEbus.

O Masks the level 4 interrupt from the VMEbus.

DMA write protect error.

1 Enables the DMA write protect error interrupt.

0 Masks the DMA write protect error interrupt.

VMEbus level 3.

1 Enables the level 3 interrupt from the VMEbus.

O Masks the level 3 interrupt from the VMEbus.

014~001800

(continued)

3-13

Interrupts

Bit Name Function

DVB

Reserved

IR2

SCI

IR1

Reserved

SI1

SIO

DMA valid bit.

1 Enables the DMA valid bit interrupt.

0 Masks the DMA valid bit interrupt.

Write a 0 to these bits.

VMEbus level 2.

1 Enables the level 2 interrupt from the VMEbus.

O Masks the level 2 interrupt from the VMEbus.

SCSI controller.

1 Enables the SCSI controller request interrupt.

0 Masks the SCSI controller request interrupt.

VMEbus level 1.

1 Enables the level 1 interrupt from the VMEbus.

0 Masks the level 1 interrupt from the VMEbus.

Write a 0 to these bits.

Software-generated interrupt 1.

1 Enables software interrupt 1.

0 Masks software interrupt 1.

Software-generated interrupt 0.

1 Enables software interrupt 0.

0 Masks software interrupt 0.

3-14

(concluded)

014-001800

Interrupts

IST (400 Series Only) Interrupt Status

Address FFF8 4040 Read

The Interrupt Status (IST) register contains the current state of all interrupt requests.

When a device generates an interrupt, the interrupt logic sets the corresponding bit in

the IST register.

To service an interrupt, the interrupt service routine reads the IST register, and

possibly one of the Interrupt Enable registers (IEN, IENO or IEN1) to determine

whether or not the interrupt is masked. The interrupt service routine services the

highest—priority interrupt. The bits in the Interrupt Enable registers and the Interrupt

Status register are mirror images of each other.

Resets do not affect IST bits; IST can only be cleared by software.

31 | 30 | 29 | 28 :27 | 26 | 25 oa | 23 22 | 21 | 20] 19 | 18 | 17 | 16
ABT| ACFIATG Resefved| ZBFI VDI} PAR} IR7|KBD| ClO} SF] IR6 | PPI | DI1 | Di2

15114113]1211111019]8 ‘7]645 a4 2] 1 0
ECI| IR5 | DTC IR4|DWRA IR3 | DVB Reserved| IR2 | SCI| IR1 | Reserved] SI1 | SIO

Bit Name Function

31 ABT Abort pushbutton.

1 The abort pushbutton has been depressed since the last write to the

CAB bit in the CLRINT register.

Q The abort pushbutton has not been depressed since the last write to

the CAB bit in the CLRINT register.

30 ACF Ac failure.

1 An ac power failure has occurred since the last write to the ACF bit

in the CLRINT register. The ac failure signal originates from the

power supply, which is connected to the VMEbus.

0 No ac power failure has occurred.

29 ATO VMEbus arbitration timeout.

1 The VMEbus bus grant has timed out and generated an interrupt.

0 No VMEbus timeout has occurred.

28, 27 Reserved Reserved and read as 0.

26 ZBF Zbuffer

This bit only applies to systems containing the optional Z—-buffer

board.

1 The Zbuffer is requesting an interrrupt.

0 The Zbuffer is not requesting an interrrupt.

25 VDI Video.

1 The video controller is requesting an interrupt.

0 The video controller is not requesting an interrupt.

(continued)

014-001800 3-1 5

Interrupts

Bit Name Function

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

PAR

IR7

KBD

CIO

SF

IR6

PPI

DI

DI2

ECI

IRS

DTC

IR4

DWP

IR3

Parity error.

1 A parity error has occurred.

0 No parity error has occurred.

VME level 7.

1 A VMEbus level 7 interrupt has occurred.

0 No VMEbus level 7 interrupt has occurred.

Keyboard.

0 The keyboard is not requesting an interrupt.

1 The keyboard is requesting an interrupt.

CIO.

1 The CIO is requesting an interrupt.

0 The CIO is not requesting an interrupt.

System failure.

1 A system failure signal has occurred since the last write to the

CSF bit in the CLRINT register. This is the SYSFAIL* signal on

the VMEbus and not a workstation failure.

0 No system failure has occurred.

VME level 6.

1 A VME level 6 interrupt has occurred.

0 No VME level 6 interrupt has occurred.

Parallel port.

1 The parallel port is requesting an interrupt.

0 The parallel port is not requesting an interrupt.

DUART1.

1 DUART1 is requesting an interrupt.

0 DUART1 is not requesting an interrupt.

DUARTZ2.

1 DUART2 is requesting an interrupt.

0 DUARTZ2 is not requesting an interrupt.

Ethernet controller.

1 The Ethernet controller is requesting an interrupt.

0 The Ethernet controller is not requesting an interrupt.

VMEbus level 5.

1 A VMEbus level 5 interrupt has occurred.

0 A VMEbus level 5 interrupt has not occurred.

DMA terminal count

1 The DMA terminal count has been reached.

0 The DMA terminal count has not been reached.

VMEbus level 4.

1 A VMEbus level 4 interrupt has occurred.

0 No VMEbus level 4 interrupt has occurred.

DMA write protect error.

1 A DMA write protect error has occurred.

0 No DMA write protect error has occurred.

VMEbus level 3.

1 A VMEbus level 3 interrupt has occurred.

0 No VMEbus level 3 interrupt has occurred.

3-16

(continued)

014-001800

Interrupts

Bit Name Function

9 DVB DMA valid bit.

1 A DMA valid bit interrupt has occurred.

0 No DMA valid bit interrupt has occurred.

8, 7 Reserved Reserved and read as 0.

6 IR2 VMEbus level 2.

1 A VMEbus level 2 interrupt has occurred.

0 No VMEbus level 2 interrupt has occurred.

5 SCI SCSI controller.

1 A SCSI controller is requesting an interrupt.

0 No SCSI controller is requesting an interrupt.

4 IR1 VMEbus level 1.

1 A VMEbus level 1 interrupt has occurred.

0 No VMEbus level 1 interrupt has occurred.

3, 2 Reserved Reserved and read as QO.

1 ST Software-generated interrupt 1.

1 Software interrupt 1 was generated.

0 Software interrupt 1 was not generated.

0 SIO Software-generated interrupt 0.

1 Software interrupt 0 was generated.

O Software interrupt 0 was not generated.

(concluded)

014-001800 3-17

Interrupts

ISS (400 Series Only) Interrupt Source Status

Address FFF8 4088 Read Only

The Interrupt Source Status (ISS) register contains the current status of certain

hardware interrupts. Clear an interrupt request by setting the appropriate bit in the

Clear Interrupt (CLRINT) register. System and local resets do not affect the ISS

register.

7 3 2 1 0

Unused ABT|ACR SF

Bit Name Function

7-3 Unused Returns 0 when read.

2 ABT Abort button status.

1 The abort button is depressed.

0 The abort button is not depressed.

1 ACF Ac fail status.

1 An ac fail interrupt request is pending (the ACFAIL* line on the

VMEbus is asserted low).

0 No ac fail interrupt is pending (the ACFAIL* line on the VMEbus

is not asserted).

0 SF System fail status.

1 The SYSFAIL* line on the VMEbus is asserted (low).

0 The SYSFAIL* line on the VMEbus is not asserted (high).

3-18 014-001800

Interrupts

CLRINT (400 Series Only) | Clear Interrupt

Address FFF8 408C Write Only

The Clear Interrupt (CLRINT) register allows software to clear certain hardware

interrupts. To clear an interrupt request, write a 1 to the appropriate CLRINT bit.

For example, to clear a system failure interrupt request, write 1 into the CSF bit.

This clears the System Failure (SF) bit in the Interrupt Source Status (ISS) register.

System and local resets do not affect the CLRINT register.

NOTE: Clearing the interrupt request bit in the CLRINT register only clears the

interrupt request and not the interrupt condition. The corresponding bit in

the ISS register contains the state of the interrupting condition.

7 3 2 1 0

Unused CAB| CAQ CSF

Bit Name Function

7-3 Unused Ignored when written to.

2 CAB Clear the abort button interrupt request (ABT)

Pressing the abort pushbutton generates this interrupt.

1 Clears the ABT interrupt request.

O Leaves the ABT interrupt request unchanged.

1 CAC Clear the ac fail interrupt request (ACF)

The power supply generates this interrupt by asserting the ACFAIL*

line on the VMEbus.

1 Clears the ACF interrupt request.

0 Leaves the ACF interrupt request unchanged.

0 CSF Clear the system fail interrupt request (SF)

Any controller on the VMEbus may generate this interrupt by

asserting the SYSFAIL* line.

1 Clears the SF interrupt request.

QO Leaves the SF interrupt request unchanged.

014-001800 3-19

interrupts

SETSWI (400 Series Only) Set Software Interrupt

Address FFF8 4080 Write Only

The Set Software Interrupt (SETSWI) register generates software interrupts. Setting a

bit in SETSWI sets the corresponding interrupt bit in the Interrupt Status (IST)

register. Unlike other condition-specific interrupts, you can use the software

interrupts for any software condition requiring servicing through an interrupt service

routine. As with the other condition-specific interrupts, the interrupt vector is within

a table of vectors, and is pointed to by the position of the interrupt in the IST

register.

SI7 | SI6| SI5| Sl4) SI3} Si2 | Sit] SI0

Bit Name Function

7-0 SI7-SI0O Set software interrupt.

1 Generates the corresponding software interrupt.

0 Leaves the corresponding software interrupt unchanged.

3-20 014-001800

Interrupts

CLRSWI (400 Series Only) Clear Software Interrupt

Address FFF8 4084 Write Only

The Clear Software Interrupt (CLRSWI) register clears software interrupts. Setting a

bit in the CLRSWI register clears the corresponding interrupt bit in the Interrupt

Status (IST) register. A reset does not affect the CLRSWI register.

7/6 ;,5 | 443 4] 2 1 0

ClI7 | Cl6| CI5| Cl4) CI3] Cla} Cli} Cid

Bit Name Function

7-0 CI7-CI0 Clear software interrupt.

1 Clears the corresponding software interrupt.

O Leaves the corresponding software interrupt unchanged.

014-001800 3-21

Interrupts

Programming the VME Interrupt Registers

VME controllers initiate interrupts to each other via the Interrupt Request IRQ[7-1] *

lines of the VMEbus. VME controllers can interrupt the system board, but the

system board can not interrupt other VME controllers. The Interrupt Request

(IRQ[7-1]*) lines are assigned levels of interrupt priority with IRQ7* having the

highest priority and IRQ1* having the lowest priority. The power supply asserts

interrupts if needed through the ACFAIL* and SYSFAIL* lines of the VMEbus.

When a VME controller requires interrupt servicing by the system board, the VME

controller asserts the appropriate interrupt request (IRQn*) line on the VMEbus. The

VME Interface controller passes the interrupt to the interrupt logic which monitors all

incoming interrupt lines for interrupt requests, and processes all interrupts. When an

interrupt is asserted, the interrupt logic sets the appropriate bit in the Interrupt Status

(IST) register. If this interrupt is not masked by the Interrupt Enable (IEN) register,

the interrupt logic asserts the interrupt line (INT) to the CPU associated with that

IENn register. Figure 3-3 illustrates how VME controllers interrupt the system board.

The CPU acknowledges one of these interrupts by reading the corresponding VME

Interrupt Acknowledge and Vector (VIAVn) register. When read, VIAVn asserts the

interrupt acknowledge signals IACK* and IACKOUT* on the VMEbus. These

interrupt acknowledge signals trigger the VME controller to write the interrupt vector

to the VMEbus. The VME interface logic writes this to the Mbus for the CPU to

read.

Any VME controller can interrupt the system board and request that it service the

interrupt. A VME controller initiates an interrupt to the system board via the

Interrupt Status (IST) register. Table 3-2 defines the addresses associated with the

VIAVn registers.

Table 3-2 Memory Map of the VME Interrupt Registers

Register Address Type

VIAVI1 FFF8 5004 Read-only

VIAV2 FFF8 5008 Read-only

VIAV3 FFF8 500C Read-only

VIAV4 FFF8 5010 Read-only

VIAVS FFF8 5014 Read-only

VIAV6 FFF8 5018 Read-only

VIAV7 FFF8 501C Read-only

3-22 014-001800

Interrupts

The VME controller

asserts an interrupt.

The system board interrupt logic
sets the appropriate bit in the

Interrupt Status (IST) register.

>

The system board interrupt

logic asserts the interrupt (INT)

line to the CPU.

v
The interrupt service routine

handles the interrupt.

Are any enabled

interrupt bits

set?

Figure 3-3 VME Interrupts to the System Board

014-001800
3-23

Interrupts

IRQ[7-0] Level Interrupts

The following series of steps and Figure 3-4 illustrate how a VME controller initiates a

level-1 interrupt to the system board.

1. The VME controller asserts the Interrupt Request 0 (IRQ1*) line on the

VMEbus.

2. The system board interrupt logic sets the interrupt request level-1 (IR1) bit in the

Interrupt Status (IST) register high (1).

3. The system board interrupt logic asserts the INT line to the CPU to notify the

CPU that an interrupt request is pending.

VME controller

IRQ1*

VMEbus

IRQ1*

; Oo eran |
Int t loai Bit 4 (IR1) in the Interrupt |

| merrupr os’ Status (IST) register is set. |

! |
| |

| INT line to the CPU is asserted.)
l System board |

Lan ete cee ete ns mee eee ee en mem me meme meer cee eee wee me eee eee eee ee ee woe ere ee ee ee ee ee ee ee

Figure 3-4 VME Controller Initiating a Level-1 Interrupt to Syste Board

After the INT line to the CPU has been asserted, the CPU executes an interrupt

service routine that finds, acknowledges and handles the interrupt as follows:

1.

2.

The CPU reads the IST register and finds the interrupt.

The CPU reads the corresponding VME Interrupt Acknowledge and Vector

(VIAVn) register to acknowledge the interrupt and to get the interrupt vector.

There are seven VIAVn registers, one for each interrupt level. When the CPU

reads VIAVn it also checks the state of the IACK Bus Error (IBE) bit. Ina

multiprocessor system, if IBE is set, the CPU disregards the interrupt and returns

to its previous process. If IBE is not set, the CPU first sets IBE to notify other

CPUs that the interrupt is being handled, then the CPU executes the appropriate

interrupt service routine (see the next step).

The CPU executes the new interrupt service routine located at the vector

obtained from the VIAV[7-1] register.

3-24 014-001800

interrupts

When the CPU reads IBE, it asserts the Interrupt Acknowledge line (IACKOUT*),

which is daisy chained with the VME controllers in slots 2 and 3 of the VMEbus (see

Figure 3-5.)

Mbus Mbus/Sbus

CPU interface

System Board

Sbus
Bus Arbitration Logic

VME Interface

IACKOUT*

IACKOUT* IACKIN*

IACKIN*

IACKIN*

IACKOUT *

a—D- __ $ilot A
VME Controller

Slot

3

VME Controller

NOTE: If Ais 1, the VME controller passes the interrupt

acknowledge to the next controller. If A is 0, the

VME controller takes the interrupt acknowledge.

Figure 3-5 VMEbus Grant Daisy—Chain

014-001800 3-25

Interrupts

VIAVn (400 Series Only) VME Interrupt Acknowledge

and Vector

VIAVI1 Address FFF8 5004 Read Only

VIAV2 Address FFF8 5008

VIAV3 Address FFF8 500C

VIAV4 Address FFF8 5010

VIAVS5 Address FFF8 5014

VIAV6 Address FFF8 5018

VIAV7 Address FFF8 501C

The CPU acknowledges interrupts and obtains interrupt vectors from VME controllers

via the seven VME Interrupt Acknowledge and Vector (VIAVn) registers. Each of

the seven interrupt request levels has a VIAVn register associated with it. When a

VME controller interrupts the system board CPU via one of the seven VME interrupt

request levels, the CPU acknowledges the interrupt request and obtains the interrupt

request vector via the VIAVn register. When the CPU reads VIAVn, the interrupt

logic asserts the Interrupt Acknowledge (IACK* and IACKOUTTM) lines to the

VMEbus. The VME controller responds by writing the interrupt vector to the data

lines and by asserting the Data Transfer Acknowledge (DTACK*) signal on the

VMEbus. If DTACK* is not asserted, the system board interrupt logic sets the

Interrupt Acknowledge Bus Error (IBE) bit in the VIAVn register. If IBE is already

set, the CPU will disregard the interrupt vector. If the system board has two CPUs

and if IBE is set, the CPU disregards the interrupt and returns to its previous process.

Resets do not affect the VIAVn registers.

15 9 |g |7 0)

Unused IBE VIV

Bit Mnemonic Function

15-9 Unused

8 IBE IACK Bus Error

1 Indicates that the last VME interrupt acknowledge (IACK) was

terminated by a VMEbus error (BERR).

0 Indicates that the last VMEbus IACK cycle was successfully

completed; it was terminated by a data transfer acknowledge. The

VIV bits contain a valid interrupt vector.

7-0 VIV[7-0] VME Interrupt Vector from D[7-0]

VIV is the interrupt vector from the VME controller generating the

interrupt.

NOTE: VIV contains a valid vector only when IBE is cleared.

3-26 014-001800

Interrupts

System Errors

Table 3-3 summarizes the system error conditions and the type of fault or interrupt

generated in response to the error. The error status bits differ between workstations;

see the descriptions of the ISR (300 series stations) or the IST (400 series stations)

registers.

Table 3-3 System Error Conditions and Responses

Error Condition Response

Parity error, CMMU master Mbus parity fault '

Nonexistent memory, CMMU master Mbus parity fault '

Watchdog time-out, Mbus/Sbus master Mbus fault

Watchdog time-out, Mbus/Sbus master No action

300 ISR Bit 400 IST Bit

AC power fail 30 (NMI) 30 (maskable)

Parity error, DMA master 29! 24 |

Nonexistent memory, DMA master 29 | 24 |

DUART internal error/interrupt 18 17, 16

Ethernet internal error/interrupt 15 15

SCSI internal error/interrupt 14 5

DMA write-protect error 12 | 11

DMA valid bit error 11 9

' Software must distinguish between an actual parity error and a nonexistent memory error by using the address of

the faulted transaction, which is latched by the faulted CMMU, and the memory configuration of the machine.

014-001800 | 3-27

Interrupts

Bus Faults

Bus faults occur when a CMMU is the bus master and a requested transaction causes

an error. The CMMUs detect the bus fault condition and signal a fault to the CPU

via the Pbus fault reply status. Software must read the CMMU System Status register

to determine the cause of the fault.

Two bus fault conditions generate parity faults: data parity errors, and reads from

nonexistent memory. Writes to nonexistent memory do not generate parity faults; the

data is lost.

Parity interrupts may occur either when a controller is master of the Sbus and requests

a transaction that causes an error, or when a slave device detects an internal error.

The interrupt service routine should read the interrupt status register (ISR or IST) to

determine the cause of the interrupt. Some controllers have internal status registers

that provide more precise interrupt information.

The Mbus/Sbus interface contains a timer that terminates bus cycles when an Mbus

wait does not allow the DRAMsSs to be refreshed. When this happens, the timer

generates an Mbus error, and the CPU receives a Pbus fault status from the faulting

CMMU. The System Status register in the CMMU at fault indicates that an Mbus

fault occurred. A time-out is the only event that generates an Mbus fault. (Mbus

faults are different from Pbus faults.) Such a time-out occurs with the following

conditions:

e@ A hardware fault in the slave device may exist, causing it to assert its wait signal

for longer than the allowable time.

@ Some slave devices are accessed without first clearing the corresponding reset bit in

the Diagnostic Control Register (DCR). When this occurs, the slave device does

not respond properly to the access.

@ The drawing preprocessor is busy while an attempt is made to write to the

parameter registers of the video controller. The write request causes a watchdog

time-out fault.

End of Chapter

3-28 014-001800

Chapter 4

Programming the

Monochrome Graphics Subsystem

This chapter describes the monochrome graphics subsystem used in the 300 series

Station. To accomplish this, the chapter describes the following topics:

The monochrome graphics subsystem.

Hardware design details that affect the graphics controller’s operation.

How to program the monochrome graphics subsystem.

How to program the frame buffer.

014-001800 4-1

Programming the Monochrome Graphics Subsystem

Features of the Monochrome Graphics

Subsystem

The monochrome graphics subsystem controls the bit-mapped display (monitor),

providing the following:

@ 1280 x 1024 pixel display, 70-Hz noninterlaced refresh rate, compliant with U.S.,

Canadian, and European VDT standards.

@ 1280 x 614.4 pixel, one plane frame buffer, providing extra off-screen storage for

fonts, icons, small windows.

25K characters per second (16 x 16 pixel font, cached in video memory).

50K ten-pixel random vectors per second; 25K fifty-pixel random vectors per

second.

50K ten-pixel random vectors transformed and clipped per second (2D or 3D).

65K ten-pixel polyline segments transformed and clipped per second (2D or 3D).

20M pixels copied or scrolled per second using Bit Block Transfer (BITBLT).

40M pixels filled or cleared per second using BITBLT.

Windowing support through use of a clipping rectangle.

The subsystem resides as a slave device on the Mbus. It uses two separate memory

mapped areas: a register set and the frame buffer. You program the subsystem either

by setting up parameters and a command in the register set or by manipulating the

frame buffer directly. Parameters include frame buffer coordinates and a command

opcode. When the program writes the last parameter to the register set, the subsystem

executes the requested command without further program intervention.

4-2 014~001800

Programming the Monochrome Graphics Subsystem

Components of the Monochrome Graphics

Subsystem

As shown in Figure 4-1, the subsystem consists of the following:

Mbus interface.

NEC pPD72120 graphics controller.

Display memory bus.

Frame buffer with optional off-screen storage.

Timing and control logic.

Parallel-to-serial shift register.

D/A converter and video output driver.

The rest of this section describes these components.

C Mbus (32 bits Address/Dat
aN

a) »
A

Vv ;

| Mbus Interface

Vv

>| Graphics Controller
(NEC vPD72120)

A

A

AD[15-0]
/

| Demultiplexor

V D[15-0] ¥ A[15-0]
y sv

(Display Memory Bus (24 bits Address/16 bits Data)

A[23-16]

| timing Controller || Frame Buffer (VRAM)

Optional DRAM y

/ :

Parallel-to-Serial |

| Clock Divider ’

Shift RegisterPp.

rr

Vv

D/A Converter and

Video Output Driver

RS-343A

To Monitor

| Clock |

Figure 4-1 The Monochrome Graphics Subsystem

014-001800

NZee Lee
> Input

Processing

Storage

<

SS

Programming the Monochrome Graphics Subsystem

Mbus Interface

The Mbus interface links the Mbus to the monochrome graphics controller. The

Mbus interface consists of an address buffer, address decode logic, data transceiver,

parity generating logic (parity to the Mbus), and synchronization and control logic.

The Mbus interface monitors the Mbus and responds appropriately when the graphics

subsystem is selected. The graphics subsystem is a slave device on the Mbus; it

cannot be master of the Mbus. The graphics subsystem ignores parity bits when the

CPU writes to it, but generates parity bits when the CPU reads from it.

Accesses by the CPU to the graphics subsystem require a wait state during both the

address and data phases of the access. Since the subsystem is not fast enough to

respond to the address phase of a CPU access, it latches the address, and then signals

the CPU to start the data phase. The subsystem extends the data phase with wait

states until the read or write operation is complete.

Monochrome Graphics Controller

The graphics subsystem uses the NEC pPD72120 graphics controller. The graphics

controller contains several instructions that it performs internally, reducing demands

on the CPU. Among these commands are screen refresh, video memory refresh, and

block move.

The CPU programs the graphics subsystem via the graphics controller’s internal

registers. The graphics subsystem completes operations independent from the CPU;

the graphics controller executes commands, such as scrolling a window, while the CPU

performs other operations. Furthermore, the graphics subsystem is pipelined; the CPU

can program the subsystem for a new operation while the subsystem is executing an

existing operation.

Display Memory Bus

The graphics controller reads from or writes to the frame buffer over the display

memory bus. The display memory bus has 16 multiplexed address/data bits and an

additional 8 address bits to extend the address range to 24 bits. All data is read as

16-bit words.

Display Memory Bus Control

The video memory control provides the proper timing and control for the frame

buffer by generating read, write, data transfer, and refresh cycles. Refresh occurs

during the horizontal sync period, and is clocked by a signal that is four times the

graphics controller’s 8-MHz clock.

4-4 014-001800

Programming the Monochrome Graphics Subsystem

Frame Buffer

The subsystem’s frame buffer (or video memory) consists of Video RAMs (VRAMs)

containing the video information that is continuously displayed on the screen. A

VRAM is a dual-port memory device with one port for graphics controller access and

one port for sending data to the monitor.

The frame buffer is organized as a block of DRAM with a large static serial register

that loads an entire DRAM row at a time for shifting out serially to the display. This

organization allows the graphics controller to have over 88 percent of the frame

buffer’s bandwidth for drawing operations.

Each memory location in the frame buffer stores one pixel: 1 for a white pixel, or 0

for a black pixel. The frame buffer is a 1280 (horizontal) x 1638.4 (vertical) pixel

block. It is further divided into a 1280 (H) x 1024 (V) visible area and a 1280 (H)

x 614.4 (V) off-screen area located below the visible memory.

The frame buffer may include additional off-screen memory (4 Mbits of DRAM).

This memory is for memory-intensive fonts such as the Kanji character set, and is

addressed in the same way as the parallel ports of a VRAM. Unlike a VRAM, the

DRAM has no serial port.

Parallel-to-Serial Shift Register

A parallel-to-serial shift register converts 16-bit parallel data from the frame buffer to

serial data, and transmits the data to the D/A converter. The D/A converter converts

the serial input data to analog data, and passes the data to the video output driver.

The video output driver converts the analog data into RS-343A compatible data and

transmits it to the video monitor.

D/A Converter and Video Output Driver

The data is transmitted to the video display monitor at 125-MHz. The RS-343A

signal is an analog voltage signal that can drive a monitor capable of monochrome or

gray-scale video. This data produces a 70-Hz screen refresh rate for the monitor’s

1280 x 1024 pixel screen display. In addition to the data signal, the output stage

produces the horizontal synchronization signal, the vertical synchronization signal, and

the blanking signal.

014-001800 4-5

Programming the Monochrome Graphics Subsystem

How This Implementation Differs from NEC

Specifications

The graphics controller operation differs from the 4PD72120’s operation specified in

NEC’s pPD72120 Advanced Graphics Display Controller User’s Manual. These

differences in operation affect the horizontal front and back porches, direct reads of a

half-word display memory value, and register and frame buffer location addresses.

The rest of this section describes these differences.

Horizontal Front and Back Porches

The horizontal synchronization signal is two clock ticks (2 SCLKs) behind the

horizontal blank signal. As a result, the horizontal front porch (HFP) is one clock

tick less and the horizontal back porch (HBP) is one clock tick more than the NEC

user’s manual states. This means that if you program the graphics controller to set

HFP equal to 3 (or 8 SCLKs), the graphics subsystem sets HFP equal to 2 (or 6

SCLKs); and, if you program it to set HBP equal to 3 (or 8 SCLKs), the graphics

subsystem sets HBP equal to 4 (or 10 SCLKs).

Reading Data from the Frame Buffer

When the CPU reads data from the video memory, it receives the data with the

most-significant bit (MSbit) bit 15:

15 14 1 0

MSbit LSbit

NEC’s user manual indicates that the MSbit is bit 0:

15 | 14 1 0

LSbit MSbit

Addressing theRegisters and Frame Buffer

The graphics controller registers assume that the system uses byte addressing. Since

the CPU uses word addressing, the graphics subsystem hardware shifts each address,

so that the address of each graphics controller register or frame buffer location is a

word address specifying a half-word (16-bit) location. As a result, the workstation

maps the graphics controller registers and frame buffer locations to different addresses

than those given in the NEC user’s manual. For a complete register address map and

frame buffer address map, refer to the section “Accessing the Registers” later in this

chapter, and the appendix “System Address Map.”

Word Count

The word count is one more than stated in the NEC documentation. The

workstation’s system control logic initializes the word count to 4E for a

1280-pixel—wide display.

4-6 014-001800

Programming the Monochrome Graphics Subsystem

Programming the Monochrome Graphics

Subsystem

The CPU writes parameters and commands to graphics controller registers, causing the

controller to draw in the frame buffer. The graphics controller consists of a drawing

preprocessor and a drawing processor. While the drawing processor executes the

current drawing command, the preprocessor accepts parameters for the next drawing

command and sets up that command.

The rest of this section lists the drawing commands implemented by the graphics

controller and discusses graphics controller interrupts and how to program and

initialize the registers.

Drawing Commands

Table 4-1 lists the graphics controller commands. See the NEC pPD72120 Advanced

Graphics Display Controller User’s Manual for a complete description of how each

command works.

Table 4-1 Monochrome Graphics Controller Commands

Commands

Drawing Commands

Arc Elliptical Bow

Circle Elliptical Sector

Circular Bow Rectangle

Dot Sector

Ellipse Straight Line

Elliptical Arc

Paint Commands

Arbitrary Closed Area

Circular Area

Elliptical Area

Copy Commands

Physical address to physical] address

Physical address to coordinate address

Rotation and Sizing Commands

Arbitrary angle rotation

Enlarge/shrink

Data Read Commands

Color information read

PUT/GET Commands

Coordinate address to system

System to coordinate address

Rectangular Area

Trapezoidal Area

Triangular Area

Coordinate address to coordinate address

Coordinate address to physica] address

90 degree rotation

Coordinate value read

Physical address to system

System to physical address

014-001800 4-7

Programming the Monochrome Graphics Subsystem

Graphics Controller Interrupts

When the graphics subsystem has a condition that requires CPU intervention, the

graphics controller sets the appropriate bits in its Status register, and then it asserts its

interrupt (INT) line. The INT line eventually sets the Graphics Interrupt (bit 10) of

the system board’s Interrupt Status Register (ISR). The operating system should

contain a graphics interrupt service routine that reads the graphics controller’s Status

register and performs necessary operations to clear the interrupt condition.

The operating system can mask some graphics controller interrupts via the graphics

controller’s Control register. The following interrupts can be masked:

@ The preprocessor went from a busy to a nonbusy state.

@ The drawing processor went from a busy to a nonbusy state.

e@ Drawing is occurring in a clipped region.

The following interrupts cannot be masked:

@ The preprocessor detected an error during processing.

@ The drawing processor detected an error during processing.

For more information, see the NEC pPD72120 Advanced Graphics Display Controller

User’s Manual.

4-8 014-001800

Programming the Monochrome Graphics Subsystem

Programming the Monochrome Graphics Registers

The monochrome graphics registers occupy a 256-byte space in the graphics controller

and are accessed as 16-bit words. Since the registers vary in length and are packed

into the 256—byte space, some registers occupy different bits of the same address.

Thus, a program may access more than one register when addressing a 16-bit word.

Some registers also have the same address as others, so which register a program

accesses may depend on whether or not the program reads or writes to the particular

address. For these reasons, when writing programs to access these registers you must

ensure that the program interprets all 16 bits correctly when it reads from an address,

and sends all 16 bits correctly when it writes to an address. Since the 16-bit data

port of the graphics controller is mapped to the low-order 16 bits (15-0) of the

Mbus, any data read to or written from a graphics controller register must appear in

those Mbus bits.

The registers are mapped to address space FFF8 9000 through FFF8 90FC.

Table 4-2 lists each register together with the Mbus bit field that contains the

register’s contents. The graphics controller registers are described in the NEC

uPD72120 Advanced Graphics Display Controller User’s Manual.

Table 4-2 Address Map for the Monochrome Graphics Controller Registers

Address Register Type Bits

FFF8 9078 Control (CTRL) Write 15-8

STATUS Read 15-0

FFF8 9078 ' BANK Write 7-0

FFF8 90E4 Address Control (AC) Write 14-12

DISPLAY_PITCH Write 11-0

FFF8 90E0 DISPLAY_CTRL Write 15-0

FFF8 90E8 Display Address (DAD) (lower and middle byte) Write 15-0

FFF8 90EC Display Address (DAD) (upper byte) Write 7-0

Word Count (WC) Write 15-8

FFF8 90F8 Word Count (WC) (upper 4 bits) Write 15-12

FFF8 90FO ' Cursor Enable (CE) Write 14

Cursor Mode Select (CRS) Write 15

Cursor X Coordinate (GCSRX) Write 11-0

FFF8 90F4 ' Cursor Y Start (GCSRYS) Write 11-0

FFF8 90F8 ' Cursor Y End (GCSRYE) Write 11-0

FFF8 90FC 2 _— Horizontal Sync (HS) Write 11-0

Horizontal Back Porch (HBP) Write 11-0

Half Horizontal Time (HH) Write 11-0

Horizontal Display Period (HD) Write 11-0

Horizontal] Front Porch (HFP) Write 11-0

Vertical Syne (VS) Write 11-0

Vertical Back Porch (VBP) Write 11-0

Lines per Field (L/F) Write 11-0

Vertical Front Porch (VFP) Write 11-0

FFF8 9000 Execution Address Origin (EADORG) (lower/middle byte) Read/Write 15-0

1 Not used in workstation.

At powerup, values are written to same address in sequence.

(continued)

014-001800 4-9

Programming the Monochrome Graphics Subsystem

Table 4-2 Address Map for the Graphics Controller Registers

Address Register Type Bits

FFF8 9004 Execution Address Origin (EADORG) (upper byte) Read/Write 7-0

Dot Address Origin (DADORG) Read/Write 11-8

FFF8 9060 Pitch Source (PITCHS) Read/Write 15-0

FFF8 9064 Pitch Destination (PITCHD) Read/Write 15-0

FFF8 9018 | Plane Displacement Source (PDISPS) (lower/middle byte) Read/Write 15-0

FFF8 9020 ' Plane Displacement Destination (PDISPD) Read/Write 15-0

(lower/middle byte)

FFF8 9024 ' Plane Displacement Destination (PDISPD) Read/Write 7-0

(lower/middle byte)

FFF8 9028 Plane Maximum (PMAX) Read/Write 15-0

FFF8 906C Plane Select (PLANES) Read/Write 15-0

FFF8 902C Drawing Mode 0 (MODO) Read/Write 3-0

Drawing Mode 1 (MOD1) Read/Write 7-4

FFF8 9030 Pattern Pointer (PTPN) (lower/middle byte) Read/Write 15-0

FFF8 9034 Pattern Pointer (PTPN) (upper byte) Read/Write 7-0

FFF8 90CO Pattern Count (PTNCNT) Read/Write 15-0

FFF8 9038 Stack Pointer (STACK) (lower/middle bytes) Read/Write 15-0

FFF8 903C Stack Pointer (STACK) (upper bytes) Read/Write 7-0

FFF8 9068 Stack Maximum (STMAX) Read/Write 15-0

FFF8 90D8 Clipping Mode (CLIP) Read/Write 9-8

Magnifier Horizontal (MAGH) Read/Write 7-4

Magnifier Vertical (MAGV) Read/Write 3-0

FFF8 90C4 X Clipping Minimum (XCLMIN) Read/Write 15-0

FFF8 90C8 Y Clipping Minimum (YCLMIN) Read/Write 15-0

FFF8 90CC X Clipping Maximum (XCLMAX) Read/Write 15-0

FFF8 90D0 Y Clipping Maximum (YCLMAX) Read/Write 15-0

FFF8 9008 Execution Address 1 (EAD1) (lower/middle bytes) Read/Write 15-0

FFF8 900C Execution Address 1 (EAD1) (upper byte) Read/Write 7-0

Dot Address 1 (DAD1) Read/Write 11-8

FFF8 9010 Execution Address 2 (EAD2) (lower/middle bytes) Read/Write 15-0

FFF8 9014 Execution Address 2 (EAD2) (upper byte) Read/Write 7-0

Dot Address 2 (DAD2) Read/Write 11-8

FFF8 9080 X Read/Write 15-0

FFF8 9084 Y Read/Write 15-0

FFF8 9088 DX Read/Write 15-0

FFF8 908C DY Read/Write 15-0

FFF8 9090 XS Read/Write 15-0

FFF8 9094 YS Read/Write 15-0

FFF8 9098 XE Read/Write 15-0

FFF8 909C YE Read/Write 15-0

FFF8 90A0 XC Read/Write 15-0

FFF8 90A4 YC Read/Write 15-0

FFF8 90A8 DH Read/Write 15-0

FFF8 90AC DV Read/Write 15-0

FFF8 90DC Command Read/Write 15-0

FFF8 907C PGPORT (PUT/GET Port) Read/Write 15-0

1 Not used in workstation.

(concluded)

4-10 014~001800

Programming the Monochrome Graphics Subsystem

Before writing parameters to the registers, a program must read the graphics

controller’s Status register to find out if the preprocessor is busy. If the preprocessor

is busy, the program must keep reading the Status register for the preprocessor’s

status. When the preprocessor is not busy, the program can write the parameters for

the next draw command to the registers. After writing the parameters, the program

should write the draw command.

Initializing the Registers

During a system reset or power on reset, the power-up code initializes the display.

To do this, the power-up program writes to the Display Control Register (DCR) to set

the timing registers; then it writes the time parameters to the appropriate registers.

The screen remains blank until initialization is complete.

For more information on initializing the monochrome graphics controller, see the NEC

uPD72120 Advanced Graphics Display Controller User’s Manual.

Sample Program

The C program that follows initializes and programs the graphics controller registers.

Since the code in the workstation’s boot PROM initializes the registers in a way similar

to the graph_init routine in this program on workstation powerup and reset, other

software does not need to run an initialization program again.

Note that the graph_init routine initializes the origin of the video memory in the lower

left corner of the on-screen space with the Y-axis growing positively upward and the

X-axis growing positively to the right. Since this initializes coordinate 0,0 to be the

lower—left hand corner, the 16 pixels at address 8000 0000 correspond to coordinates

0,1023 through 15,1023 (the most significant bit of the 16-bit value at 8000 0000 is

0,1023). The routine places the off-screen space directly below the on-screen space

with its Y-axis growing negatively downward and its X-axis growing positively to the

right. Figure 4-2 shows the video memory coordinate system.

014-001800 4-1 1

Programming the Monochrome Graphics Subsystem

Y-axis

A

0,1023

On-Screen Video Memory os

0,0
BE TO

0,-1

_ Off-Screen Video Memory

0.-615 511,-615

911,-615

0,-616

Font Storage (Optional)

0.-3892 255 ,-3892

4-12

1279, 1023

1279,0 ——» X-axis

1279,-1

1279,-614

1279,-615

1279,-3891

Figure 4-2 Monochrome Graphics Video Memory Coordinate System

014-001800

[REE R REE

Sample C Program

struct agdc_reg

{
int eadorg;

int dadorg;

int ead1;

int dad1;

int ead2;

int dad2;

int pdisps1;

int pdisps2;

int pdispd1;

int pdispd2;

int pmax;

int mod0_mod1;

int ptpn1;

int ptpn2;

int stack1;

int stack2;

/* internal working registers */

int filler[14];

int rD4;

int status;

int pgport;

int x;

int y;

int dx;

int dy;

int XS;

int ys;

int xe;

int ye;

int xc;

int yc;

int dh;

int dv;

int pitchs;

int pitchd;

int stmax;

int planes;

int ptncnt;

int xclmin;

int yclmin;

int xclmax;

int yclmax;

int mag;

int command;

int display_ctrl;

int display_pitch;

int dis_ad1;

int dis_ad2;

int cursor;

int gcsrys;

int gcsrye;

int hor_vert;

014-001800

Programming the Monochrome Graphics Subsystem

DATA STRUCTURE FOR NEC REGISTERS *********"***/

adr 00 */

adr 04 */

adr 08 */

adr OC */

adr 10 */

adr 14 */

adr 18 */

adr 1C */

adr 20 */

adr 24 */

adr 28 */

adr 2C */

adr 30 */

adr 34 */

adr 38 */

adr 3C */

adr 78 */

adr 7C */

adr 80 */

adr 84 */

adr 88 */

adr 8C */

adr 90 */

adr 94 */

adr 98 */

adr 9C */

adr AQ */

adr A4 */

adr A8 */

adr AC */

adr BO */

adr B4 */

adr B8 */

adr BC */

adr CO */

adr C4 */

adr C8 */

adr CC */

adr DO */

adr D8 */

adr DC */

adr EO */

adr E4 */

adr E8 */

adr EC */

adr FO */

adr F4 */

adr F8 */

adr FC */

4-13

Programming the Monochrome Graphics Subsystem

/******* Togical Drawing Operations **********/

#define SRC_DEST

#define NOTSRC_DEST

#define ZERO_DEST

#define ONE_DEST

#define EXOR_SRC_DEST

#define EXOR_NOTSRC_DEST

#define EXOR_ZERO_DEST

#define EXOR_ONE_DEST

#define AND_SRC_DEST

#define AND_NOTSRC_DEST

#define AND_SRC_NOTDEST 10

#define AND _NOTSRC NOTDEST 11

Oconr nan BW NHN Re ©
#define OR_SRC_DEST 12

#define OR _NOTSRC_DEST 13

#define OR_SRC_NOTDEST 14

#define OR NOTSRC_NOTDEST 15

/**** MACRO FOR ROUTINES THAT USE GRAPHICS *****/

/** This routine defines a register for the pointer to the graphics processor so it

must be redeclared in every routine that writes to the graphics processor registers. The

register address can be made global, but it will not be made a “register” variable by

the compiler. The call to GRAPH(); should be in the variable declaration section of

the routines. **/

#define GRAPH() register struct agdc_reg *reg = (struct agdc_reg *) Oxfff89000

4-14 014-001800

Programming the Monochrome Graphics Subsystem

HERE REE KR HE /
/****** Some macros that use the NEC chip directly

ee EEE /

/****** NOTE: There are no curly brackets around macros.

#define CHK_STATUS_PRE() while(reg->status & 1)

#define CHK_STATUS_PROC() while(reg->status & 2)

#define SETPTN(p) CHK_STATUS_PRE(); \

reg—->ptncnt = p

#define COL_MODE(p) CHK STATUS _PRE(); \
reg—>mod0_modi = 0x11 * p

#define FILL() CHK_STATUS_PRE(); \
reg—>mod0_modi = 0x33; \

reg—>eadi = 0; \

reg—->dadi1 = 0; \

reg—>dh = 1279; \

reg—>dv = 1023; \

reg—>command = 0x8e3e /* A REC FILL_A */

#define BLANK() CHK_STATUS_PRE(); \
reg—>mod0_modi = 0x22; \

reg—>ead1 = 0; \

reg—>dad! = 0; \

reg—>dh = 1279; \

reg—->dv = 1023; \

reg->command = 0x8e3e /* A_REC_FILL_A */

#define LINE(x1,y1,x2,y2) if ((y1) == (y2)) {

CHK_STATUS_PRE();

reg—->x = xl;

reg—>xs = x2;

reg—->y = yl;

reg->ys = y2;

reg—>command = 0x8c3e;

else {

CHK_STATUS_PREQ);

reg—->x = xl;

reg->y = yl;

reg—->xe = x2;

repg—->ye = y2;

reg—->command = 0x1841; } /* ALINE M1 */

/****** Above routines use fills for horizontal lines **********/

#define BITBLTUL (xd, yd,xs,ys,ws,hs) \

CHK _ STATUS _PRE(); \

reg—>xS = XS; \

reg—>ys = ys; \

reg—->x = xd; \

\

\

LA LLL ANTAL LS LLL 7

reg—>y = yd;

reg—>dh = ws - 1;

reg—>dv = hs - 1;

reg—->command = 0x840e /* A_COPY_CC */

“

014-001800 4-15

Programming the Monochrome Graphics Subsystem

/***** ROUTINE TO INITIALIZE GRAPHICS CONTROLLER *********/

graph_init()

GRAPH();

[Rt EHRES

reg—>display_ctrl = Oxcb38;

reg—>display_ctrl = Oxcb3a;

reg—>hor_vert =

reg->hor_vert =

reg—>hor_vert = he Jr. OO
reg—>hor_vert

reg—>hor_vert

reg—>hor_vert

reg—>hor_vert

reg—>hor_vert

reg->hor_ vert = 1;

reg—>display_ctrl = Oxcb38;

[RRR RRR

reg—>display_pitch = 0x50;

reg—>dis_ adi = 0;

reg->dis_ad2 = 0x4e00;

reg—>gcsrye = 1;

reg—>eadorg = 0x3fb0;

reg—>dadorg = 1;

reg—>pitchs = 0x50;

reg—->pitchd = 0x50;

reg->pdispd1 = 0;

reg—>pdispd2 = 0;

reg—>pmax = 1;

reg—>planes = 0;

reg—>mod0_ modi = 0;

reg—>mag = OxIff;

reg—>status = 0;

reg->ptncnt = 0;

Timing Setup for 125 MHz DOT Clock
HERR EE EY

/* Setting STSP bit to 1. */

/* Horizontal synchronizing signal. */

/* Horizontal back porch. */

/* Rising/falling times for even

field vertical synchronizing signal

during interlace display. */

/* Horizontal display period. */

/* Horizontal front porch. */

/* Vertical synchronizing signal. */

/* Vertical back porch. */

/* Line/field display period

in vert direction. */

/* Vertical front porch. */

/* Set the STSP bit back to 0. */

Drawing Setup FREER REE EE EH /

/* Number of words covering

horizontal width of memory plane. */

/* Screen display start address

set to 0. */

/* Number of displayed words during

display period within one

scanning cycle. */

/* Clear upper bits of word count reg. */

/* Absolute address within display

memory corresponding to the origin of

X-Y coordinates (0,0) set to LOWER LEFT

hand side cr screen. */

/* Dot address origin also set to 0. */

/* Sets the horizontal width using the

number of words for the drawing source

memory plane within display memory. */

/* Sets the horizontal width using the

number of words for the drawing target

memory plane within display memory. */

/* Only one memory plane so set to 0. */

/* Only one memory plane so set to 0. */

/* Specifies the memory planes, using

the first memory plane only. */

/* Specifies the logical operation to be

carried out during drawing for each

plane. */

/* The logical operation is set to copy

source to destination. */

/* No magnification. */

/* Clear bank and set status. */

/* Set pattern register to all black. */

4-16 014-001800

Programming the Monochrome Graphics Subsystem

[RRR EEEES Enable Screen HERE EEE EEE EE /

FILL();

CHK STATUS_PRE();

CHK STATUS_PROC(); /* Wait until screen is clear, then */

reg—>display_ctrl = 0xcb30; /* start display
(activate blank signal). */

/* Random Line Generator — generates nn thousand random lines,

half black and half white. */

void random (nn)

int nn;

register x1,y1,x2,y2,xmax,ymax,seed,loop,loop1,zero,p;

register vali,val2,val3,val4;

GRAPH ();

zero = Q;

xmax = 1280;

ymax = 1024;

seed = 3;

vali = 31421;

val2 = 6927;

val3 = 65535;

val4 = 16;

p= 1;

loop = nn;

while (loop-- > zero) {

if (p > zero) {COL_MODE(ZERO_DEST); }

else {COL_MODE(ONE_DEST); }

loop1 = 1000;

while (loopi-- > zero) {

seed = (seed * vall + val2) & val3;

x1 = (seed * xmax) >> val4;

seed = (seed * vall + val2) & val3;

x2 = (seed * xmax) >> val4;

seed = (seed * vall + val2) & val3;

yi = (seed * ymax) >> val4;

seed = (seed * vali + val2) & val3;

y2 = (seed * ymax) >> val4;

LINE(x1,y1,x2,y2);

}
p = -p;

}

main()

{
graph_init();

random(3);

}

014-001800 4-1 7

Programming the Monochrome Graphics Subsystem

Programming the Frame Buffer

To program the frame buffer, either send parameters and drawing commands to the

graphics controller, or write to the frame buffer. Direct access to the frame buffer

allows you to manipulate the video image and to take advantage of existing software

that assumes a dumb frame buffer. However, since direct access to the frame buffer

takes place through the graphics controller, these accesses take considerably longer

For example, a frame buffer read or write cycle takesthan main memory accesses.

about 800 ns while a main memory read or write cycle takes about 240 ns, assuming

Furthermore, because the graphics controller sends only the

low-order 16 bits of the Mbus for data transfers, frame buffer accesses must be done

in half-words (16 bits) on frame buffer word (32-bit) boundaries.

data is not in cache.

The visible screen portion of the frame buffer occupies the lower 80K by 16-bit words

of the frame buffer address space.

48K by 16-bits of frame buffer address space.

Off-screen video memory accounts for the upper

The starting address of the first 16-bit word in the frame buffer is 8000 0000. The

last 16-bit word on the screen is at 8004 FFFC. The first 16-bit word of off-screen

memory is at 8005 0000, and the last word in the frame buffer is at 8007 FFFC.

Figure 4-3 shows the organization of the frame buffer.

1023

1024

1025

1637

1638

4915

4-18

Base Address (each address contains a 16-bit word)

TM

4x(Nx80) 4x (Nx80+79)

8000 0000 |} 8000 0004 8000 013C

8000 0140 | 8000 0144 8000 027C

8004 FECO 8004 FFFC| _}

8017 FFCO| | 8017 FFFC|

Figure 4-3 Frame Buffer Organization

End of Chapter

Sy

On-Screen

Video Memory

Font Storage

Optional)

014-001800

Chapter 5

Programming the

Color Graphics Subsystem

This chapter describes the following topics:

The color graphics subsystem.

Handshaking between the CPU and the color graphics subsystem.

How to program the color graphics subsystem.

The optional Z—buffer gate array and how to program the Z-—buffer registers. The

300 series stations do not support the Z—buffer.

Features of the Color Graphics Subsystem

The color graphics subsystem drives a bit-mapped color graphics monitor, and has the

following features:

Drives a 1280 x 1024 pixel display, 60 or 70 Hz noninterlaced refresh rate,

compliant with U.S., Canadian, and European VDT standards.

Can select from 256 (8-bit) or 16.7-million (24-bit) colors.

8—-bit systems have a frame buffer of 1536 x 1024 pixels x 10 planes, and 24-bit

systems have a frame buffer of 2048 x 1024 pixels x 26 planes. The planes

consist of 8 or 24 color planes, plus two overlay planes. The frame buffer provides

extra off-screen storage area for fonts and menus.

Processes up to 280,000 10-pixel vectors/second (raw rate, with the CPU supplying

integer coordinates as fast as possible).

Incorporates several graphics commands such as Bit Block Transfer (BITBLT) and

Line Draw (LINE) to relieve the CPU of these functions.

Draws Gouraud-shaded polygons.

Does windowing and pick via clipping rectangles.

014-001800 5-1

Programming the Color Graphics Subsystem

Components of the Color Graphics Subsystem

This section describes the major components of the color graphics subsystem.

Figure 5-1 and Figure 5-2 illustrate 8-bit and 24-bit color graphics subsystems

respectively. The components are:

Color graphics controller.

Frame buffer (VRAM).

RAMDAC which contains a Look Up Table (LUT) in RAM, and a Digital to

Analog Converter (DAC).

@ Clock generator.

Z-buffer (optional).

The rest of this section describes each of these components.

(Mbus (32 Bits Address/Data))

Z-buffer Color Graphics

(optional) Controller

A

dp) AF OC

Clock

Generator

vv Vv.

Frame Buffer

(VRAM)

A = Address Lines .

D = Data Lines |
C = Control Lines v

R = Red Output RAMDAC <

G = Green Output Bt458

B = Blue Output Lookup Table

and

D/A

Converters

wht

Figure 5-1 Color Graphics Subsystem (8-Bit)

5-2 014-001800

Programming the Color Graphics Subsystem

Mbus (32 Bits Address/Data)—
v

2-Buffer

(optional)

—?

v4
Color Graphics

Controller 0

A C

D |

Y Vv y

a S|

V '

Color Graphics

Controller 1{=e
A

Frame Buffer

(VRAM)

v y

lc
_AL | __A

|

|
v

v

Color Graphics

Controller 2

A ie
Al

D |

Frame Buffer

(VRAM)

WK

|
\ Vv Vv

Frame Buffer

(VRAM)

Va

Clock

| Generator

TT 7

		,
\		
VV Vv Vv vv

RAMDAC 0 RAMDAC 1 RAMDAC 2

Bt257 Bt457 Bt457

Lookup Table

and

D/A Converter

Lookup Table

and

D/A Converter

Lookup Table

and

D/A Converter

Y
G

C = Control Lines

A = Address Lines

D = Data Lines

\
R

Y
B

G = Green Output

R = Red Output

B = Blue Output

© = Overlay Planes

Figure 5-2 Color Graphics Subsystem (24-Bit)

The Color Graphics Controller

The color graphics controller is a gate array that manipulates addresses and data, and

generates control signals for the color graphics subsystem. With minimal intervention

from the CPU, this gate array can draw lines, fill in specified areas, and manipulate

blocks of data. The color graphics gate array communicates with the CPU via the

Mbus.

014-001800 5-3

Programming the Color Graphics Subsystem

The Frame Buffer

Raster graphics systems have an array of memory called the frame buffer or bitmap in

which values for pixels are stored. These pixel values are pointers into the lookup

table (LUT) which is a color palette.

The frame buffer consists of Video Random—Access Memory (VRAM) which has two

I/O ports; one port connects to the color graphics gate array, and the other connects

to the RAMDAC.

The frame buffer is organized into planes; each plane is one bit deep. 8 -bit color has

8 color planes and 2 overlay planes. 24-bit color has 24 color planes and 2 overlay

planes. The color planes determine the colors displayed. 8-bit systems can generate

and display 28 or 256 true colors. 24-bit color systems can generate 224 or 16.7

million true colors and display 2048 x 1024 or 2.6 million true colors.

Overlay planes temporarily store superimposed images without destroying the

underlying images.

The frame buffer is located in memory within the following ranges: color data is stored

at 8000 0000 - 83FF FFFF, and overlay data is stored at 8400 0000 - 87FF FFFF.

Table 5—1 identifies the sizes of frame buffers.

Table 5-1 Frame Buffer Size

Graphics Frame Buffer

8-bit (300 1536H x 1024V Pixels

and 400) 1280H x 1024V Pixels displayed

8 Color planes + 2 Overlay planes

24-bit (400) 2048H x 1024V Pixels

1280H x 1024V Pixels displayed

8 Green planes + 2 Overlay planes

8 Red planes

8 Blue planes

5-4 014-001800

Programming the Color Graphics Subsystem

RAMDAC

Both 8-bit and 24-bit color systems use Brooktree RAMDAC chips. 8-bit stations

use one Brooktree Bt458 RAMDAC, and 24-bit stations use three Brooktree Bt457

RAMDACs.

The Lookup Table (LUT)

The lookup table (LUT) is a color palette; it contains values that define colors to be

displayed. 8-bit systems have a single 8-bit LUT, and 24-bit systems have three

8—bit tables (one for each primary color).

The Digital to Analog Converter (DAC)

Both 8-bit and 24-bit color systems have three high-speed 8—bit Digital-to-Analog

Converters (DACs). The output of each DAC drives an RS-343A interface with red,

green, and blue (synchronized on green).

The Clock Generator

The clock generator consists of two oscillators. The oscillators generate 125.000 MHz

(for 75-kHz color monitors) and 107.352 MHz (for 64-kHz color monitors) clocks.

The power-up routine identifies which monitor is connected, and assigns an oscillator

for the correct horizontal rate.

The Z-Buffer

The Z-buffer is a gate array that regulates and stores data for the Z-axis of

three-dimensional images to be displayed.

014-001800 5-5

Programming the Color Graphics Subsystem

Programming Conventions

This section describes programming conventions that affect more than one of the

major components of the color graphics subsystem. The major topics in theis section

include:

@ Handshaking

@ Context Switching

e Accessing color graphics resources

The color graphics subsystem is a slave device.

When the CPU accesses the color graphics subsystem, the address phase does not

require extra wait states, while the data phase requires one or more wait states for

accesses to the registers or frame buffer. Data phase accesses to the RAMDAC

require extra wait states.

When written to, the color graphics controller ignores parity bits.

The graphics controller has built-in commands to create objects and fields, to move

blocks of data within the frame buffer, and to transfer data between the frame buffer

and system memory. These commands are programmed through the Command

(CMD) register.

5-6 014-001800

Programming the Color Graphics Subsystem

Handshaking

Handshaking between the CPU and the color graphics subsystem is regulated using bit

0 (BSY) and bit 1 (DIP) of the Control and Status Register 0 (CSRO), shown here:

Bit Mnemonic Function Type

1 DIP Drawing In Progress Read

The color graphics controller is performing a drawing

operation. Check DIP when writing parameters that

cannot be pipelined.

1 Indicates the controller is executing a command.

0 Indicates the controller is not executing a command.

The following conditions terminate commands:

D The command completed its function and all frame buffer

accesses related to it have begun.

D The clipping boundary was crossed.

D A context switch occurred.

0 BSY Busy Read/Write

Indicates whether or not the color graphics controller is

busy, and whether or not the parameter registers

(PARMO - PARM15) can be loaded.

1 Indicates the controller is busy and cannot accept

new parameters; i.e., do not write to the parameter

registers. BSY is set when a command is executed.

0 Indicates the controller can accept new parameters; it

no longer needs the existing parameters.

When writing to pipelined registers, make sure that BSY is cleared to 0. When writing

to nonpipelined registers, make sure that DIP is cleared to 0. The ability to pipeline

parameter registers (PARMn) is dependent on both the command being executed and

the command to be executed. In general, do not pipeline global registers. Pipelining

can be handled using two masks (one for setup and one for execution) for each

command, describing the registers it needs to access. By keeping the mask for the

execution part of the command currently running, and performing a logical AND of

this mask and the setup mask of the next command, you can determine whether it is

necessary to wait for BSY or DIP.

When using CLIP_STOP (see Command register description), you should not pipeline

commands. When the clip boundary is crossed, the Clipping Boundary (BND) bit will

be set and the command stopped. If you have pipelined a second command, it will

immediately execute the new command and clear the BND bit.

014-001800 5-7

Programming the Color Graphics Subsystem

Context Switching

Context switching is controlled via the Stop (STP) and Resume (RES) bits in the
STOP register. Upon stopping execution, you must save the context by reading all the

registers. The context switch operation will also function properly when pipelined

commands are present. After the STP bit is set to 1, make sure that the DIP bit is

cleared to 0 before reading the current context and loading a new context. If a

command terminates at the same time an STP command is issued, the STATE1

register is automatically modified to appear as if the command switched out was a No

Operation (NOP) command. When the new context is restarted, the NOP command

will immediately terminate and subsequent commands will continue. If no new

context is available, you can put the controller in an idle state by clearing the Busy

(BSY) bit in CSR1, and then the STP bit in the STOP register.

NOTE: Before reading the color graphics registers, either disable parity checking or

ignore the parity traps (interrupts). For information on disabling parity, see

the MC88200 User’s Manual.

In addition, bits 0 (STP) and 1 (RES) of the STOP register control context switching.

Bit Mnemonic Function

1 RES Resume

Resume operations following a context switch. When set to 1 by the

host, directs the controller to resume execution of a previously stopped

command. The controller clears the RES bit after the command

continues executing.

0 No operation.

1 Restart current context; automatic clear.

0 STP Stop

Stop the current operation.

0 No operation. When cleared to 0, the CSRO DIP bit indicates that

the controller is stopped. A stop occurring simultaneously with a

normal command termination is handled as a normal termination;

a hardware mechanism ensures that when restarted, a “no

operation” (NOP) command is executed. The STP bit is normally

cleared to 0 by the controller after the controller resumes execution

(RES bit).

1 When set to 1, directs the color graphics controller to stop

execution at the earliest possible time. The time is command

dependent: BITBLT and POLY will stop at the next end of a scan

line; LINE transfers will stop at the next pixel.

5-8 014-001800

Programming the Color Graphics Subsystem

Accessing Color Graphics Resources

This section describes methods of accessing resources of the color graphics subsystem.

The major topic is broadcast and individual accesses.

Broadcast Accesses and Individual Accesses

The CPU accesses the color graphics registers using either a broadcast access or an

individual access. A broadcast access is when the CPU writes to or reads from a

register in all three controllers at the same time. An individual access is when the

CPU writes to or reads from a register in only one controller. Eight-bit color systems

do not distinguish between broadcast and individual accesses. In 24-bit color systems,

a broadcast access writes a word of data to all three controllers, but each controller

uses only the portion of the word relevant to it. During a broadcast read, each of the

three controllers writes one byte to the data bus, and the CPU reads all three bytes at

the same time as a word.

With a 24-bit color graphics subsystem, a broadcast address accesses a resource in

the three controllers simultaneously. With an 8-bit color graphics subsystem, the

broadcast address has no advantage over an individual access, but it can be used in

place of the individual access (to maintain compatibility if upgraded to 24-bit color).

Table 5-2 defines the base addresses used when accessing color graphics controllers.

The Position (POSN) bits in Control and Status Register 1 (CSR1) define the base

address used during an individual access.

Table 5-2 Base Addresses of the Color Graphics Controllers

Individual]

Broadcast POSN 00 POSN 01 POSN 10

Starts at FFF8 9000 FFF8 9100 FFF8 9200 FFF8 9300

Ends at FFF8 90FF FFF8 91FF FFF8 92FF FFF8 93FF

Access Guidelines

Several factors define how to access a color graphics resource; these are

What the resource is (a register, the frame buffer, or the LUT)

The number of bits in the resource (8—bits or 32-bits)

The type of color graphics subsystem (8-bit or 24-bit color)

The type of access (broadcast or individual).

014-001800 5-9

Programming the Color Graphics Subsystem

In 24-bit color systems, 8—bit registers, 32-bit registers and the frame buffer are

accessed as follows:

e 8-bit registers

broadcast accesses:

As shown in Figure 5-3, 8—-bit registers on each color graphics controller receive

from or transmit to the correct byte of the bus as determined by the controller's

position. Each controller’s position is defined by the Position (POSN) bits in the

Control and Status Register 1 (CSR1).

MSB LSB

32-bit Byte 2 | Byte 1 Byte 0 |
data } } }

8-bit 8-bit 8-bit

Register Register Register

Graphics Graphics Graphics

Controller Controller Controller

2 1 0

Figure 5-3 Broadcast Data Transfers of 8-bit Registers with 24-bit Color

individual accesses:

An 8-bit register will receive or transmit the least significant byte (bits 7-0)

regardless of the POSN bits in CSR1.

@ 32-bit registers

broadcast accesses:

32-bit registers on each color graphics controller receive the entire 32 bits of data,

but transmit the least significant byte of data in the position that corresponds to the

controller’s POSN value.

individual accesses:

32-bit registers on each color graphics controller receive or transmit the entire 32

bits of data.

@e Frame buffer

broadcast accesses:

The frame buffer receives or transmits 1 byte in the byte that corresponds to the

controller’s POSN value.

individual accesses:

The frame buffer receives the byte of data that corresponds to the controller’s

position, but transmits a byte of data replicated four times in the data word.

5-10 014-001800

Programming the Color Graphics Subsystem

Table 5-3 defines the addresses and offsets of the graphics controller registers, and

also defines the addressing and context switch characteristics of the color graphics

registers. The rightmost two hexadecimal digits of an address are the register’s offset

(e.g. 14 is the offset for the BACK register.) The “Broadcast/Individual” field

indicates whether the register should be accessed using a broadcast (B) access or an

individual (I) access. A Save in the Context Switch field indicates that the register

should be saved during a context switch.

Table 5-3 Color Graphics Registers

Broadcast/ Context
Address Individual Switch Name Function

FFF8 9000 B Save CSRO Control and Status Register 0

FFF8 9004 B Save STOP Stop/Resume Register

FFF8 9008 B Save CSR1 Control and Status Register 1

FFF8 900C B Save CMD Command Register

FFF8 9010 B Save MASK Plane Mask Register

FFF8 9014 B Save BACK Background Color Register

FFF8 9018 B Save LPAT Line Pattern Register

FFF8 901C B Save PC/WID Pattern Control/WID Register

FFF8 9020 B — CRTO CRT Control Register 0

FFF8 9024 B — CRT 1 CRT Control Register 1

FFF8 9028 B — CRT2 CRT Control Register 2

FFF8 902C — — — Reserved

FFF8 9030 B Save STATEO Interna] State 0

FFF8 9034 B Save STATEI1 Internal State 1

FFF8 9038-

FFF8 903C — — — Reserved

FFF8 9040 B Save PARMO Parameter Register 0

FFF8 9044 B Save PARM1 Parameter Register 1

FFF8 9048 B Save PARM2 Parameter Register 2

FFF8 904C B Save PARM3 Parameter Register 3

FFF8 9050 B/I Save ! PARM4 Parameter Register 4

FFF8 9054 B/I Save ' PARMS Parameter Register 5

FFF8 9058 B Save PARM6 Parameter Register 6

FFF8 905C B Save PARM7 Parameter Register 7

FFF8 9060 B Save PARM8 Parameter Register 8

FFF8 9064 B/I Save | PARM9 Parameter Register 9

FFF8 9068 B Save PARM10 Parameter Register 10

FFF8 906C B Save PARM11 Parameter Register 11

FFF8 9070 B/I Save ! PARM12 Parameter Register 12

FFF8 9074 B/I Save ' PARM13 Parameter Register 13

FFF8 9078 B/I Save | PARM14 Parameter Register 14

FFF8 907C B Save PARM15 Parameter Register 15

' Depending on the command executing, these registers may be written to using either the

broadcast address or their individual addresses. During a context switch, however, they

should be read and written individually to ensure proper operation for any command.

(continued)

014-001800 5-11

Programming the Color Graphics Subsystem

Table 5-3 Color Graphics Registers

Broadcast/ Context
Address Individual Switch Name Function

FFF8 9080-

FFF8 909C — — — Reserved

FFF8 90A0 B — DATA Data Port Register

FFF8 90A4 B — PLTO Palette Pointer 0

FFF8 90A8 B — PLT 1 Palette Pointer 1

FFF8 90AC B — BLNK Blink Control Register

FFF8 90B0-

FFF8 90BC _ —_ _ Reserved

FFF8 90CO0O I — DACO RAMDAC Address Register

FFF8 90C4 J — DAC1 RAMDAC Color Palette RAM

FFF8 90C8 I — DAC2 RAMDAC Control Register

FFF8 90CC I _ DAC3 RAMDAC Overlay Palette RAM

FFF8 90D0-

FFF8 90DC —_ _— — Reserved

FFF8 90E0- B Save — Z-Buffer Control] Registers

FFF8 91F0 (see the section, “Programming the

Z-Buffer Registers.’’)

(concluded)

NOTE: Before reading the color graphics registers, either disable parity checking or

9-12

ignore the parity interrupts. For information on disabling parity, see the

MC88&200 User’s Manual.

014-001800

Programming the Color Graphics Subsystem

Fixed-Point Numbers

Fixed-point numbers are required with some parameters, especially color shading

parameters and many parameters associated with the POLY command. The structure

of these fixed-point numbers is shown here:

Bit Contents

31-29 Not implemented.

28-16 Most significant word (Integer Portion).

15-13 Not implemented.

12-0 Least significant word (Fractional portion).

Parameters using fixed-point numbers assign 13 bits each to integer and fractional

parts. This 1/(2°13) ensures that less than one integer bit of error will accumulate

when scanning as many as 8192 pixels. The range of values in this format is from

-8192.0 to +8191.999.

To convert a floating-point value to fixed-point, do the following:

1. Multiply the floating-point number by 8192.

2. Convert the floating-point number to integer.

3. Shift bits 13 through 25 of the result three bits to the left.

Interrupts

The color graphics subsystem may interrupt the CPU when a drawing is completed, a

drawing is being written outside the clipping area, or a vertical blank started.

When an interrupt occurs, read the Control and Status Register 1 (CSR1); it

identifies the cause of interrupts. The interrupts can also be masked through bits in

the CSR1 register; if an interrupt is masked, the color graphics controller will not pass

the interrupt request to the interrupt control logic.

Since the graphics subsystem does not flag error conditions, the color graphics

program must ensure that the CPU sends correct parameters to the subsystem.

014-001800 5-13

Programming the Color Graphics Subsystem

Registers

Each graphics controller has registers that provide a variety of functions from setting

up and executing graphics commands to passing and identifying graphics interrupts.

The registers are memory mapped on 32-bit word boundaries. Some of the registers

use all 32—bits; others use only 8 bits. All registers must be accessed as words,

therefore the programmer must be careful to read or write the correct bits.

The graphics subsystem has two sets of registers — visible and working -— as illustrated

in Figure 5-4. The operating system communicates with the visible registers. The

working registers are copies of the visible registers and are accessed only by the

graphics subsystem. The graphics subsystem writes the contents of the visible registers

into the working registers as needed (i.e., the registers are pipelined.) Except in some

cases, the visible registers can be programmed with new data while the subsystem Is

executing a command using the “original” data.

Visible Registers | Working Registers kK VRAM

Figure 5-4 Graphics Subsystem Registers

CPU <>

NOTE: To ensure compatibility with future hardware revisions, write Qs to all

reserved or unimplemented bits. When reading registers, ignore the reserved

bits.

The color graphics controller contains the following registers:

Global Registers:

MASK Plane Mask register

BACK Background Color register

LPAT Line Pattern register

PC_WID Pattern Control/Window ID register

DATA Dataport register

The global registers specify parameters affecting drawn pixel values, line patterning,

and plane masking. They are not pipelined during a draw command, therefore do not

modify their contents until the Drawing In Progress (DIP) bit in CSRO is 0, indicating

that drawing is inactive.

The POLY command uses all registers in a nonpipelined way, so that you must test

the DIP bit.

Command and Status Registers:

CSRn Control and Status Registers 0 and 1

CRTn CRT Timing registers 0 through 2

STATEn Internal State registers 0 and 1

STOP Stop register

PARMn Parameter registers 0 through 15

CMD Command register

5-14 014-001800

Programming the Color Graphics Subsystem

Global Registers

The next few pages describe the global registers in detail.

BACK Background Color

Address FFF8 9014 Read/Write

The Background Color (BACK) register contains the background color value for use

during patterned line and stippled draw operations. During these operations, a line

pattern or stipple bit with a value of 0 will select the BACK register as the source for

the pixel value to be written into the frame buffer. The BACK register is viewed as

an N-bit register where N is the number of frame buffer planes implemented. Bit 0

corresponds to pixel bits for frame buffer plane 0; bit 1 for frame buffer plane 1, and

sO on.

You should normally access the BACK register using its broadcast address. In

multiple color graphics controller configurations, this allows you to read or write the

8-bit BACK register of each controller with a single register access.

31 16

BACK

15 0

BACK

Bit Mnemonic Function

31-0 BACK Background Color

Contains the background color value for use during patterned line and

stippled draw opoerations.

014-001800 o-1 5

Programming the Color Graphics Subsystem

DATA Dataport

Address FFF8 90A0 : Read/Write

The Dataport (DATA) register is used by the color graphics controller during data

transfers (RXFER and WXFER commands). The controller repeatedly reads from

and writes to this register during block transfers between host memory and video

memory. During a transfer, you must write or read all pixels requested before starting

any other command, otherwise it will be necessary to reset or stop the color graphics

controller.

This register is viewed as an N-bit register where N is the number of frame buffer

planes implemented in the system. Bit 0 corresponds to pixel bits for plane 0; bit 1

for plane 1, and so on. With the STIPPLE bit set and a WXFER command active,

only bit 0 of this register is used. In this case, writing a 0 or 1 to this bit results in a

background (0) or foreground (1) pixel value being transferred to the frame buffer.

At reset time, the contents of this register are unknown and unchanged.

31 16

DATA

15
0

DATA

Bit Mnemonic Function

31-0 DATA Dataport

Dataport is the data transport interface for block transfers between

host memory and video memory.

5-16 014001800

Programming the Color Graphics Subsystem

MASK Plane Mask

Address FFF8 9010 Read/Write

The Plane Mask (MASK) register provides selective writing of frame buffer planes.

With this function the color graphics frame buffer can be partitioned into logical plane

groups, each of which can be independently modified. The MASK register is viewed

as an N-bit register where N is the number of frame buffer planes implemented. Bit

0 controls the masking for plane 0; bit 1 for plane 1, and so on. A bit value of 0

disables writing to the associated plane; a bit value of 1 enables writing to that plane.

You should normally access the MASK register using its broadcast address. In

multiple color graphics configurations, this allows you to read or write the 8-bit MASK

register of each controller with a single register access.

31 16

MASK

15 : 8)

MASK

Bit Mnemonic Function

31-0 MASK Plane Mask

Masks and enables the buffer planes

014-001800 5-1 7

Programming the Color Graphics Subsystem

LPAT Line Pattern

Address FFF8 9018 Read/Write

The Line Pattern (LPAT) register contains the 32-bit line pattern in effect during line

drawing. Bit 0 of the LPAT register represents the first pixel in a line (if the

PAT_RESET bit in the Command register is set to 1). Each bit in the pattern

contains a 0 for background color or a 1 for foreground color. Note that you may

draw a solid line either by using an FFFF FFFF pattern in the LPAT register or by

setting the SOLID bit in the Command register to 1.

You should normally access the LPAT register using its broadcast address. In multiple

color graphics controller configurations, this ensures that each controller uses an

identical line pattern. However, by using the individual unit number addressing, you

load a different 32-bit pattern into each controller, thus providing multicolored line

patterning.

31 16

LPAT

15
0

LPAT

Bit Mnemonic Function

31-0 LPAT Line Pattern

Contains the 32-bit line pattern in effect during line drawing.

5-18 014-001800

Programming the Color Graphics Subsystem

PC WID Pattern Control/Window ID

Address FFF8 901C Read/Write

The Pattern Control/Window ID (PC_WID) register controls line patterning operations

and specifies window ID clipping parameters. The Pattern Control bits (PTCNT,

CRPTCNT, and PTPNT) save and restore the context of a “stopped” Line command.

The Window ID bits (WIDKEY, WIDMSK) are valid only if the WID_ENABLE bit in

the Command register is set. During a drawing operation, a pixel will be modified if

the corresponding WID mask matches the WIDKEY bits.

You should normally access the PC_WID register using its broadcast address. In

24-bit graphics systems, this ensures that each controller uses identical line pattern

controls. The WIDMSK and WIDKEY bits of the register are significant only for

controllers configured as masters (slave controllers ignore these bits).

31 27 | 26 22 | 21 19 | 18 16

Reserved PTPNT CRPTCNT PTCNT

15 8 7 0

WIDKEY WIDMSK

Bit Mnemonic Function

31-27 Reserved Must be zeroes when written to, and undefined when read from.

26-22 PTPNT Pattern pointer

Points to the current bit within the line pattern.

21-19 CRPTCNT Current pattern repeat count.

18-16 PTCNT Pattern repeat count.

Allows positive scaling of the current line pattern. The value

corresponds to each pattern bit being repeated 1-8 times.

Bits Operation

000 Normal line drawing, no stretch

001 x2 stretch

010 x3 stretch

011 x4 stretch

100 x5 stretch

101 x6 stretch

110 x7 stretch

111 x8 stretch

15-8 WIDKEY '! Window key

Contains the value to be compared with the ID read from the

ID/overlay planes during a read-modify-write (RMW) frame buffer

cycle. If the unmasked bits read from the ID planes match those of

the WIDKEY, the RMW cycle will replace the existing pixel (no clip),

otherwise the RMW cycle will retain the existing pixel (clipping

occurs).

7-0 WIDMSK Window ID mask

Specifies which ID/overlay planes to use during the clipping process.

1 Unused bits must be 0, for instance, workstations supporting 2 bits of window ID information
use only WIDKEY bits 9 and 8 and WIDMSK bits 1 and 0.

014-001800 5-1 9

Programming the Color Graphics Subsystem

Command and Status Registers

The next few pages describe the command and status registers in detail.

CSRO Control and Status Register 0

CSRO Address FFF8 9000 Read/Write

The Control and Status register 0 (CSRO) returns the state of drawing instruction

execution.

31 16

Reserved

15 3 2 1 0

Reserved BND| DIP | BSY

Bit Mnemonic Function Type

31-3 Reserved Must be zeroes when written to.

2 BND Clipping Boundary Read/Write

The previous command crossed the clipping boundary.

1 Indicates the previous command crossed clipping

boundary and the CLIP STOP bit (Command

register) was set.

0 Indicates that either the previous command did not

cross clipping boundary, or the previous command

crossed clipping boundary and the CLIP_STOP bit

(Command register) was not set.

1 DIP Drawing In Progress Read

The color graphics controller is performing a drawing

operation. Check this bit when writing to registers that

are not pipelined.

1 Indicates that the controller is executing a

command.

0 Indicates that the controller is not executing a

command.

0 BSY Busy Read/Write

Color graphics controller is busy. The execution of a

command sets this bit. The color graphics controller

clears this bit when the controller no longer needs the

parameters.

1 Indicates that the controller is busy and cannot

accept new parameters.

QO Indicates that the controller can accept new

parameters.

5-20 014-001800

Programming the Color Graphics Subsystem

CSR1 Control and Status Register 1

CSRI1 Address FFF8 9008 Read/Write

The Control and Status Register 1 (CSR1) returns the state of the color graphics

subsystem as well as information on configuration, interrupts, and timing.

31 | 30 23 |22 20 | 19 18 17 | 16

NMN Reserved CBR VBL | VSN| HSN | BtS

15 14 13 12 11 10 9 8 7 6 5 | 4 2/1 0

MST} CLI | CLM | DDI| DDM] VBI | VBM | IMK | WST POSN FBSIZE PSIZE

Bit Mnemonic Function Type

31 NMN Control Signals Enable Read/Write

When written to, it enables or disables the frame buffer

control signals. When read from, it indicates whether the

control signals are enabled or disabled.

0 Write disables the signals.

Read indicates that the signals are disabled.

1 Write enables the signals.

Read indicates that the signals are enabled.

30-23 Reserved Must be zeroes when written to.

22-20 CBR CAS Before RAS Read

Indicates the number of CBR refresh cycles per scan line.

CBR No. of Cycles CBR No. of Cycles

000 0 100 4

001 1 101 5

010 2 110 6

011 3 111 7

19 VBL Vertical Blank Read

Indicates the Current status of the vertical blank (VBLANK) signal.

0 VBLANK is active.

1 VBLANK is inactive.

18 VSN Vertical Sync Read

Indicates the current status of the vertical sync (VSYNC) signal.

0 VSYNC is active.

1 VSYNC is inactive.

17 HSN Horizontal Sync Read

Indicates the current status of the horizontal sync (HSYNC) signal.

0 HSYNC is active.

1 HSYNC is inactive.

16 BtS Type of DAC and LUT Read

Indicates the type of RAMDAC being used.

0 8-bit color uses a Broktree Bt458 RAMDAC and 24-bit color uses

Brooktree Bt457 RAMDACs.

(continued)

014001800 5-21

Programming the Color Graphics Subsystem

Bit Mnemonic Function Type

15 MST Master or Slave Read

Indicates whether this is master or slave controller

(multiple color graphics subsystems only).

0 Slave controller.

1 Master controller.

14 CLI Clipping Interrupt Read/Write

Indicates whether or not pixels have been clipped.

0 Pixels have not been clipped.

1 One or more pixels have been clipped.

13 CLM Clipping Interrupt Mask Read/Write

Enables/disables the clipping interrupt.

0 Disables clipping interrupt (CLI).

1 Enables clipping interrupt (CLI).

12 DDI Drawing Done Interrupt. Read/Write

Indicates whether or not the color graphics controller

has completed a drawing operation. Also see the

Drawing In Progress (DIP) bit in CSRO.

0 The controller has not completed a drawing operation.

1 The controller has completed a drawing operation.

11 DDM Drawing Done Mask Read/Write

Enables/disables the drawing done interrupt.

0 Disables interrupt when drawing done.

1 Enables interrupt when drawing done.

10 VBI Vertical Blank Interrupt. Read/Write

Indicates whether or not a vertical blank has occurred.

0 Vertical blank has occurred.

1 Vertical blank has not occurred.

9 VBM Vertical Blank Mask Read/Write

Enables/disables the vertical blank interrupt.

QO Disables vertical blank interrupt (VBI).

1 Enables vertical blank interrupt (VBI).

8 IMK Interrupt Mask Read/Write

Enables/disables all interrupt requests.

0 Disables interrupts.

1 Enables interrupts.

7 WST Wait States Read

Indicates that an additional wait state is inserted into

the Mbus data phase.

0 Extra wait state.

1 No extra wait state.

6-5 POSN Position Read

Color graphics controller base address. Defines the

position and address of the graphics controller. If 8—bit

color, POSN is set to 00. If 24-bit color, POSN is set

to 00 for red, 01 for blue, and 10 for green.

00 FFF8 9100

01 FFF8 9200

10 FFF8 9300

(continued)

5-22 014-001800

Programming the Color Graphics Subsystem

Bit Mnemonic Function Type

4-2 FBSIZE Frame Buffer Size Read

Type and size of frame buffer.

0002K x 1K, 64K x 4 VRAM

0011K x 512, 64K x 4 VRAM

0102K x 1K, 256K x 4 VRAM

0112K x 2K, 256K x 4 VRAM

1004K x 2K, 256K x 4 VRAM

1-0 PSIZE Pixel Size Read

Number of bits/pixel.

00 = 8 bits per pixel

10 24 bits per pixel

NOTE: PSIZE is set up during power-up reset only.

(concluded)

014-001800 5-23

Programming the Color Graphics Subsystem

CRTO, CRT1, CRT2 CRT Timing

CRT0

CRT1

CRT2

Address FFF8 9020 Read/Write

Address FFF8 9024 Read/Write

Address FFF8 9028 Read/Write

The CRT Timing registers contain parameters for the composite sync signal and

composite blank signal. These signals can be programmed to support a variety of

screen resolutions (noninterlaced display only). Horizontal timing is programmable in

units of 1/8 of the pixel clock rate (8 pixel times = 1 Hunit). Vertical timing is

programmable in units of horizontal rasters. Some of the CRT Timing register values

cross register boundaries.

CRTO Register (FFF8 9020)

31 24 | 23 16

HTOTAL HBSTRT

15 14 716 0

HBSTRT HBEND HSEND

Bit Mnemonic Function

31-24 HTOTAL Horizontal Total

Number of Hunits from the start of a horizontal sync signal to the start

of the next horizontal sync signal (the line period). Program this value

with 2 less than the required number of Hunits. CRTO contains the

lower 8 bits; CRT1 contains the top bit.

23-15 HBSTRT Horizontal Blank Start

Number of Hunits from the start of a horizontal sync signal to the end

of the viewable display area (start of horizontal blank signal).

Program this value with 3 less than the required number of Hunits.

14-7 HBEND Horizontal Blank End

Number of Hunits from the start of a horizontal sync signal to the start

of the viewable display area (end of horizontal blank signal). Program

this value with 3 less than the required number of Hunits.

6-0 HSEND Horizontal Start to End

Number of Hunits from the start of a horizontal sync signal to the end

of the horizontal sync signal. Program this value with 2 less than the

required number of Hunits.

5-24 014-001800

Programming the Color Graphics Subsystem

CRT1 Register (FFF8 9024)

31 25 | 24 16

VBSTRT VBEND

15 13 | 12 1 0

VBEND VSEND HTOTAL

Bit Mnemonic Function

31-25 VBSTRT Viewable Area Start to End

Number of rasters from the start of the viewable area to the end of the

viewable area. Program this value with 1 less than the required

number of rasters plus the number in VADJ. CRT1 contains the 7

lower bits; CRT2 contains the 5 top bits.

24-13 VBEND Vertical] Period

Number of rasters from the start of the viewable area to the start of

the next viewable area (the vertical period). Program this value with 1

less than the required number of rasters plus the number in VADJ.

12-1 VSEND Vertical Start to End

Number of rasters from the start of the viewable area (the end of

VBLANK) to the end of the next vertical syne signal. Program this

value with the required number of rasters plus the number in VADJ.

0 HTOTAL Total Horizontal Sync Signal

Number of Hunits from the start of horizontal sync signal to the start

of the next horizontal sync signal (the line period). Program this value

with 2 less than the required number of Hunits. CRTO contains the

lower 8 bits; CRT1 contains the top bit.

014-001800 5-25

Programming the Color Graphics Subsystem

CRT2 Register (FFF8 9028)

31 30 29 28 17 16

FRCBLK Reserve VADJ See belowENSYNC d VTOTAL

16 5 | 4)

VTOTAL VBSTRT

Bit Mnemonic Function

31 FORCBLNK* Force Blank Bit.

0 Forces the composite blank signal from the color graphics

controller to below, thus blanking the screen.

1 Enables screen display. Note that VRAM refresh and drawing

operations will continue even if the display is being blanked. A

reset clears this bit.

30 ENSYNC Enable Sync Bit.

When set to 1, enables the sync signal and blank generation within the

color graphics controller. Set this bit to 1 to enable timing only after

programming the CRT registers. A reset clears this bit.

29 Res Reserved.

This bit should always be 0 (a reset clears this bit).

28-17 VADJ Vertical Adjust

Number loaded into an internal counter prior to the start of the first

displayed raster. This value determines which row within the

VDRAMs is transferred to the VDRAM serial port in preparation for

the first line of active video. The other vertical timing parameters

depend on this value (normally 0).

16-5 VTOTAL Vertical Total

Number of rasters from the start of the viewable area to the start of

the next vertical sync signal. Program this value with the required

number of rasters plus the number in VADJ.

4-0 VBSTRT Viewable Start to End

Number of rasters from the start of the viewable area to the end of the

viewable area. Program this value with 1 less than the required

number of rasters plus the number in VADJ. CRT1 contains the 7

lower bits; CRT2 contains the 5 top bits.

5-26 014-001800

Programming the Color Graphics Subsystem

The following example calculates values for a 70-Hz color graphics monitor.

The timing values for this monitor are

Horizontal resolution

Vertical resolution

Pixel clock (125 MHz)

(timing generation (in Hunits))

Horizontal line period

Horizontal front porch

Horizontal sync

Horizontal back porch

Horizontal display active

Vertical period

Vertical front porch

Vertical sync

Vertical back porch

Vertical display active

1280 pixels

1024 rasters

15.625 MHz = 64 ns

13.312 ms = 208 Hunits

0.512 ms = 8 Hunits

1.024 ms = 16 Hunits

1.536 ms = 24Hunits

1280 pixels = 160 Hunits

1071 rasters total

1 raster

4 rasters

42 rasters

1024 rasters

Using these values (with VADJ = 0) we calculate the following numbers for the timing

hsync + back porch + display active - 3 = 16 + 24 + 160 - 3 = 197

parameters:

HSEND horizontal syne width - 2 = 16 - 2 = 14

HBEND _shsync + horizontal back porch - 3 = 16 + 24 - 3 = 37

HBSTRT

HTOTAL horiz line period - 2 = 208 - 2 = 206

VSEND _svert active + front porch + vsyne = 1024 + 1+ 4 = 1029

VBEND _severt period - 1 = 1071 - 1 = 1070

VBSTRT vert active time - 1 = 1024 - 1 = 1023

VTOTAL vert active + back porch = 1025

VADJ 0

These registers can be programmed in any order. When programming, the ENSYNC

and FORCBLNK bits in CRT2 should be low (0). After programming, you should set

these bits to 1 leaving the other bits unchanged.

014-001800 5-27

Programming the Color Graphics Subsystem

STATEO, STATE1 internal State

STATEO Address FFF8 9030 Read Only

STATE1 Address FFF8 9034 Read Only

The Internal State registers contain current values for drawing operations. STATEO

contains the current BITBLT mask, direction and shift values. STATE1 contains a

copy of the Command register. Both registers must be saved and restored at context

switch time, but otherwise are not programmer-visible. When reset, the contents of

STATEO and STATE1 are unknown and unchanged.

STATEO

31 16

STATEO

15
0

STATEO

Bit Mnemonic Function

31-0 STATEO Internal State 0

Contains the current bit block transfer (BITBLT) mask, direction and

shift values.

STATE1

31 16

STATE1

15 0

STATE1

Bit Mnemonic Function

31-0 STATE]1 Internal State 1

Contains a copy of the contents of the Command (CMD) register.

5-28 014-001800

Programming the Color Graphics Subsystem

STOP Stop

Address FFF8 9004 Read/Write

The Stop register controls context switching.

31 16

Reserved

15 3 2 1 0

Reserved RST| RES| STP

Bit Mnemonic Function

31-3 Reserved Must be zeroes when written to, and undefined when read from.

2 RST Reset

Reset the color graphics controller.

0 No operation.

1 Perform a software reset and go to the idle state.

1 RES Resume

Resume operations following a context switch.

0 No operation.

1 Restart current context; automatic clear.

0 STP Stop

Stop the current operation.

0 No operation.

1 Stop the current drawing operation and go to the idle state.

014-001800 5-29

Programming the Color Graphics Subsystem

PARMO-PARM15 Parameter

PARM0 Address FFF8 9040 Read/Write

PARM1 Address FFF8 9044 Read/Write

PARM2 Address FFF8 9048 Read/Write

PARM3 Address FFF8 904C Read/Write

PARM4 Address FFF8 9050 Read/Write

PARMS5 Address FFF8 9054 Read/Write

PARM6 Address FFF8 9058 Read/Write

PARM7 Address FFF8 905C Read/Write

PARMS8 Address FFF8 9060 Read/Write

PARM9 Address FFF8 9064 Read/Write

PARM10 Address FFF8 9068 Read/Write

PARM11 Address FFF8 906C Read/Write

PARM 12 Address FFF8 9070 Read/Write

PARM13 Address FFF8 9074 Read/Write

PARM14 Address FFF8 9078 Read/Write

PARM15 Address FFF8 907C Read/Write

The Parameter (PARMn) registers supply parameters for the color graphics

commands. After programming the Command register, program the parameter

registers to supply parameters for the command to be executed. The function of the

parameter registers varies from command to command.

The parameter registers may be grouped into two categories, the initial parameter

registers and the working registers. The initial parameter registers supply the graphics

controller with setup information used when executing a command; the values in these

registers remain unchanged throughout the execution of the command. The working

registers are changed by the graphics controller as needed when executing a

command. This is not visible because the graphics controller changes the values of

the background parameter registers; the foreground registers are left unchanged.

Resets do not affect the contents of the parameter registers.

9-30 014-001800

Programming the Color Graphics Subsystem

CMD Command

Address FFF8 900C Read/Write

The Command register specifies a command to be executed by the color graphics

controller. The commands are

LINE Draws straight lines, solid or patterned, single-color or shaded

within a clipping rectangle.

CLINE Draws straight lines, solid or patterned, without clipping.

POLY Draws a flat-topped triangle using Gouraud-shading or a solid

color, and pattern and stipple options.

BITBLT Moves a rectangular area of pixels within the frame buffer. The

“Attributes” field specifies patterning and stippling options.

BITBLT is also used to draw text; a portion of the frame buffer

should contain characters that can be copied.

RXFER, WXFER Transfer pixels between the host memory and the frame buffer.

Pixels are transferred in either Z-mode or in a limited XY-mode

(write transfers only) with the least significant bit selecting either

background or foreground colors.

31 16

Attributes

15 12 11 8; 7 4 3 0

Reserved LU_OP Reserved OP

Bit Mnemonic Function

31-16 Attributes Specifies options applicable to the operation (see bits 3-0, Opcode).

Bit Mnemonic — Operation

31 Reserved

30 SHADE

Applies Gouraud shading to LINE and POLY drawing.

1 Apply shading.

0 Do no apply shading.

29 NO_LAST

When drawing a line, prevents the last pixel of the line from being

drawn. A single-pixel line with this bit set will have no pixels drawn.

This function is useful when drawing polylines with the XOR ALU

function.

1 Do not draw last pixel.

0 Draw last pixel.

(continued)

014-001800 5-31

Programming the Color Graphics Subsystem

Bit Mnemonic Function

31-16 Attributes Continued

Bit Mnemonic — Operation

28 PAT _RESET

During line operations causes the pattern pointer to reset to the first bit

of the pattern for every new line.

1 Reset to first bit of the pattern.

0 Do not modify pattern pointer (useful for polylines).

27 ZBUF_ ENABLE

Enables the Z-buffer interface with the Z-buffer co-processor. During

a BITBLT operation, if the SOLID bit (bit 23) is also set, this selects

the Z-buffer “fast clear” mode. Only 400 series stations support

Z-buffer operations.

1 Enables the Z-buffer interface.

0 Disables the Z-buffer interface.

26-24 SOURCE PLANE

Selects one of eight planes for use as the source plane during stippled

operations.

23 SOLID

During BITBLT operations forces skipping the read of the source

(optimizes the BITBLT command for clear and fill operations).

1 Skip reading of the source.

0 Read the source.

22 TRANSPARENT

During a stippled or line operation uses the source data or the line

pattern to either modify the bit (when data is 1) or rewrite the bit

unmodified (when data is 0).

1 Perform TRANSPARENT operation.

0 Do not perform TRANSPARENT operation.

21 STIPPLE

During BITBLT, POLY, and transfer operations, forces source area to

be treated as a one-plane bitmap rather than a pixmap.

1 Perform STIPPLE.

0 Do not perform STIPPLE.

20 AREA PATTERN

Forces the source data during BITBLT and POLY operations to be

treated as a 32 x 32 area pattern. The stored pattern must be aligned

so that the upper-left corner has the 5 least significant bits as 0, both

in X and Y. You can program the initia] offset into the pattern, as

specified in the respective commands, to make alignment relative to

screen, window, or object.

1 Perform AREA PATTERN.

0 Do not perform AREA PATTERN.

19 WID_ENABLE

Enables clipping using the overlay planes. To use this function, the

PC_WID register must first be programmed with the appropriate plane

mask and key. WID is available on all operations.

1 Enable clipping with the overlay planes.

0 Disable WID_ENABLE.

(continued)

5-32 014-001800

Programming the Color Graphics Subsystem

Bit Mnemonic Function

31-16 Attributes Continued

Bit Mnemonic — Operation

18 CLIP_STOP

During line operations, selects whether execution stops or continues

when the clipping boundary is crossed.

1 Stop and set Clipping Boundary (BND in register CSRO) when

clipping occurs.

0 Do not stop when clipping occurs.

17-16 CLIP_CONTROL

Determines how clipping is used.

00 Draw inside clipping rectangle.

01 Do not clip.

10 Draw outside clipping rectangle (pick).

11 Do not clip.

15-12 Reserved Must be zeroes when written to, and undefined when read from.

11-8 LU_OP ALU Operation

Specifies the type of ALU operation to be performed between the

source and destination data.

Value

(Hex) Mnemonic Logical Function

0 CLEAR 0 (zero)

1 AND source AND destination

2 AND REVERSE source AND NOT destination

3 COPY source

4 AND INVERTED NOT source AND destination

5 NOP destination

6 XOR source XOR destination

7 OR source OR destination

8 NOR NOT source AND NOT destination

9 EQUIV NOT source XOR destination

A INVERT NOT destination

B OR REVERSE source OR NOT destination

C COPY INVERTED NOT source

D OR INVERTED NOT source OR destination

E NAND NOT source OR NOT destination

F SET 1 (one)

7-4 Reserved Must be zeroes when written to, and undefined when read from.

3-0 OP Operation

Specifies the operation to be executed.

Value

(Hex) Operation

0 NOP No operation

1 BITBLT Bit block transfer

2 LINE Draw line

3 CLINE Continue line after clip

4 POLY Polygon assist

5 Reserved

6 RXFER Transfer from frame buffer to host

7 WXFER Transfer from host to frame buffer

8-F Reserved

(concluded)

014-001800 5-33

Programming the Color Graphics Subsystem

Table 5-4 describes several Command register bit settings.

(—) indicates that the value of this bit does not affect the command.

Within the table, the dash

Table 5-4 Color Graphics Command Bits

Line Command Register Bits

Stipple Ptn Mbus Data

Command) Bit ' Bit Bit | LU_OPSOLIDSTIPPLE TRANS | Source?; Description

LINE — 0 — |ACT? 0 — 0 BACK | Normal draw

— 1 — ACT 0 — 0 FORE

— 0 — ACT 0 — 1 DEST | Draw

transparent

— 1 — ACT 0 — 1 FORE

— — — — 1 — — FORE | Draw solid

(pattern = —)

POLY — — — ACT 0 0 — FORE | Normal POLY

— — — — 1 — — FORE | Solid fill POLY

0 — — ACT 0 1 0 BACK | Stipple mode

1 — — ACT 0 1 0 FORE

0 —_ — ACT 0 1 1 DEST | Stipple mode

1 —_ — ACT 0 1 1 FORE (transparent)

BITBLT — — — ACT 0 0 _ SORC j; Normal

BITBLT

_— — — — 1 — — FORE | Solid fill

0 _ — ACT 0 1 0 BACK | Stipple mode

1 — — ACT 0 1 0 FORE

0 — — ACT 0 1 1 DEST | Stipple mode

1 —_ — ACT 0 1 1 FORE | (transparent)

W/RXFER — _ — ACT 0 0 _ DPORT | Z-Mode

(Z-Mode) — — — — 1 0 — DPORT | Z-Mode

WXFER — — 0 ACT 0 1 0 BACK | XY-Mode

(XY-mode) — — 1 ACT 0 1 0 FORE | (Mbus bit 0)

— — 0 ACT 0 1 1 DEST | Transparent

XY-Mode

— — 1 ACT 0 1 1 FORE | (Mbus bit 0)

— — — — 1 1 _— FORE | XY~Mode

(fill solid)

WXFER — — — — — —_ — MDATA | Host !
frame buffer

1 Stipple Bit:

POLY: Single bit selected from a one-plane stipple pattern.

BITBLT: Multiple-bit word selected from a one-plane stipple pattern.

2 Data Source: Frame buffer write “data source”; this data may be modified by the LU opcode.

BACK = Background color.

FORE = Foreground color.

DEST = Pixel data prefetched from frame buffer.

DPORT = Dataport Register.

SORC = BITBLT source data.

MDATA = Host-to-frame-buffer write data.

3 ACT: Datapath logic unit “active”; source data is subject to modification according to current

ALU operation code (LU_op).

5-34 014-001800

Programming the Color Graphics Subsystem

Color Graphics Commands

This section describes the color graphics commands.

LINE Line draws a straight line within clipping boundaries.

CLINE Continue Line After Clip draws a straight line that was previously drawn

by LINE, but CLINE ignores clipping boundaries.

POLY Polygon draws a filled polygon.

BITBLT Bit Block Transfer moves blocks of data within the frame buffer.

RXFER Read Transfer transfers data from the frame buffer to system memory.

WXFER Write Transfer transfers data from system memory to the frame buffer.

To execute a graphics command, the graphics program must write to the command

and parameter registers. When the CPU writes the last parameter, the subsystem

executes the requested command without further CPU intervention.

014-001800 5-35

Programming the Color Graphics Subsystem

LINE

Line Draw

The LINE command draws straight lines, solid or patterned, single-color or shaded

within a clipping rectangle. This command uses a modified Bresenham’s Algorithm to

ensure that lines drawn from point A to point B exactly match lines drawn from point

B to point A. LINE directly accepts the X-Y coordinates of a source and destination

point, together with the X-Y origin they are identified with.

Command capabilities include

@ The use of a pattern and pattern control registers to control stippling of each pixel

in the line.

Optionally drawing the last pixel in the line.

Shaded or solid color lines.

WID clipping.

PARMO Window

L— The dotted portion

ere ym is not drawn.
j
g PARME i“ PARM2
{ PARM1 (
; /~

PARM7 j

————_—<—« >
——agee ean

Clipping Rectangle

Initial Parameter Registers

The use of 16 standard logic operations, as defined by the X Window SystemTM.

Register MSBytes LSBytes Description

PARMO Origin_X Origin Y Upper-left coordinates of drawing window.

PARM1 Source_X Source_Y Line starting coordinates.

PARM2 Dest_X Dest_Y Line ending coordinates.

PARM3 Fore Foreground pixel color for nonshaded lines.

PARM4 Fore_I Fore_F Initial foreground color for shaded lines.

PARMS Finc_I Finc_F Foreground color increment for shaded lines.

PARM6 ClipTL_X ClipTL_Y Upper-left coordinates of clipping rectangle.

PARM7 ClipBR_X ClipBR_Y Lower-right coordinates of clipping rectangle.

NOTE _I=Integer and _F = Fraction.

5-36 014-001800

Programming the Color Graphics Subsystem

Working Registers

Register MSBytes LSBytes Description

PARM8 CP_X CP_Y Current pointer (coordinates of the last pixel drawn).

PARM9 Delta_X Delta_Y Current number of pixels in the X and Y direction.

PARM10 _— Error_X Error_Y Bresenham’s Error in X and Y direction.

PARM11 Einc_X Fine_Y Bresenham’s Error increment in X and Y direction.

PARM14 _ Fcurr_l Feurr(_F) Current foreground color — In shaded lines, the MSB

contains the integer part; in nonshaded lines, the LSB is the

same as the initial foreground color value (in PARM4).

The LINE command calculates the next pixel address using a modified Bresenham’s

Algorithm. PARM8 (current pointer) contains the last pixel drawn, and at the end of

the command will equal origin+destination.

Global Registers

The LINE command uses the following global registers:

BACK

MASK

LPAT

PC_WID

Command Register

The LINE command uses the following Command register bits.

Bit Mnemonic

30 SHADE

29 NO_LAST

28 PAT_RESET

27 ZBUF_ENABLE

26-24 SOURCE PLANE

23 SOLID

22 TRANSPARENT

19 WID_ENABLE

18-16 Attributes: CLIP CONTROL (17-16), CLIP_STOP (18)

11-8 LU_OP

3-0 OP = 2

The NO _ LAST attribute leaves the CP at the destination pixel, but does not draw it.

If PAT_RESET is set, the pattern pointer and counter will reset to the first pattern bit

before drawing any pixel; otherwise, the line will be drawn with a pattern which is a

continuation of the previous command.

014-001800 5-37

Programming the Color Graphics Subsystem

Executing the LINE Command

Follow this procedure to execute the LINE command:

1. If it is necessary to update the global registers, PARM7, PARM6 or PARM4,

continue with steps 1a and 1b, otherwise continue with step 2.

a. Poll the DIP bit in CSRO, wait for it to clear to 0.

b. Write the necessary parameters to the global registers (MASK, BACK, LPAT

and PC_WID), PARM7, PARM6 and PARM4.

2. Poll the BSY bit in CSRO for 0.

3. Program the Command register.

4. Program PARMO, PARM1 and PARM3.

5. Program PARM2; the command will execute automatically.

Interrupts

When the controller completes the LINE command, it generates a drawing done

interrupt (DDI).

If clipping is enabled and a pixel is drawn outside the clipping boundaries, the

controller generates a clip interrupt. This depends on the clip control attributes in the

CMD register; when the CLIP_STOP bit is set, line drawing stops and the BND bit in

CSRO is set.

Notes/Exceptions

If you specify the NO_LAST function, the pattern pointer will not increment for the

pixel not drawn. This is consistent with the desired functionality.

Although the XY frame buffer and the WID/overlay frame buffer share a common

coordinate system (with the WID/overlay below the XY and starting at X = 0, Y =

4096), lines must be drawn either completely in the XY or in the WID/overlay

sections. That is, no lines can be specified that extend from the XY into WID/overlay

section or vice-versa.

You can not pipeline the Finc (foreground color increment) parameter in PARMS for

shaded lines.

If transparency is enabled, transparent pixels are not drawn, that is, no memory cycle

is executed for them. In 400 series stations, if Z—-buffering is enabled, transparency

takes precedence over Z-buffering, resulting in transparent pixels retaining their old

Z-value, regardless of the Z-comparison.

5-38 014-001800

Programming the Color Graphics Subsystem

CLINE

Continue Line After Clip

Continue Line After Clip (CLINE) redraws a line that was previously drawn using the

LINE command, but was cut by clipping boundaries. CLINE needs no no new

parameters, and the setup phase of the LINE command is not executed.

CLINE draws straight lines in a window that is partially obscured. Every time the line

steps outside the current boundaries, the host should update PARM6 and PARM7

with the next rectangular area that the line goes into, and issue a CLINE command.

Since there is no knowledge of whether the line will step outside of the window, or

into which area it will go next, the CLINE command should not be pipelined.

Initial Parameter Registers

PARMO Window

GD GED GED GaD Gap Gap Gua, f.

j TM TM
\ PARM6 } PARM2

§ PARM1 |
—— !

PARM7 J

=——_—w—

Clipping rectangle

Register MSBytes LSBytes Description

PARM6 ClipTL_X ClipTL_Y Upper-left coordinates of clipping rectangle.

PARM7 ClipBR_X ClipBR_Y Lower-right coordinates of clipping rectangle.

Working Registers

Register MSB LSB Description

PARM8 CP_X CP_Y Current pointer (coordinates of the last pixel drawn).

PARM9 Delta_X Delta_Y Current number of pixels in the X and Y direction.

PARM10 Error_X Error_Y Bresenham’s Error in X and Y direction.

PARM11 Finc_X Finc_Y Bresenham’s Error increment in X and Y direction.

PARM14 Feurr_I Fcurr(_F) Current foreground color — In shaded lines, the MSB

contains the integer part; in nonshaded lines, the LSB is the

same as the initial foreground color value (in PARM4).

014-001800 5-39

Programming the Color Graphics Subsystem

Global Registers

The CLINE command uses the following global registers:

MASK

BACK

LPAT

PC_WID

Command Register

The CLINE command uses the following Command register bits.

Bit Mnemonic

30 SHADE

29 NO_LAST

27 ZBUF_ENABLE

23 SOLID

22 TRANSPARENT

19 WID_ENABLE

18-16 Attributes: CLIP_CONTROL (17-16), CLIP_STOP (18)

11-8 LU_OP

3-0 OP = 3

Modes of Operation

The CLINE command calculates the next pixel address using a modified Bresenham’s

Algorithm. The CP (PARM8) register contains the last pixel to be drawn, and at the

end of the command will equal origint+destination. The pattern register is always

referred to, so solid lines must have the pattern of FFFF FFFF. The same argument

applies to shaded lines. The NO_LAST attribute leaves the CP at the destination

pixel, but does not draw it.

Command Procedure

Follow this procedure to execute the CLINE command:

1. Wait for the DIP bit in CSRO to clear and the BND bit in CSR0O to be set.

2. Update the global registers and Parameter registers (PARM6 and PARM7).

PARM6 and PARM7 are the clipping boundaries.

3. Poll the BSY bit in CSRO; wait for it to clear to 0.

4. Write the CLINE opcode, logic opcode, and desired attributes into the Command

register. The Command register triggers the operation.

5. To execute another LINE command, repeat the procedure from Step 1. To

execute another graphics command see the appropriate command procedure.

5-40 014-001800

Programming the Color Graphics Subsystem

Interrupts

When the controller completes the CLINE command, it generates a drawing done

interrupt (DDI).

If clipping is enabled and a pixel is (possibly) drawn outside (or inside) the clipping

boundaries, the controller generates the clip interrupt. (This is dependent on the

setting of the clip control attributes.) If the CLIP STOP bit is also set, line drawing

stops and the BND bit in CSR0 is set.

Notes/Exceptions

If you specify the NO_LAST function, the pattern pointer will not increment for the

pixel not drawn.

Although the XY frame buffer and the WID/overlay frame buffer share a common

coordinate system (with the WID/overlay below the XY and starting at X = 0, Y =

4096), lines must be drawn either completely in the XY or in the WID/overlay

sections. That is, no lines can be specified that extend from the XY into WID/overlay

section or vice-versa.

You can not pipeline the Finc (foreground color increment) parameter in PARMS for

shaded lines.

If transparency is enabled, transparent pixels are not drawn; that is, no memory cycle

is executed for them. If Z-—buffering is also enabled, transparency takes precedence

over Z—-buffering, resulting in transparent pixels retaining their old Z-value, regardless

of the Z-comparison. Note that only 400 series stations support Z-buffering for

hidden surface removal.

014-001800 544

Programming the Color Graphics Subsystem

POLY

Polygon Assist

The POLY command draws a filled polygon. The polygon must be a trapezoid (i.e.,

a four-sided figure with two parallel sides) with the parallel sides on horizontal planes.

Two trapezoids are needed to draw a triangle (see Figure 5-5).

Command capabilities include

Flat shading and Gouraud shading (linear interpolation).

Stippling and transparency.

WID clipping.

Any combination of the above.

The following figure illustrates the global parameters that must be defined when

drawing a polygon.

PARMO PARM6 \
~~. /

_— Screen

Window SN —————
Clipping rectangle

PARM7

\ ad

Figure 5-5 Global Elements of the POLY Command

Figure 5-6 illustrates some of the local parameters used in drawing a polygon.

PARMS, the initial scan, defines where in the clipping rectangle to begin the scan.

The graphics controller increments PARM9 after each scan to scan down through the

clipping rectangle. If the top of the polygon is clipped, PARM9 should start with the

same value as PARM6 (shown in Figure 5-5), the top left corner of the clipping

rectangle.

5-42 014-001800

Programming the Color Graphics Subsystem

> a — — ~,
Pa PARM10 and ~L

ye PARM11 are the \

7 same at this point. aN

/ ° ° oO \
(° ° Pixels)
\ ° ° /

\\ PARM10 o ~ PARM11 /

aN Scan Line /
“7 “ ye

“7 Se a“

oa ~ nw -~
~ a ee —_——

PARM2

right slope

PARM1

left slope n

POLY writes the polygon fill into memory using repetitive seeks and scans as

defined by the upper and lower bounds of the polygon.

Pixels

Seek - Seeks the representative row in memory from

right to left through the polygon until it reaches

location outside the left edge of the polygon. As the

5 Seek seek passes through thre polygon, it sets the pixels
\ within the polygon.

PARM11

PARM9 and PARM 10

Pixels

Scan - Scans the representative row in memory from

left to right and sets the characteristics of the pixels.

Pixels that fall within the polygon are assigned the

Sean appropriate characteristics for that location. The line

is scanned until it reaches a pixel located outside the

\ polygon.
PARM11

PARMS and PARM 10

Figure 5-6 Local Elements of the POLY Command

014-001800 5-43

Programming the Color Graphics Subsystem

Initial Parameter Registers

Register MSBytes LSBytes' Description

PARMO Origin _X Origin Y Upper-left coordinates of drawing window.

PARM1 DX1_I DX1_F Slope of left edge (dx/dy).

PARM2 DX2_] DX2_F Slope of right edge (dx/dy).

PARM3 — Flat Foreground pixel color for flat shading (unused, integer).

PARM4 DIX_I DIX_F Intensity change for a positive step in the X-direction.

PARM5 DIY_]I DIY_F Intensity change for a positive step in the Y-direction.

PARM6 ClipTL_X ClipTL_Y Top-left coordinates of clipping rectangle.

PARM7 ClipBR_X ClipBR_Y Bottom-right coordinates of clipping rectangle.

PARM9 Sp _X Sp_Y Initial scan leftmost pointer (X, Y).

PARM10 Fl | Fl F X-value of left edge in initial scan.

PARM11 E2_I E2_F X-value of right edge in initial scan.

PARM13 Is I Is F Intensity at scan pointer (Sp).

PARM14 nn_1 nn 2 Number of scans in left and right edges (integers).

PARM15 Patrn_X Patrn_Y Stipple pattern pointer (X, Y).

NOTE —_1= Integer and _F = Fraction when shown under MSB and LSB.

Working Registers

Register MSBytes LSBytes Description

PARM8 Cp_X Cp_Y Current pixel pointer (X, Y).

PARM9 Sp_X Sp_Y Current scan leftmost pointer (X, Y).

PARM10 E11 El F X-value of the left edge in current scan.

PARM11 E2 | E2 F X-value of the right edge in current scan.

PARM12 Ic_I Ic_F Intensity at current pixel.

PARM13 Is_] Is F Intensity at scan pointer (Sp).

NOTE |= Integer and _F = Fraction when shown under MSB and LSB.

Global Registers

The POLY command uses the following global registers:

BACK

MASK

PC_WID (WID fields only)

014-001800

Programming the Color Graphics Subsystem

Command Register

The POLY command uses the following Command register bits.

Bit Mnemonic

30 SHADE

27 ZBUF_ENABLE

26-24 SOURCE PLANE

23-21 ‘Fill style bits: SOLID (23), TRANSPARENT (22), STIPPLE (21)

19 WID_ENABLE

18-16 Attributes: CLIP CONTROL (17-16), CLIP_STOP = 0 (18)

11-8 | LU_OP

3-0 OP = 4

Modes of Operation

To calculate addresses for pixels inside the triangle, the POLY command steps through

every scan line and executes first a seek, and then a scanning phase. During the seek

phase, the Sp (PARM9) pointer (with intensity Is) is first moved left until it points to

the pixel just to the left of the left edge, and then right, until it is at the first pixel

with an X—value greater than the left edge (at the same time, the intensity is

adjusted). The Cp (PARM8) is assigned the value of Sp, and scanning starts,

incrementing the X-value of Cp and the intensity Ic (PARM12) until all pixels to the

left or at the right edge are drawn. When the end of the scan line is reached, the

Y-value of Sp is incremented, and Is adjusted, and nn_i and nn_2 (PARM14) are

decremented. If either nn_1 or nn_2 become 0, execution stops. Otherwise, the edge

pointers E1 (PARM10) and E2 (PARM11) are adjusted by DX1 (PARM1) and DX2

(PARM2), and the next scan line is then drawn.

If stippling is enabled, every pixel will be drawn in either the foreground color (flat or

shaded) or the background color (transparent). The Pattern pointer must point to a

tile aligned in a 32 © 32 boundary. The S least significant bytes of the calculated

pixel address are added (modulo 32) to the pattern pointer, and then the

SOURCE_PLANE is used to select a bit in the pattern pixel, which then selects

foreground or background.

Command Procedure

Follow this procedure to execute the POLY command:

1. Poll the DIP bit in CSRO; wait for it to clear to 0.

2. Write the POLY opcode, logic opcode, and desired attributes into the Command

register.

3. Write the POLY operands into the Parameter registers PARM0-PARM/7,

PARM9-PARM 11, and PARM13-PARM15. Write to PARM2 last; it triggers the

command. PARMS5-PARM7 are optional.

014-001800 5-45

Programming the Color Graphics Subsystem

4. For the second half of the triangle, wait for the DIP bit in CSRO to clear; then

update PARM1, PARM2, PARM10, PARM11, and PARM13. Write to PARM2

last; it triggers the command.

5. To execute another POLY command, repeat the procedure from step 1. To

execute another graphics command see the appropriate command procedure.

Interrupts

When the controller completes the POLY command, it generates a drawing done

interrupt (DDI).

If clipping is enabled and a pixel is (possibly) drawn outside (or inside) the clipping

boundaries, the controller generates the clip interrupt. (This is dependent on the

setting of the clip control attributes.)

Notes/Exceptions

If transparency is enabled, transparent pixels are not drawn; that is, no memory cycle

is executed for them. If Z-—buffering is also enabled, transparency takes precedence

over Z—buffering, resulting in transparent pixels retaining their old Z-value, regardless

of the Z-comparison. Note that only 400 series workstations support Z—buffering for

hidden surface removal.

The CLIP_STOP bit must be 0 for this command.

The SOLID bit will override the SHADE bit and flat shading will occur.

5-46 014-001800

Programming the Color Graphics Subsystem

BITBLT

Bit Block Transfer

The BITBLT command moves blocks of data within the frame buffer. The transfer

parameters are upper-left coordinates of the source and destination areas and the

height and width of the areas. The color graphics controller computes other

parameters.

BITBLT can copy from font tables, icons, and patterns stored in an off-screen

portion of the frame buffer, and can set window ID and/or color overlay values in the

ID/overlay frame buffer planes.

Command capabilities include

@ The use of 16 standard logic operations, as defined by the X Window System.

@ Fast area fills with selectable pixel values.

@ 32 pixel x 32 pixel patterns.

e Color expansion (stippling) from a single selectable source plane into multiple

planes, with or without patterning.

Screen-door transparency in stipple mode.

@ Clipping under control of Window ID planes.

PARMO PARM2 nN

a7 |
a

PARM4

Initial Parameter Registers

Register MSBytes LSBytes Description

PARMO Origin _X Origin Y Upper-left coordinates of drawing window.

PARM1 Source _X Source _Y Upper-left coordinates of BITBLT source rectangle.

PARM2 Dest_X Dest_Y Upper-left coordinates of BITBLT destination rectangle.

PARM3 Fore Foreground pixel color (for solid fills and foreground color

during stippling).

PARM4 Size_X Size_Y Width and height of BITBLT rectangle.

014-001800 5-47

Programming the Color Graphics Subsystem

Working Registers

Register MSBytes LSBytes Description

PARM8 NRows Number of rows remaining to be transferred.

CurWr Number of pixels words remaining to be written to the

current destination row.

PARM9 Color Copy of foreground color register.

CurRd Number of pixels words remaining to be read from the

current source row.

PARM10 CurSrc_X CurSrc_Y Current source transfer coordinates.

PARM11 CurDst_X CurDst_Y Current destination transfer coordinates.

PARM12 WRwds Number of destination pixel words to be written to each row.

PARM13 RDwds Number of source pixel words to be read from each row.

PARM14 TXsre_X TXsrc_Y Translated coordinates of source rectangle after adjusting for
scan direction.

PARM15 TXdst_X TXdst_Y Translated coordinates of destination area rectangle after

adjusting for scan direction.

Global Registers

The BITBLT command uses the following global registers:

BACK

MASK

PC_WID (WID fields only)

Command Register

The BITBLT command uses the following Command register bits:

Bit Mnemonic

27 ZBUF_ENABLE

26-24 SOURCE PLANE

23-21 Fill style bits: SOLID (23), TRANSPARENT (22), STIPPLE (21)

20 AREA PATTERN

19 WID_ENABLE

11-8 LU_OP

3-0 OP = 1

5-48 014-001800

Programming the Color Graphics Subsystem

Modes of Operation

The Command register defines which of four modes the BITBLT command uses —

Normal, Area_fill, Stipple, or Pattern.

Normal

Area_fill

Stipple

Pattern

014-001800

Used when none of the Command register bits is set. This mode

modifies pixel values within the destination rectangle according to the

current logic unit operation code (LU_OP). The pixel values written are

a Boolean function of source and destination pixel values.

Used when the SOLID bit is set. Results in the destination rectangle

being filled with the pixel color value specified in the least significant byte

of PARM3 (FORE). The STIPPLE, TRANSPARENT, and LU_OP bits

are ignored. Area_fill operations do not need to access source data.

Used when the STIPPLE bit is set. Expands the color of a single—bit

plane into multiple-bit planes. Select the source plane to be expanded

with the 3-bit SOURCE PLANE field of the Command register. The

pixel values used for color expansion are supplied by the PARM3

(FORE), and BACK registers. The FORE and BACK colors correspond

to 1s and Os respectively, as read from the source plane. Similarly, with

the STIPPLE and TRANSPARENT bits set, a “screen—door”

transparency will result by using existing destination data in place of the

BACK color for source plane Os.

In multiple color graphics workstations, each controller must have a copy

of the stipple pattern in one of its frame buffer planes. Patterning and

LU_Op bits affect the operation of this mode; and the SOLID bit must

be clear.

The BITBLT destination rectangle is modified based on a source pattern,

normally stored in an off-screen portion of the frame buffer. The source

patterns are restricted to a 32 pixel x 32 pixel rectangle and must be

aligned to 32-pixel frame buffer boundaries in both X and Y, such that

screen coordinate bits X4-X0 and Y4-YO must equal 0. Patterns are

full-depth pixel values; with the STIPPLE bit set, single-plane patterns

can be used as sources for stippling, using FORE and BACK as described

in the previous Stippling description. The STIPPLE, TRANSPARENCY,

and LU_Op bits affect the pattern mode;, and the SOLID bit must be

cleared to 0. Patterns within the destination rectangle can be aligned by

specifying the upper-left coordinate of the source, alignment of patterns

will be on a per object basis, whereas specifying the appropriate point

within the pattern will result in alignment on a screen basis.

5-49

Programming the Color Graphics Subsystem

Command Procedure

Follow this procedure to execute the BITBLT command:

1. If necessary, update the global registers as follows, otherwise continue with step 2.

a. Poll the DIP bit in CSRO; wait for it to clear to 0.

b. Update the global registers; then proceed to step 2.

2. Poll the BSY bit in CSRO; wait for it to clear to 0.

3. Program the Command register with the BITBLT opcode, logic opcode, and

attributes.

4. Program the Parameter registers (PARMO-PARM4). Write to PARM2 last; it

executes the BITBLT command.

5. To execute another BITBLT command, repeat the procedure from step 1. To

execute another graphics command see the appropriate command procedure.

Interrupts

When the controller completes a bit block transfer, it generates a drawing done

interrupt (DDI).

Notes/Exceptions

The BITBLT command can move text to from tables stored in an off-screen portion

of the frame buffer. To achieve optimum character transfer rates, align the characters

in the frame buffer on 8-pixel column boundaries so that the screen coordinates

X2-X0 = 0.

During a BITBLT, the XY Clipping mode is not available. However, Window ID

clipping is supported.

Setting the Command register Z_ Enable bit does not affect BITBLT operations. If

the SOLID bit is also set, the combination selects the Z-buffer gate array “fast Clear”

mode to quickly set the Z-buffer to a desired value.

BITBLT operations will fail if a source area starts within 40 pixels of a bank boundary

in the X direction. The bank boundary occurs every 512 horizontal pixels for 64K x 4

VRAMs and every 2K horizontal pixels for 256K x 4 VRAMs.

5-50 014-001800

Programming the Color Graphics Subsystem

RXFER

Read Transfer

The RXFER command controls the transfer of data from the frame buffer to the

Mbus. To perform a read transfer:

1. Specify the height, width, and upper-left coordinates of the transfer area.

2. Read the resulting data from the Dataport register (DATA).

3. The graphics controller generates the frame buffer addresses and memory cycles,

prefetches the requested data, and awaits the subsequent Mbus access.

Initial Parameter Registers

Register MSBytes LSBytes Description

PARMO Origin_X Origin Y Upper-left coordinates of drawing window.

PARM2 Pntr_X Pntr_Y Upper-left coordinates of transfer rectangle.

PARM4 Size_X Size_Y Width and height of transfer rectangle.

Working Registers

Register MSBytes LSBytes Description

PARM8 Cadrs_ X

PARM9 Csize_X

PARM10 ~~ Xent

PARM11 Left_X

PARM12 ~~ Ladrs_X

PARM13 __Lsize_X

Cadrs_Y

Csize_Y

Ladrs_Y

Lsize_Y

Current address of frame buffer read data.

Current size of remaining transfer area.

Number of pixels per row of transfer area.

X address at left edge of transfer area.

Address of last fetched frame buffer word (used as current

address when resuming command).

Size of transfer rectangle prior to last frame buffer read (used

as current size when resuming command).

Global Registers

The RXFER command uses only the DATA register.

Command Register

The RXFER command uses the following Command register bits.

Bit Mnemonic

3-0 OP = 6

014-001800 5-51

Programming the Color Graphics Subsystem

Modes of Operation

The RXFER command has no special modes of operation. Once the command is

initiated, the requested frame buffer data can be immediately read from the Dataport

register. You do not need to poll the BSY or DIP bits in CSRO. The read data

ordering will be from left-to-right, top-to-bottom within the specified transfer area.

Each read access will result in one data bit per memory plane; data will be right

justified within the word, such that bit 0 corresponds to plane 0, bit 1 to plane 1, and

so on. Note that you can not pipeline RXFER commands. Once the command is

triggered, it must complete (DIP = 0) before you issue another command.

Command Procedure

You should follow this procedure for proper operation of the RXFER command:

1. Poll the BSY bit in CSRO for 0.

2. Write the RXFER opcode into the Command register.

3. Write the Parameter registers PARM4, PARM2, and PARMO with RXFER

operands. (PARM2 is the command “trigger” and must be written last.)

4. Read the requested frame buffer data from the Dataport register. All specified

words must be read, otherwise it will be necessary to reset the color graphics

controller to terminate the command.

5. Wait for the DIP bit in CSRO to clear before executing the next command.

Interrupts

When the controller completes the RXFER command, it generates a drawing done

interrupt (DDI).

Notes/Exceptions

You must read all pixels requested before starting any other command, otherwise it

will be necessary to reset or stop the color graphics controller.

5-52 014-001800

Programming the Color Graphics Subsystem

WXFER

Write Transfer

The Write Transfer (WXFER) command controls the transfer of data from system

memory to the frame buffer. The host application first specifies the height, width,

and upper-left coordinate of the target frame buffer area, then writes the required

data into the Dataport register. The controller generates the actual frame buffer

addresses and memory cycles and performs buffered writes of the Mbus data. The

operation of the WXFER command resembles that of a BITBLT command with the

host rather than the frame buffer as the data source. Accordingly, most of the

BITBLT drawing modes are available.

Initial Parameter Registers

Register MSBytes LSBytes Description

PARMO Origin _X Origin _Y

PARM2 Pntr_X Pntr_Y

PARM3 Fore

PARM4 Size_X Size_Y

PARM6 ~=—ClipTL_X_—ClipTL_Y

PARM7 ClipBR_X__ClipBR_Y

Upper-left coordinates of drawing window.

Upper-left coordinates of transfer rectangle.

Foreground color value (used in XY-mode).

Width and height of transfer rectangle.

Upper-left coordinates of clipping rectangle.

Lower-right coordinates of clipping rectangle.

Working Registers

Register MSBytes LSBytes Description

PARM8 Cadrs_ X Cadrs_Y

PARM9 Csize_X Csize_Y

PARM10 Xent

PARM11 Left_X

PARM13 Lsize_X Lsize_Y

Current address of frame buffer write data.

Current size of remaining transfer area.

Number of pixels per row of transfer area.

X address at left edge of transfer area.

Size of transfer rectangle after the last frame buffer write

(used as current size when resuming command).

Global Registers

The WXFER command uses the following global registers:

BACK

DATA

MASK

PC_WID (WID fields only)

014-001800 5-53

Programming the Color Graphics Subsystem

Command Register

The WXFER command uses the following Command register bits.

Bit Mnemonic

23-21 ‘Fill style bits: SOLID (23), TRANSPARENT (22), STIPPLE (21)

19 WID_ENABLE

17,16 Attribute: CLIP_CONTROL

11-8 LU_OP

3-0 OP =7

Modes of Operation

Depending on the setting of certain bits in the Command register, the WXFER

command operates in one of four modes — Z-mode, XY-mode (without

transparency, XY-mode (with transparency), and Clipping.

The following details apply to all modes of the WXFER command. Once a WXFER

command is triggered, the Mbus data can be immediately written into the Dataport

register. You do not need to repeatedly poll the CSRO BSY or DIP bits. You can

not pipeline WXFER commands. Once the command is triggered, it must complete

(DIP = 0) before you issue another command.

Z-~MODE

In this mode the frame buffer is written with data words supplied by the Mbus.

The write data ordering will be from left-to-right, top-to-bottom within the

specified transfer area. The BACK and PARM3 foreground colors are ignored

and need not be specified in this mode. Each Mbus write will result in one data

bit written per memory plane; data will be right-justified within the word, so that

bit 0 corresponds to plane 0, bit 1 to plane 1, and so on.

XY-MODE (without transparency)

Activate this mode by setting the STIPPLE bit in the Command register. The

value of data words written to the frame buffer will be specified by the Mbus data

bit 0: where a value of 1 and 0 correspond to the FORE and BACK color

registers respectfully as data sources. Mbus data bits 31-1 are ignored in this

mode.

XY-MODE (with transparency)

Activate this mode by setting the STIPPLE and TRANSPARENT bits in the

Command register. As in the nontransparent mode, the value of data words

written to the frame buffer will be specified by the Mbus data bit 0: where a value

of 1 corresponds to the FORE color register as the data source; a value of 0,

however, specifies that the original data at the destination remain unmodified.

Mbus data bits 31-1 are ignored in this mode.

5-54 014-001800

Programming the Color Graphics Subsystem

CLIPPING

Clearing the CLIP_ENABLE bit in the Command register will turn on the clip

function; the CLIP_IN/OUT bit in the Command register controls clipping relative

to the defined clip rectangle. Clipped Mbus data words are flushed within the

color graphics controller, and if enabled, a Clip Interrupt will be generated at this

time. Note that the STOP_CONTINUE function (Command register) is ignored,

and that the BND bit in CSRO has no significance during execution of the

WXFER command.

Command Procedure

You should follow this procedure for proper operation of the WXFER command:

1. Poll the BSY bit in CSRO for 0.

2. Write the WXFER opcode and associated parameters into the Command register.

3. Write the Parameter registers PARM4, PARM2, PARMO (defining transfer area),

PARM3 (foreground color — for XY-mode only), PARM7 and PARM6 (clip

rectangle — only with clipping enabled) with RXFER operands. (Note that

PARM2 is the command “trigger” and must be written last.)

4. Perform successive Mbus writes to the Dataport register. All specified words must

be written, otherwise it will be necessary to reset the color graphics controller to

terminate the command.

5. Wait for the DIP bit in CSRO to clear before executing the next command.

Interrupts

The WXFER command generates drawing done (DDI) and Clip interrupts. The DDI

interrupt is asserted after transfer of the last word from the host. The Clip interrupt

will be generated when clipping is enabled and a clip boundary is encountered during

frame buffer writing.

Notes/Exceptions

You must write all pixels requested before starting any other command, otherwise it

will be necessary to reset or stop the color graphics controller.

014-001800 5-55

Programming the Color Graphics Subsystem

Programming the Frame Buffer (8-bit)

A graphics program may write to the frame buffer. If configured to do so, the

graphics subsystem can manipulate the frame buffer directly.

The frame buffer is accessed as 32 bit words.

The color graphics controller addresses the frame buffer via eight multiplexed row and

column addresses lines. Four RAS lines select banks; each bank is 512 columns of

1024 pixels. The controller writes data to the frame buffer via a 64-bit data path. In

8-bit systems, this data represents eight 8-bit pixels. In 24-bit systems, this data

represents three 24-bit pixels.

The frame buffer is a contiguous block of memory, organized into two sections that

representing the 4K x 4K pixels. One section is color data and the other includes

overlay data window identification (WID) data. Color data occupies addresses 8000

0000 — 83FF FFFF, and overlay/window ID data occupies addresses 8400 0000 -

87FF FFFF.

The RAMDAC merges the overlay and window ID information to provide 8 bits/pixel

plus 2 bits/pixel overlay and WID information.

The frame buffer is 2048 x 1024 pixels with 8 bits/pixel in the color data area and 2

bits/pixel in the overlay/WID area. Only the leftmost 1280 x 1024 pixels in this 1536

x 1024 area actually appear on the screen. The “extra” 256 x 1024 x (8+2) bits that

are not displayed are available for storing the following:

Font information (including the Kanji character set).

Stipple patterns.

Tile patterns.

Palette (LUT) information.

Two bits of overlay/WID are for

@ Cursor.

@ Pop-up menus.

@ Clipping to nonrectangular window boundaries.

The CPU can access the frame buffer only in 32-bit words. All other accesses are

disallowed and may generate unusable data. Since the 8-bit and 2-bit portions of the

10-bit pixels are at different memory addresses, the CPU cannot access both at the

same time. When accessing words, pixels are packed one per access with the 8 bits

of the pixel in the least significant byte of the word. This is generally known as

Z-format.

5-56 014-001800

Programming the Color Graphics Subsystem

Accessing the Frame Buffer

The frame buffer memory consists of two blocks, each with as much as 4K pixels x

4K rasters. The size depends on the system configuration.

Each block is implemented as 1536 pixels x 1024 rasters, with the first 1280 pixels of

each raster being displayed.

Each pixel address may be calculated as

address = base address + (((Y * 4096) +X) * 4)

where X and Y are the screen coordinates of the pixel (X and Y are 0 at the top left

pixel and increment across (X) and down (Y) the screen.

Frame buffer accesses must be word (32-bit) accesses aligned on word boundaries.

Each access reads or writes data for one pixel. The unused bits are ignored when

read or driven onto the Mbus (write) to allow parity checking. Unimplemented bits

are driven with data from the least significant Mbus byte.

Read and write frame buffer accesses on the Mbus operate directly on all planes.

The graphics registers do not affect the data when the CPU reads from or writes to

the frame buffer.

Frame Buffer Access Restrictions

Before you can access the frame buffer you must disable the data cache for the frame

buffer memory block. For information on disabling the cache, see the MC8&200

User’s Manual.

A data transfer must be complete before you access the frame buffer.

Accessing the frame buffer slows drawing and auto LUT operations. If you

continually and rapidly perform frame buffer accesses, this may cause the auto LUT

option to not complete during VBLANK.

014-001800 5-57

Programming the Color Graphics Subsystem

Programming the Lookup Table

If drawing a field that is all one color, the frame buffer pointers for that color point to

the same LUT location. This enables the programmer to change the color of a field

by changing the one color value in the LUT.

The LUT can be loaded during vertical blank intervals. This reduces CPU overhead

that results from responding to vertical blank interrupts. Video memory cycles are

needed when loading the LUT, therefore the drawing in progress will slow down while

loading the palette.

Automatic LUT Load (ALL) Function

The automatic LUT load (ALL) function is an optimized color palette loading

mechanism supporting the Bt458 RAMDAC and compatible units. The ALL function

automatically loads frame—buffer resident color palettes into the RAMDAC. The

Palette 0 Pointer (PLTO), Palette_1 Pointer (PLT1), and BLINK registers control the

look-up table auto-load functions of the controller.

The ALL function supports two modes of operation: Palette Loading and Blinking.

@ The Palette Loading operation begins at the leading edge of the vertical blank

period following an ALL command and continues without further host intervention.

The color graphics controller fetches the palette entries from the specified

frame-buffer address and generates the appropriate RAMDAC control and palette

addresses. The entire palette transfer completes within this blanking interval,

thereby preventing undesirable on-screen artifacts.

@® The Blinking operation functions like the Palette Loading mode, but instead of

loading the palette once, the loading takes place continuously, alternating between

two different color palettes, thus producing the blinking effect. The display period

of each palette is an independent programmable function of the monitor frame

rate, and thus allows complete control of palette blink-rate and duty-cycle.

Palette Storage Restrictions

You must store palettes on 256-—pixel column boundaries and on 8-pixel row

boundaries. Accordingly, frame buffer palette X-coordinate bits 7-0 and

Y-coordinate bits 2-0 must equal 0. Every row of the palette table will have 256

columns loaded with successive color values. The number of rows specified is

dependent on the palette size of the RAMDAC in use. For example, the Bt458

requires three rows, or 768 entries. There are no restrictions (except for memory

size) on the number of palette tables you can use.

ALL Registers

Three registers govern the operation of the ALL unit: Palette_0 Pointer (PLT0),

Palette_1 Pointer (PLT1), and BLINK. At reset time, the contents of these registers

are unknown and unchanged. |

5-58 014-001800

Programming the Color Graphics Subsystem

The two color palettes pointed to by PLTO and PLT1 are alternately loaded into the

RAMDAC lookup table according to the values in the BLINK register. The timing

value in either PLFA or POFA is loaded into the BDC bits. The BDC value counts

down at vertical frequency. When BDC reaches 0, the other pallette is loaded into

the RAMDAC, and its timing value is loaded into BDC. This cycle continues until

the BLINK ENABLE bit in CSR2 is set to 1. Note that only the primary LUT is

loaded, not the overlay RAM or the control registers.

Blinking

The subsystem has a blinking function that automatically switches between two palettes

at a specified frame rate to blink colors. Blinking is controlled via the BLINK

register. Turning the blink function off and putting the palette change operation

under program control loads the palette at the next vertical interval following program

command.

Double-Buffering

double buffering, for example, using 4 bits/pixel for each buffer, and setting up more

palettes for more complex multiple buffering, such as four separate screens of 2

bits/pixel each. Since the palettes are active for all pixels on the screen, double

buffering affects programs running in all open windows.

014-001800 5-59

Programming the Color Graphics Subsystem

PLTO Palette 0 Pointer

Address FFF8 90A4 Read/Write

The Palette 0 Pointer (PLTO) register contains the starting X and Y coordinates of

palette 0 in the frame buffer. The coordinates force the palette table origins to the

upper-left corner of the palette. The register contents are as follows:

31 28 | 27 24 | 23 16

Reserved PO _X Reserved

15 13 | 12 3 0

Reserved POY Reserved

Bit Mnemonic Function

31-28 Reserved

27-24 POX

23-13 Reserved

12-3 PO_Y

2-0 Reserved

Must be zeroes when written to, and undefined when read from.

X field starting coordinate for palette 0

Corresponds to screen X-coordinate bits 11-8 (bits 7-0 are always 0).

Must be zeroes when written to, and undefined when read from.

Y field starting coordinate for palette 0

Corresponds to screen Y-coordinate bits 12-3 (bits 2-0 are always 0).

Must be zeroes when written to, and undefined when read from.

5-60 014-001800

Programming the Color Graphics Subsystem

PLT1 Palette 1 Pointer

Address FFF8 90A8 Read/Write

The Palette_1 Pointer (PLT1) register contains the starting X and Y coordinates of

palette 1. The coordinates force the palette table origins to the upper-left corner of

the palette. The register contents are as follows:

31 28 | 27 24 | 23 16

Reserved P1_X Reserved

15 13 | 12 3]2 0

Reserved P1Y Reserved

Bit Mnemonic Function

31-28 Reserved Must be zeroes when written to, and undefined when read from.

27-24 P1X X field starting coordinate for palette 1

Corresponds to screen X-coordinate bits 11-8 (bits 7-0 are always 0).

23-13 Reserved Must be zeroes when written to, and undefined when read from.

12-3 P1 Y Y field starting coordinate for palette 1

Corresponds to screen Y-coordinate bits 12-3 (bits 2-0 are always 0).

2-0 Reserved Must be zeroes when written to, and undefined when read from.

014-001800 5-61

Programming the Color Graphics Subsystem

BLINK Blink

Address FFF8 90AC Read/Write

The Blink (BLINK) register contains four fields to control palette loading (PL, RPAB,

FBR, and PP) and three fields to control blinking (BE, BDC, and .

The four control fields contain bits to enabe either Palette Load or Blink mode

operation, select palette_0 or palette_1 for Palette Loading (PP), specify the number

of transfer rows, and set palette address bits 9 and 8 when using 1024-entry

RAMDACs (RPAB).

BDC, PP, The three 8-bit Blink mode fields specify the active periods for palette 0

and palette 1, and indicate the time remaining for the current palette. These fields

provide the means for controlling the blink-rate and duty-cycle during palette

blinking.

Bit Mnemonic Function

31, 30 RPAB Palette Address Bits

RAMDAC palette address bits 9 and 8 (required for DACs with more

than 256 color entries).

29-27 FBR Frame Buffer Rows

Number of frame buffer rows to transfer.

26,25 BE, PL Blink Enable, Palette Load

01 Enables Palette Load mode, disables Blink mode.

10 Enables Blink mode, disables Palette Load mode.

24 PP Palette pointer

0 Selects palette 0.

1 Selects palette 1.

23-16 BDC Blink Duration Count

15-8 PIFA Palette 1 Frames Active

Number of active palette 1 frames.

7-0 POFA Palette 0 Frames Active

Number of active palette 0 frames.

5-62 014-001800

Programming the Color Graphics Subsystem

Notes

When an ALL command executes, it continues until all palette entries are transferred

to the RAMDAC.

The palette is loaded during vertical blank (VBLANK) periods. Palette Load transfers

begin at the leading-edge of the first VBLANK following the setting of the Palette

Load (PL) bit.

The color graphics controller clears PL immediately after completing a palette load.

The ALL registers are not pipelined; their contents should not be modified while the

LUT is active. See the following “Command Procedure” section. The exception to

this is that during Blink mode, the palette register of the inactive palette may be

loaded with a new address if the blink duration count (BDC) bits in the Blink register

are equal to or greater than 2 (this gives the host a minimum of 15 milliseconds to

load the new palette address before the LUT accesses it). This procedure enables

blinking with more than two colors.

All Blink mode transfers start with palette 0, and begin execution at the leading edge

of the first VBLANK following the setting of the Blink Enable (BE) bit.

Command Procedure

The command procedures for the Palette Load mode and the Blink mode differ only

in the contents of the Blink register. For either mode, perform the following:

1. Check the Palette Load bit for 0 (LUT unit is inactive). Ensure the Blink

Enable bit is 0.

2. Load the color palette entries into the frame buffer. If the desired LUT color

map is not already resident, load the map into the frame buffer. Note the

previous restriction on modifying the ALL registers.

3. Load the appropriate palette pointer register (Palette_0 Pointer or Palette_1

Pointer) with the address of the color map specified in Step 2.

4, Enable either the Palette Load or Blink operation by writing the following

command word into the Blink register:

014-001800 5-63

Programming the Color Graphics Subsystem

Accessing the RAMDAC

This section discusses how to program the RAMDAC. For details on RAMDAC

operation, consult the Brooktree® Product Databook. The RAMDAC registers and

memory are not initialized during powerup.

The RAMDAC registers and color/overlay palette RAM locations are accessed through

the following addresses (these registers exist within the RAMDAC):

Address Name Function

FFF8 90C0 DACO RAMDAC Address register.

FFF8 90C4 DACi1 RAMDAC Color Palette RAM.

FFF8 90C8 DAC2 RAMDAC Control register.

FFF8 90CC DAC3 RAMDAC Overlay Palette RAM.

The Address register (DACO) allows you to access memory and registers within the

RAMDAC. Write the address of the desired register into DACO, then write or read

the data.

To write data to the color palette RAM, write the RAM address to be modified into

DACO. Then perform three sequential write operations to DAC1, one each for red,

green, and blue data for that RAM address. Within the RAMDAC, the third write

Operation causes all three color values to be written into the palette RAM

simultaneously — thus you must perform three Mbus writes to change a palette RAM

location. At the same time, an address pointer in the RAMDAC is incremented to

the next palette RAM location in preparation for another write operation. To write to

consecutive palette RAM locations it is only necessary to write DACO with the address

of the first location to be modified, and then to make the appropriate number of

triple writes to DAC1.

Reading data from the color palette RAM is similar to writing data. Place the address

of the first location to be read into DACO; then read DAC1 three times to provide

red, green, and blue data (in that order) for that location. The RAMDAC internal

address pointer increments each time reading from consecutive locations.

Reading and writing the overlay RAMs is similar. After placing the address into

DACO, read or write DAC3 for the data transfer. Again, the RAMDAC internal

pointer automatically increments after each access.

The RAMDAC contains four control registers that you also access indirectly by placing

their address in DACO, and then reading or writing the data through DAC2. The

RAMDAC internal address pointer does not increment when you access the control

registers. The four control registers and their functions are as follows:

5-64 014-001800

Programming the Color Graphics Subsystem

Address Name Function

04 Read Mask Enables or disables a bit plane from addressing the color palette

RAM. Bit 0 corresponds to plane 0, bit 1 to plane 1, and so on.

0 Disables bit plane addressing.

1 Enables bit plane addressing.

05 Blink Mask Enables or disables a bit plane from blinking at the rate specified in

the Command register. Bit 0 corresponds to plane 0, bit 1 to plane

1, and so on.

0 Disables blinking.

1 Enables blinking.

06 Command Specifies a RAMDAC command. The bits and their values are as

follows:

Bit Function

7 Pixel multiplexing

O 4:1 (color graphics controller value)

1 5:1

6 Source of color data

O Use overlay color 0 if the overlay input is 0.

1 Use color palette RAM.

5,4 Controls blink rate cycle time and duty cycle (in units of vertical

syncs)

00 16 0n, 48 off

01 16 on, 16 off

10 32 0n, 32 off

11 64 on, 64 off

3 Enables/disables blinking of overlay plane 1.

0 Disables.

1 Enables.

2 Enables/disables blinking of overlay plane 0.

0 Disables.

1 Enables.

1 Enables/disables display of overlay plane 1.

0 Disables.

1 Enables.

0 Enables/disables display of overlay plane 0.

0 Disables.

1 Enables.

07 Test Allows testing of the data path through the RAMDAC. See the

BrooktreeR Product Databook for details.

RAMDAC Access Restrictions

You should not access the RAMDAC when the auto LUT load feature is in use

(contention may result) or a drawing operation is in progress (test the DIP bit in

CSRO for 0).

Before you access the RAMDAC, execute the following line of C code to check for

DIP = 0:

while (reg ! csr0 & 0x02) {}

014-001800 5-65

Programming the Color Graphics Subsystem

Initializing the Registers

After a hardware reset, the power-up code initializes the display. The program

enables the drivers for the frame buffer control signals, initializes the RAMDAC so

that only planes 2-0 are valid and may be written to, initializes the look—up tables so

that each one corresponds to one of the three primary colors (red, green, blue),

enables the sync pulses to pass to the monitor, clears the screen, and sets the

FORCBLNK bit in CRT2 high.

Sample C Program

The following C program initializes the color graphics subsystem.

[RR RRR RR RRR RR RRR RR RRR EERE EERE ER EERE REE ER EEE ERE EE /

/* Constants defining the screen physical characteristics */

#define XMIN 0

#define YMIN 0

#define XMAX 1279

#define YMAX 1023

[RRR ER REE E RRR RRR ERE RR EEE EE ER ER EERE REE RRR ERE EE ERE EE /

/* Global variables */

int PC_WID_COPY;

int LUOP;

int ATTRIBUTES;

[RARER EEE RR EERE RRR EER RR EERE EERE EERE EEE EERE EERE EEE EEE EEE EEE EH /

/* Data structure for color graphics controller internal registers */

struct color_controller_reg

{
int csr0; /* adr 00 */

int stop; /* adr 04 */

int csr1; /* adr 08 */

int cmd; /* adr OC */

int mask; /* adr 10 */

int back; /* adr 14 */

int Ipat; /* adr 18 */

int pc_wid; /* adr 1C */

int crt0; /* adr 20 */

int crt1; /* adr 24 */

int crt2; /* adr 28 */

int reserved1; /* adr 2C */

int state; /* adr 30 */

int state1; /* adr 34 */

int reserved2; /* adr 38 */

int reserved3; /* adr 3C */

int parm0; /* adr 40 */

int parm1; /* adr 44 */

int parm2; /* adr 48 */

int parm3; /* adr 4C */

int parm4; /* adr 50 */

int parmS; /* adr 54 */

int parm6; /* adr 58 */

int parm7; /* adr 5C */

int parm8; /* adr 60 */

int parm9; /* adr 64 */

5-66 014001800

Programming the Color Graphics Subsystem

int parm10; /* adr 68 */

int parm11; /* adr 6C */

int parm12; /* adr 70 */

int parm13; /* adr 74 */

int parm14; /* adr 78 */

int parm15; /* adr 7C */

int filler1[8]; /* adr 80-9C */

int dataport; /* adr AO */

int plt0; /* adr A4 */

int plt1; /* adr A8& */

int blink; /* adr AC */

int filler2[4]; /* adr BO-BC */

int dacO; /* adr CO */

int dacl; /* adr C4 */

int dac2; /* adr C8 */

int dac3; /* adr CC */

int filler3[4]; /* adr DO-DC */

int zga[8]; /* adr EO-FC */

};

[RRR REE RR REE ERR RR RR RRR EERE RRR RR RK EER ERE EERE EERE EER EERE EEE EEE /

/* This macro defines the pointer to the internal register structure. */

#define GRAPH() register struct color_controller_reg *reg \

= (struct color_controller_reg *) Oxfff89000

[RRR RRR RR RRR RRR RR RRR RRR RRR RRR AR EERE ERE R ERE EEE RE EE EEE /

/* Logical Drawing Operations */

#define ZERO_DEST 0

#define AND_SRC_DEST 1

#define AND_SRC_NOTDEST 2

#define SRC_DEST 3

#define AND_NOTSRC_DEST 4

#define EXOR_ONE_DEST 5

#define EXOR_SRC_DEST 6

#define OR_SRC_DEST 7

#define AND _NOTSRC_NOTDEST 8

#define EXOR_NOTSRC_DEST 9

#define EXOR_ZERO_DEST 10

#define OR_SRC_NOTDEST 11

#define NOTSRC_DEST 12

#define OR_.NOTSRC_DEST 13

#define OR_NOTSRC_NOTDEST 14

#define ONE_DEST 15

[RRR RRR EERE EEE EER RR EERE RRR ERE RRR ER EEE EERE ERE EEE ERE EEE /

/* Macros that use the color graphics controller directly. */

#define COL_MODE(lu_op) LUOP = lu_op

#define SET _ORG(x,y) while (reg->csr0 & 2) {} \

reg—>parm0 = x<<16 | y

#define SET FORE(color) while (reg—>csr0 & 2) {} \

reg—->parm3 = color

#define SET_BACK(color) while (reg—->csr0 & 2) {} \

reg—->back = color

#define SET _ MASK(pmask) while (reg->csr0 & 2) {} \

reg—>mask = pmask

014-001800 5-67

Programming the Color Graphics Subsystem

#define SET_PCWID(pcwid) while (reg->csr0 & 2) {} \

reg—>pc_wid = pcwid;

#define SET _LPAT(pattern) while (reg—>csr0 & 2) {} \

reg—>lpat = pattern

#define SET _PATRPT(pat_rpt) while (reg—>csr0 & 2) {} \

pewid_copy = reg—>pc_wid;\

reg—>pc_wid = (PCWID_COPY & Oxfff8ffff) | ((pat_rpt & 0x7)<<16)

#define SET_WIDKEY(key) while (reg->crsO & 2) {} \

pewid_ copy = reg—>pc_wid;\

reg—>pc_wid = (PCWID_COPY & Oxffff00ff) | ((key & 0x3)<<8)

#define SET_WIDMASK(mask) while (reg->crs0O & 2) {} \

pewid_copy = reg->pc_wid;\

regp—>pc_wid = (PCWID_ COPY & Oxffffff00) | (mask & 0x3)

#define SET_CLIPRECT(x,y,w,h) while (reg—>csr0 & 2) {} \

reg->parm6 = x<<16 | y;\

reg—>parm7 = (x+w)<<16 | ((yth) & Ox1fff)

/* Set clipping rectangle */

#define FILL() while(reg—>csr0 & 1) {} \

reg—>cmd = 0x00010f01;\

reg—>parm4 = 0x05000400;\

reg—>parm1 = 0x00000000;\

reg—>parm2 = 0x00000000 /* BITBLT X-set */

#define BLANK() while(reg—>csr0 & 1) {} \

rege—->cmd = 0x00010001;\

reg—>parm4 = 0x05000400;\

reg—>parm1 = 0x00000000;\

reg->parm2 = 0x00000000 /* BITBLT X-clear */

#define LINE(x1,y1,x2,y2) while(reg—>csrO & 1) {} \

reg->cmd = ATTRIBUTES | LUOP<<8 | 0x02;\

reg—>parm1 = x1<<16 | (y1 & Oxifff);\

reg—>parm2 = x2<<16 | (y2 & Ox{fff) /* Line */

/* SHADED LINE (must SHADE ENABLE before calling) */

#define SLINE(x1,y1,x2,y2,fore,finc) while(reg—>csrO & 1) {} \

reg—>cmd = ATTRIBUTES | LUOP<<8 | 0x02;\

reg—>parm4 = fore;\

reg—>parmS = finc;\

reg—->parm1 = x1<<16 | (y1 & Ox1fff);\

reg->parm2 = x2<<16 | (y2 & Ox1fff);\

while (reg—->csr0 & 2)

#define BITBLTUL(xd,yd,yc,ws,hs)\

while(reg—>csr) & 1) {}

reg->cmd = ATTRIBUTES | LUOP<<8 | 0x01;\

regp—->parm4 = ws <<16 | hs;\

reg->parmi = xc <<16 | (yc & Ox1fff);\

reg—>parm2 = xd <<16 | (yd & Oxi fff); /* BITBLT */

#define RXFER(x,y,w,h)\

reg—>cmd = ATTRIBUTES | LUOP<<8 | 0x06;\

reg—->parm4 = w <<1i6 | h;\

reg->parm2 = x <<16 | (y & OxlIfff); /* Read transfer */

#define WXFER(x,y,w,h)\

reg->cmd = ATTRIBUTES | LUOP<<8 | 0x07;\

reg->parm4 = w <<16 | h;\

regp->parm2 = x <<16 | (y & Oxifff); /* Write transfer */

5-68 014-001800

Programming the Color Graphics Subsystem

#define CHK_BLANK() while(reg->csr1 & 0x80000) {} \

while(!(reg->csr1 & 0x80000)) {}

#define POINT(a,b) while(reg—>csr0 & 1) {} \

reg->cmd = ATTRIBUTES | LUOP<<8 | 0x02;\

reg—>parm1 = a<<16 | (b & OxIfff);\

reg—>parm2 = a<<16 | (b & Oxifff) /* Single-pixel line */

#define RECT(x,y,w,h) while(reg—>csr0 & 1) {} \

reg->cmd = ATTRIBUTES | LUOP<<8 | 0x02;\

reg->parm1 = x<<16 | (y & Ox1ifff);\

reg—>parm2 = (x+w)<<16 | (y & Oxifff);\

reg->cmd = ATTRIBUTES | LUOP<<8 | 0x02;\

reg->parm1 = (x+w)<<16 | (y & Oxifff);\

reg—>parm2 = (x+w)<<16 | ((yth) & Oxifff);\

reg->cmd = ATTRIBUTES | LUOP<<8 | 0x02;\

reg—>parm1 = (x+w)<<16 | ((yth) & Oxifff);\

reg->parm2 = x<<16 | ((yth) & Ox1fff);\

reg->cmd = ATTRIBUTES | LUOP<<8 | 0x02;\

reg->parm1 = x<<16 | ((yth) & Ox1fff);\

reg->parm2 = x<<16 | (y & Oxifff) /* 4 lines = rectangle */

[RRR RR ERR ERR RRR RRR EERE ERE ERE EERE EERE EERE RHEE RE EEE REE EE EEE /

#define CLIP ON ATTRIBUTES = ATTRIBUTES & Oxfffeffft

#define CLIP_OFF ATTRIBUTES = ATTRIBUTES, | 0x00010000

#define CLIP INSIDE ATTRIBUTES = ATTRIBUTES & Oxfffdffff

#define CLIP_ OUTSIDE ATTRIBUTES = ATTRIBUTES | 0x00020000

#define CLIP CONTINUE ATTRIBUTES = ATTRIBUTES & Oxfffbffff

#define CLIP STOP ATTRIBUTES = ATTRIBUTES | 0x00040000

#define WID_ DISABLE ATTRIBUTES = ATTRIBUTES & Oxfff7ffff

#define WID_ ENABLE ATTRIBUTES = ATTRIBUTES | 0x00080000

#define PATTERN DISABLE ATTRIBUTES = ATTRIBUTES & Oxffefffff

#define PATTERN ENABLE ATTRIBUTES = ATTRIBUTES | 0x00100000

#define STIPPLE_ DISABLE ATTRIBUTES = ATTRIBUTES & Oxffdfffff

#define STIPPLE_ ENABLE ATTRIBUTES = ATTRIBUTES | 0x00200000

#define TRANSPARENT DISABLE ATTRIBUTES = ATTRIBUTES & Oxffbfffff

#define TRANSPARENT ENABLE ATTRIBUTES = ATTRIBUTES | 0x00400000

#define SOLID DISABLE ATTRIBUTES = ATTRIBUTES & Oxff7fffff

#define SOLID ENABLE ATTRIBUTES = ATTRIBUTES | 0x00800000

#define SET SOURCEPLANE (plane) ATTRIBUTES =

(ATTRIBUTES & Oxf8ffffff) | (plane & 0x7)<<24

#define ZBUF_DISABLE ATTRIBUTES = ATTRIBUTES & Oxf7ffffff

#define ZBUF_ ENABLE ATTRIBUTES = ATTRIBUTES | 0x08000000

#define PAT CONTINUE ATTRIBUTES = ATTRIBUTES & Oxefffffff

#define PAT RESET ATTRIBUTES = ATTRIBUTES | 0x10000000

#define DO_LAST ATTRIBUTES = ATTRIBUTES & Oxdfffffff

#define NO_LAST ATTRIBUTES = ATTRIBUTES | 0x20000000

#define SHADE DISABLE ATTRIBUTES = ATTRIBUTES & Oxbfffffft

#define SHADE ENABLE ATTRIBUTES = ATTRIBUTES | 0x40000000

014-001800 5-69

Programming the Color Graphics Subsystem

[RRR RRR ERE EERE EEE R EERE RRR E RE ERE E REE R ER EAE EERE REE RE EERE HE HK /

/* Initialize graphics subsystem. */

void InitGraph()

{ inti;

GRAPH();

/* Initialize palette with gray scale. */

reg—>dac0 = 0x00;

for (i=0; i < 256; i++)

{
reg—>dacl = 1;

reg->dacl = 1;

reg->daci = 1;

}
SET_MASK (0xff);

SET_BACK(0x00);

SET_FORE(0xff);

SET_LPAT (Oxffffffff) ;

SET_PCWID(0x0);

SET_ORG(0,0);

SET _CLIPRECT(0,0,XMAX,YMAX);

/* Clear screen and overlay planes. */

BLANK();

SET_ORG(0,4096);

BLANK();

SET_ORG(0,0);

ATTRIBUTES = 0;

CLIP_OFF;

COL_MODE(SRC_DEST);

while (reg->csrO & 2) {};

/* Initialization done. */

5-70 014-001800

Programming the Color Graphics Subsystem

[RRR RRR RRR ERE ERE RRR RRR RRR ER RR ER REE EEE EERE RRR EE EER REE EE EERE HEE HH /

/* Random line generator — generates nn thousand random lines in gray scale. */

void random (nn)

int nn;

{

register x1,y1,x2,y2,xmax,ymax,seed,loop,loop1,zero,p,pc;

register val1,val2,val3,val4;

int color;

GRAPH();

zero = QO;

xmax = XMAX;

ymax = YMAX;

seed = 3;

vall = 31421;

val2 = 6927;

val3 = 65535;

val4 = 16;

p= 1;
color = 1;

pe = 0;

loop = nn;

while (loop-- > zero) {

SET_FORE(color);

COL_MODE(SRC_DEST);

loop! = 1000;

while (loopi->zero) {

seed = (seed * vall + val2) & val3;

xi = (seed * xmax) >> val4;

seed = (seed * val1 + val2) & val3;

x2 = (seed * xmax) >> val4;

seed = (seed * vall + val2) & val3;

yl = (seed * ymax) >> val4;

seed = (seed * vall + val2) & val3;

y2 = (seed * ymax) >> val4;

LINE(x1,y1,x2,y2);

if (++pc > 40)

{
pe = 0;

if (++color > 255) {color = 0;}

SET _FORE (color);

}
}

Pp = -Pp;

}
}
main()

InitGraphQ);

random (3);

}
[RRR RRR ERR RRR EKER EERE REE EERE EERE REE ER ER EKER ERE REE KERR ERR ERE EE EH /

014-001800 5-71

Programming the Color Graphics Subsystem

Programming the Z—Buffer Controller

The optional Z—buffer controller, available on 400 series stations, supports

three—dimension applications, providing hidden line removal and hidden surface

removal, and Hither and Yon clipping. The Z-buffer is a slave to the color graphics

controller, and sits on the Mbus. The Z-buffer registers are 32-bit; some bits can be

accessed by the color graphics controller. The Z-—buffer controller also features

@ A 25-MHz Mbus interface.

Direct read/write access to the Z—buffer array from the host CPU.

Selectable 24-plane Z-buffer support using 256K x 4 DRAMS.

Fixed internal 24-bit resolution.

Hardware configurable memory organization and resolution supporting all color

graphics controller screen resolutions.

Fast rectangular Clear/Set mode with color graphics controller assistance.

@ Programmable Hither and Yon clipping planes.

@ Support for color graphics controller Stop/Resume operations (context switching).

Components of the Z-Buffer

As shown in Figure 5-7, the Z—-buffer gate array is partitioned into four main

functional modules: an Mbus interface, Z-controller, Datapath/ALU, and a memory

controller.

(Mbus (32 Bits Address/Data) »

Mbus Interface

——___ >

Controller

Z-Controller |+—__—> Color Graphics

Vv V V

Datapath/ALU k}—— Memory Controller

Figure 5-7 2Z-Buffer Gate Array Components

5-72 014-001800

Programming the Color Graphics Subsystem

Mbus Interface

The Mbus interface provides address decoding and access to the Z-buffer registers

and memory. All registers and memory are accessed as 32-bit words. When read,

the Z-buffer generates parity bits, but when written to, it ignores parity bits.

The Z-buffer registers are located at FFF8 90E0O - FFF8 91F0. The Z-buffer

memory array consists of 32 million words located at 8800 0000 —- 8FFF FFFC.

The color graphics controller also decodes the register and array addresses and

generates some of the Mbus control signals for the Z—buffer controller.

Z-Controller

The Z-controller monitors and interprets the Z-protocol bits. Depending on the state

and sequencing of these bits, the Z-controller directs data steering and ALU opcode

selections within the Datapath unit. For example, the Z—controller may select the

contents of the DZ/DX register to decrement the current Z-value.

Datapath/ALU

The Datapath/ALU consists of registers, comparators, data multiplexers, data latches,

and an adder. This unit provides the various data paths needed for reading and

writing the Z-buffer, updating the current Z-value, and for comparing new-Z with

clipping planes and the old-Z. Control of the Datapath is shared between the Mbus

for register access, the Z-controller for incrementing/decrementing Z—values, and by

the memory controller for buffering Z-values between the Z—-buffer and the frame

buffer.

Memory Controller

The Memory Controller generates control signals for the Z-array and internal signals

for steering and latching Z—data within the Datapath unit. The color graphics

controller initiates all activities of the memory controller unit. At the beginning of all

Z-buffer and frame buffer accesses, the color graphics controller sends a “cycle type.”

If the type corresponds to a Z—-buffer request, the Memory Controller performs the

Z—-buffer access. These accesses occur in parallel to, and are sychronized with, the

color graphics controller frame buffer access. Note that for all Z—buffer accesses, the

color graphics controller and the Z-buffer both perform memory cycles.

Configuration Logic

The Configuration Logic controls Z-buffer functions that are dependent on the

graphics configuration of the system. The host CPU loads the configuration

parameters into the Configuration (CNFG) register during Z—buffer initialization.

014-001800 5-73

Programming the Color Graphics Subsystem

Programming the Z-Buffer Registers

The Z—buffer register set consists of the thirteen 32-bit read/write registers as shown

in Table 5-5.

NOTE: Write Os to unused bits. Unused bits are undefined when read.

NOTE: To ensure that the Z—buffer and the color graphics controller’s graphics

processor use the same number of wait states, you must write to the

Z-buffer Configuration (CNFG) Register as the first Z—-buffer access. You

may write/read the remaining registers in any order.

All Z-values are twos complement numbers that represent Z-space (Hither - Yon)

from 80 0000 - 7F FFFF in 24-bit systems, and from 8000 - 7FFF in 16-bit

systems. Z-values are treated differently depending on the system: in 24-bit systems,

Z-values are 24-bit integers; in 16-bit systems, Z-values consist of a 16-bit integer

and an 8-bit fraction.

Context Switching

Context switching occurs when the CPU sets the Stop (STP) bit in the STOP register

of the color graphics controller. The color graphics controller suspends its current

operation and clears the Drawing In Progress (DIP) bit in CSRO. The CPU may now

save the states of the color graphics controller and the Z—-buffer. To save the states

of the Z-buffer, read and save the Z-—buffer registers.

To restore the context of a stopped command, reload the color graphics controller

and Z-buffer registers. Then issue a Resume command to the color graphics

controller (set the RES bit in the STOP Register).

Table 5-5 Color Graphics Register Set Address Map

Address Name Function

FFF8 9008 SR Shadow (this is the same address as the Control and

Status Register 1, CSR1).

FFF8 90E0 ZCMD Command

FFF8 90E4 ZIR Interrupt

FFF8 90E8 Z CNST Z-Constant

FFF8 90EC Z_INIT Initial Z-depth

FFF8 90FO Z XINC DZ/DX

FFF8 90F4 Z_YINC DZ/DY

FFF8 90F8 HCLP Hither Clip

FFF8 90FC YCLP Yon Clip

FFF8 91E0 ZCNFG Configuration

FFF8 91E4 STO State 0

FFF8 91E8 ST1 State 1

FFF8 91EC ST2 State 2

FFF8 91F0 ST3 State 3

5-74 014-001800

Programming the Color Graphics Subsystem

ZCMD 2-Buffer Command

Address FFF8 90E0 Read/Write

The Command (CMD) register is used to modify the execution of Z-Buffer

commands.

31 18 17 16

See
Unused RST B SLCT

16 161/14 138412 11410 9 8 7 6 5 4 3 2 1 0

B sicT | Z_UNF 2_OVF | YCLOP| YCLEN| HCLOP|HCLEN CMPOP|CMPEN|CLRMD, INTEN

Bit Mnemonic Function

31-18 Unused

17 RST

16,15 B SLCT

14,13 Z_UNF

12,11 Z_OVF

10, 9 YCLOP

Must be written as Os and read as undefined.

Z-Buffer Reset

Causes an internal Z—-buffer reset; all operations in progress are halted

and the contents of all registers are undefined.

1 Causes a Z-buffer reset.

Bank Select

Specifies the mapping of the Z-buffer to the frame buffer bank. These

bits are only used in systems with 2Kx2K and 2Kx4K frame buffers.

In these systems, the 2Kx1K Z-buffer address space will be mapped to

the selected 2Kx1K frame buffer bank. Note that these bits are

ignored for 2Kx1K and 1Kx512 frame buffers.

00 #Z-buffer mapped to frame buffer bank 0.

01 Z-buffer mapped to frame buffer bank 1.

10 2Z-buffer mapped to frame buffer bank 2.

11 Z-buffer mapped to frame buffer bank 3.

Z-Underflow

Specifies the action to take if the calculation of Z-New results in an

arithmetic underflow.

00 Write minimum Z-value and write new pixel value.

01 Write minimum Z-value and retain old pixel value.

10 ~=Retain the old Z-value and write new Pixel value.

11 Retain the old Z-value and old pixel value.

Z-Overflow

Specifies the action to take if the calculation of Z-New results in an

arithmetic overflow.

00 Write maximum Z-value and write new pixel value.

01 Write maximum Z-value and retain old pixel value.

10 Retain the old Z-value and write new pixel value.

11 Retain the old Z-value and old pixel value.

Yon Clip Operation

Contains the clipping comparison that determines when a pixel is to be

clipped against the Yon plane.

00 Clip if Z-New less than Yon clipping plane Z.

01 Clip if Z-New less than or equal to Yon clipping plane Z.

10 Clip if Z-New greater than Yon clipping plane Z.

11. Clip if Z-New greater than or equal to Yon clipping plane Z.

014-001800

(continued)

5-75

Programming the Color Graphics Subsystem

Bit Mnemonic Function

8 YCLEN Yon Clipping Enabled

Enables/disables clipping against the Yon (Aft) plane specified in the

Yon Clip Register.

QO Disables Yon plane clipping.

1 Enables Yon plane clipping (CMD bits 10 and 9 specify the

conditions under which a Z-clip takes place).

7, 6 HCLOP Hither Clip Operation

Contains the clipping comparison that determines when a pixel is to be

clipped against the Hither plane.

00 Clip if Z-New less than Hither clipping plane Z.

01 Clip if Z-New less than or equal to Hither clipping plane Z.

10 Clip if Z—-New greater than Hither clipping plane Z.

11 Clip if Z—-New greater than or equal to Hither clipping plane Z.

5 HCLEN Hither Clipping Enabled

Enables/disables clipping against the Hither(Fore) plane specified in

the Hither Clip Register.

O Disables Hither plane clipping (forces a “win vote” into the Z-Win

logic).'

1 Enables Hither plane clipping (CMD bits 7 and 6 specify the

conditions under which a Z-clip takes place).

4,3 CMPOP Compare Operation

Specifies the Z-Buffer comparison to determine a Z-Win.!

00 Win if Z-New less than Z-Old.

01 Win if Z-New less than or equal to Z-Old.

10 Win if Z-New greater than Z-Old.

11 Win if Z-New greater than or equal to Z-Old.

2 CMPEN Compare Enable

Enables/disables the Z-compare operation. When Z-Compare is

disabled no Z-tournament takes place and a “win vote” is forced into

the Z-Win logic. When enabled, CMD bits 4 and 3 specify the

conditions for a Z-win.!

0 Disables Z-Compares.

1 Enables Z-Compares.

1 CLRMD Clear Mode

Enables/disables the ability of all Z-Buffer memory write operations to

use the value stored in the Z-Constant Register for the Z-Buffer write

data. This mode generates a Z-Win output to the system color

graphics controller, supporting simultaneous clearing of the Z—-buffer

and frame buffer areas. If SOLID and CLRMD are set during a

BITBLT, the controller will do a “fast clear.”’

0 Disables Clear Mode.

1 Enables Clear Mode.

0 INTEN Interrupt Enable

Enables/disables the Mbus from interrupting (for any of the four

unmasked interrupt sources).

Q Disables interrupts.

1 Enables interrupts.

1 A new pixel and Z-value will replace the existing pixel and Z-value only when the following
condition is true — Z-Compare Win & Hither Clip Win & Yon Clip Win.

(concluded)

5-76 014-001800

Programming the Color Graphics Subsystem

ZIR 2-Buffer Interrupt

Address FFF8 90E4 Read/Write

The Interrupt Register (IR) contains interrupt mask and status bits.

31 16

Unused

15 8 7 6 5 4 3 2 1 0

Unused YCPINT| HCLINT] UNFINT| OVFINT]| YONMSK] HITHMSK|UNFMSK|OVFMSK

Bit Mnemonic Function

31-8 Unused Must be written as Os and read as undefined.

7 YCPINT Yon Clip Interrupt

Indicates whether or not a clip against the yon plane has occurred. A

read of the IR register resets this bit.

O No clip.

1 Clip has occurred.

6 HCLINT Hither Clip Interrupt

Indicates whether or not a clip against the hither plane has occurred.

A read of the IR register resets this bit.

0 No clip.

1 Clip has occurred.

5 UNFINT Underflow Interrupt

Indicates whether or not an underflow has occurred. A read of the IR

register resets this bit.

0 No underflow.

1 Underflow has occurred.

4 OVFINT Overflow Interrupt

Indicates whether or not an overflow has occurred. A read of the IR

register resets this bit.

0 No overflow.

1 Overflow has occurred.

3 YONMSK Yon Clip Mask

Controls whether or not interrupts are generated for pixels clipped

against the yon clip plane.

O Generate an interrupt (unmasked).

1 Do not generate an interrupt (masked).

2 HITHMSK Hither Clip Mask

Controls whether or not interrupts are generated for pixels clipped

against the hither clip plane.

QO Generate an interrupt.

1 Do not generate an interrupt.

1 UNFMSK Underflow Interrupt Mask

Controls whether or not interrupts are generated when an arithmetic

underflow occurs.

QO Generate an interrupt.

1 Do not generate an interrupt.

0 OVFMSK Overflow Interrupt Mask

Controls whether or not interrupts are generated when an arithmetic

overflow occurs.

O Generate an interrupt.

1 Do not generate an interrupt.

014-001800 5-77

Programming the Color Graphics Subsystem

Z CNST Z-Buffer Constant

Address FFF8 90E8 Read/Write

The Z Constant (Z CNST) register contains the twos complement value to be written

to the Z-Buffer during the Clear mode. For Z-—buffer clearing, load the largest

24-bit, positive Z-value (7F FFFF). Use any arbitrary value to preset areas of the

Z-Buffer.

31 24 | 23 16

Unused 2 CNST

15 0

Z CNST

Bit Mnemonic Function

31-24 Unused

23-0 Z_CNST

Must be written as Os and read as undefined.

Z Constant

Twos complement value (bit 23 is the sign bit).

For 16-plane Z-buffers, bits 23-8 contain the 16-bit Z_CNST and

bits 7-0 are ignored.

9-78 014-001800

Programming the Color Graphics Subsystem

Z INIT Z-Depth Initial

Address FFF8 90EC Read/Write

The Z_Initial (Z_INIT) register contains the initial Z-depth value associated with the

next line or polygon to be rendered. For both 16-bit and 24-bit , all 24 bits (23-0)

must be specified.

31 24 | 23 16

Unused Z_INIT

15
0

Z_INIT

Bit Mnemonic Function

31-24 Unused Must be written as Os and read as undefined.

23-0 Z_ INIT Initial Z-Value

Z INIT twos complement value (bit 23 is the sign bit).

014-001800 5-79

Programming the Color Graphics Subsystem

Z XINC DZ/DX

Address FFF8 90F0 Read/Write

The DZ/DX (Z_XINC) register contains the slope of Z with respect to X. Z_XINC is

used for Line (LINE) and Polygon (POLY) operations.

31 24 | 23 16

Unused DZ/DX

15 0

DZ/DX

Bit Mnemonic Function

31-24 Unused Must be written as Os and read as undefined.

23-0 DZ/DX Slope of Z With Respect to X

Twos complement Z-value (bit 23 is the sign bit). Specify all 24 bits

for both 16-bit and 24-bit Z-buffers.

5-80 014-001800

Programming the Color Graphics Subsystem

Z_YINC DZ/DY

Address FFF8 90F4 Read/Write

The DZ/DY (Z_YINC) register contains the slope of Z with respect to Y. Z_YINC is

used for Line (LINE) and Polygon (POLY) operations.

31 24 | 23 16

Unused DZ/DY

15 0

DZ/DY

Bit Mnemonic Function

31-24 Unused

23-0 DZ/DY

Must be written as Os and read as undefined.

Slope of Z With Respect to Y

Twos complement Z-value (bit 23 is the sign bit). Note that you must

specify all 24 bits for both 16-bit and 24-bit Z-buffer

implementations.

014-001800 5-81

Programming the Color Graphics Subsystem

HCLP Hither Clip

Address FFF8 90F8 Read/Write

The Hither Clip (HCLP) register contains the Z-coordinate of the hither clipping

plane. HCLP is used only when Hither Clipping is enabled (CMD bit 5 is 1).

31 24 23 16

Unused HCLP

15
0

HCLP

Bit Mnemonic Function

31-24 Unused Must be written as Os and read as undefined.

23-0 HCLP Hither Clip

Twos complement Z-value (bit 23 is the sign bit).

5-82 014-001800

Programming the Color Graphics Subsystem

YCLP Yon Clip

Address FFF8 90FC Read/Write

The Yon Clip (YCLP) register contains the Z-coordinate of the yon clipping plane.

YCLP is used only when Yon Clipping is enabled (CMD bit 8 is 1).

31 24 | 23 16

Unused YCLP

15 0

YCLP

Bit Mnemonic Function

31-24 Unused

23-0 YCLP

Must be written as Os and read as undefined.

Yon Clip

Twos complement Z-value (bit 23 is the sign bit).

014-001800 9-83

Programming the Color Graphics Subsystem

ZCNFG Z-Buffer Configuration

Address FFF8 91E0 Read/Write

The Configuration (CNFG) register contains the graphics hardware configuration,

including the number of Z-planes, number of Mbus wait states, etc. Write to CNFG

initially to coordinate the Z-buffer and the color graphics controller.

31 16

Unused

15 10 9 8 61 5 3 2 1 0

Unused EMO ZCBR FBSIZE Unused! Z2WST | ZBD

Bit Mnemonic Function

31-10

8-6

Unused

EMO

ZCBR

FBSIZE

Unused

ZWST

ZBD

Must be written as Os and read as undefined.

Enable Memory Output

Enables/disables memory outputs. A reset enables memory outputs.

0 Disables memory outputs.

1 Enables memory outputs.

Z-Buffer CBR Cycles

Must match the number of CBR (Cas-Before-Ras) refresh cycles

programmed in the color graphics controller (CBR bits of CSR1).

000 No CBR cycles performed.

001 1 CBR cycle per scan line.

010 2 CBR cycles per scan line.

011 3 CBR cycles per scan line.

100 4 CBR cycles per scan line.

101 5 CBR cycles per scan line.

110 6 CBR cycles per scan line.

111 7 CBR cycles per scan line.

Frame Buffer Size

Reflects the frame buffer size of the color graphics controller. The

Z-buffer uses this information for Z-Buffer address mapping.

000 2K x 1K 64K x 4 VRAMS.

001 1K x 512 64K x 4 VRAMS.

010 2K x 1K 256K x 4 VRAMS.

011 2K x 2K 256K x 4 VRAMS.

100 4K x 2K 256K x 4 VRAMS.

Must be written as Os and read as undefined.

Z~-Buffer Wait States

Specifies the minimum number of Mbus wait states inserted in the data

phase. Note that a powerup sets 0 wait states for the Z-buffer. Since

this value may not match the number of wait states for the color

graphics controller, the first Mbus access to the Z-buffer must write

the appropriate number of wait states.

0 O wait states inserted.

1 1 wait state inserted.

Z-Buffer Depth

Specifies the depth of the Z-Buffer memory (read-only). Loaded

when reset to indicate the number of Z-planes.

0 16 bit Z-buffer depth.

1 24 bit Z-buffer depth.

9-84 014-001800

Programming the Color Graphics Subsystem

STO State 0

Address FFF8 91E4 Read/Write

The StateO (STO) register contains the current Z-depth value of an interrupted draw

command. The contents of this register are used during Stop and Resume operations.

31 24 | 23 16

Unused IZDEPTH

| 15 0

| IZDEPTH

Bit Mnemonic Function

31-24 Unused Must be written as Os and read as undefined.

23-0 IZDEPTH Interrupted Zbuffer Depth.

Twos complement Z-value (bit 23 is the sign bit).

014-001800 5-85

Programming the Color Graphics Subsystem

ST1 State 1

Address FFF8 91E8 Read/Write

The Statei (ST1) register contains the current DZ/DX value of an interrupted draw

command. The contents of this register are used during Stop and Resume operations.

31 24 23 16

Unused IDZ/DX

15 0

IDZ/DX

Bit Mnemonic Function

31-24 Unused Must be written as Os and read as undefined.

23-0 IDZ/DX Interrupted Slope of Z with Respect to X

Twos complement Z-value (bit 23 is the sign bit).

5-86 014-001800

Programming the Color Graphics Subsystem

ST2 State 2

Address FFF8 91EC Read/Write

The State2 (ST2) register contains the current DZ/DY value of an interrupted draw

command. The contents of this register are used during Stop and Resume operations.

31 24 23 16

Unused IDZ/DY

15 0

IDZ/DY

Bit Mnemonic Function

31-24 Unused Must be written as Os and read as undefined.

23-0 IDZ/DY Interrupted Slpoe of Z with Respect to Y

Twos complement Z-value (bit 23 is the sign bit).

014-001800 5-87

Programming the Color Graphics Subsystem

ST3 State 3

Address FFF8 91F0 Read/Write

The State3 (ST3) register contains a copy of the currently active draw command. The

contents of this register are used during Stop and Resume operations.

31 16

Unused

15 413 0

Unused IADRAW

Bit Mnemonic Function

31-4 Unused Must be written as Os and read as undefined.

3-0 IADRAW Interrupted Draw Command

Command Opcode (see the color graphics controller Command register

description for the opcodes).

5-88 014-001800

Programming the Color Graphics Subsystem

SHADOW Shadow

Address FFF8 9008 Read/Write

The Shadow Register (SR) contains a copy of the Opcode bits (3-0) from the

Command register. SR is write-only; only the color graphics contrroller can read it.

31 16

Unused

15 4] 3 0

Unused IDRAW

Bit Mnemonic Function

31-4 Unused Must be written as Os and read as undefined.

3-0 IDRAW Drawing Instruction

Command Opcode (see the color graphics Command register

description for the opcodes).

End of Chapter

014-001800 5-89

Chapter 6

Programming the Keyboard

Interface and Speaker

This chapter describes the following topics:

@ The keyboard interface.

@ How to program the keyboard interface.

@ How to program the speaker.

Overview

The keyboard interface supports both AT-compatible and Japanese AX-compatible

keyboards. The keyboard interface has a universal asynchronous receiver/transmitter

(UART) which passes data from the keyboard interface to the CPU. The operating

system must handle communication with the keyboard and interpret the keyboard scan

codes.

The final sections of this chapter explain how to program the speaker.

014-001800 | 6-1

Programming the Keyboard Interface

Components of the Keyboard Interface

As shown in Figure 6-1, the keyboard interface consists of a UART, address decode

and control logic, and clock and timing logic. The rest of this section describes

briefly these components and the keyboard speaker function.

(Sbus (32 bits Address/Data) »

8 oe) | 8 vs) |

Address Decode & DATA[/-0]
Control Logic CTS

{ >! AO DCD
> GND
A UART

ENABLE _TXC _ SCN2661

>} OSR RXRDY | KBD_INT
(to interrupt

[>—>| Txc logic)
KBD CLOCK :

—{>—>] Rxc DTR [—»
Clock &

TXEMT I =... ,
KBD DATA > Timing Logic

- RXD TD -—
Keyboard

Connector | DISABLE_CLK

| DISABLE_DATA

Figure 6-1 Keyboard Interface Components

The UART is a Signetics SCN2661 enhanced programmable communications interface

controller. It converts the incoming serial stream from the keyboard into parallel data

for the CPU and optionally checks parity. It also converts parallel data to a serial

stream for transmission to the keyboard, and generates the start, stop, and parity bits.

Clock and Timing Logic

The clock and timing logic contains the Disable Clock (DISABLE_CLOCK) register

and the Enable Transmit Clock (ENABLE TXC) register. The Disable Clock register

allows a program to force the keyboard clock line low, which is necessary to prevent

the keyboard from transmitting data. The Enable Transmit Clock register allows the

program to control whether or not the keyboard clock sources the UART’s TxC input.

Keyboard Speaker

The workstation provides a speaker on the system board since PC/AT compatible

keyboards do not have an internal speaker. The timer output of DUART1 provides

the waveform for this speaker.

6-2 014-001800

Programming the Keyboard Interface

Keyboard Connector

The keyboard cable connects to the keyboard port through an 8-pin DIN connector

(J8). identifies the keyboard signals.

Table 6-1 Keyboard Signals

Pin Signal Direction

1 CLOCK To keyboard

2 DATA From keyboard

3 Unused — -----

4 Ground = -----

5 +5 V To keyboard

6-8 Unused ~— -----

Programming the Keyboard Interface

The keyboard routine controls the interface via UART registers, as well as the Disable

Clock register and the Enable Transmit Clock register. The keyboard routine must

configure the UART parameters through the UART registers.

The keyboard routine must maintain a protocol to communicate correctly with the

keyboard. It accomplishes this by manipulating the keyboard clock and data lines at

the appropriate times. Keyboard software must convert scan codes into meaningful

characters or instructions.

The speaker is controlled through DUART1.

CAUTION: Software must not issue sequential reads and/or writes to the registers

because of the setup timing Jrom read/write inactive to read/write active

that Signetics specifies for the UART. Put two nonoperative instructions

between register access reads or writes.

014-001800 6-3

Programming the Keyboard Interface

Clock and Data Lines

The CPU and keyboard communicate over the keyboard clock and data lines, which

either the CPU (via the keyboard interface) or the keyboard can force low (inactive).

When no communication is occurring, both the clock and data lines are high (active).

The CPU sends data to the keyboard by first causing the keyboard interface to force

the data line low (request to send), and then releasing the clock, allowing it to go

high so the Keyboard can drive the clock. The Keyboard drives the clock when

clocking data in or out. The CPU causes the keyboard interface to force the clock

line low to inhibit keyboard transmission. Table 6-2 defines the states of the clock

and data lines.

Table 6-2 Keyboard Clock and Data Lines

Clock Data Port Control Function

H H Allows keyboard to transmit data.

L H Inhibits keyboard from transmitting data.

L L Indicates that the CPU is requesting to transmit a command to

the keyboard.

H L Allows keyboard to receive data.

Data Format

Each byte of data received by the UART consists of 11 bits as defined in Table 6-3.

The UART strips the start bit and stop bit, checks the parity bit, shifts the serial data

bits into a shift register, and notifies the CPU that it has a byte of data. The

keyboard routine must then read the byte of data and interpret the data.

Table 6-3 Keyboard Data Format

Bit Function

Start bit (always 0)

Data bit 0 (least significant bit)

Data bit 1

Data bit 2

Data bit 3

Data bit 4

Data bit 5

Data bit 6

Data bit 7 (most significant bit)

Parity bit (odd)

Stop bit (always 1)

Oo CoO TD vA fF W NY
pmb peek hat = CO

6-4 014-001800

Programming the Keyboard Interface

Registers

Table 6-4 shows the registers and their addresses. The Disable Clock register and the

Enable Transmit Clock register are located in DUART1, all other registers are located

in the UART.

Table 6-4 Keyboard Register Addresses

Address Register Type

FFF8 2800 Receive Holding Register (RHR) Read

Transmit Holding Register THR) Write

FFF8 2804 Status (STS) Read

FFF8 2808 Mode Register 1 (MD1) Read/Write

Mode Register 2 (MD2) Read/Write

FFF8 280C Command (CMD) Read/Write

FFF8 2810 Disable Clock (DSC) Write

FFF8 2820 Enable Transmit Clock (ENABLE_TXC) Write

For more information on the UART registers, see the Signetics Microprocessor Data

Manual.

014-001800 6-5

Programming the Keyboard Interface

RxH Receive Holding

Address FFF8 2800

The Receive Holding (RxH) register temporarily stores a byte of data transmitted by

the keyboard. The section “Keyboard Scan Codes” defines the scan code data

transmitted by the keyboard. Table 6-5 lists the response codes.

The Receive Holding register is defined as follows:

Data

Bit Name Function

7-0 Data Holds data sent from the keyboard for the CPU.

Table 6-5 Keyboard Responses

Code (hex) Response

FA

EE

FO

00

FE

AA

AB, 83

02, 03

Acknowledge (ACK)

Sent as the standard response to transmissions from the host. The exceptions

are the Echo and Resend commands, which have specialized responses (see EE

and FE codes).

Response

Sent in reply to the Echo command from the host.

Break code prefix

Sent when a key is released while the keyboard is using either scan code set 2

or scan code set 3. This is the first byte of a 2—byte sequence; the second byte

is the scan code of the key released.

Overrun

Indicates that the keyboard’s 16-byte buffer has overflowed, and at least one

keystroke is lost.

Resend

Sent when the keyboard detects a parity error or illegal command from the

host. The host should respond by retransmitting its most recent transmission.

Basic assurance test (BAT) completion

Indicates that the keyboard has successfully completed its self-test routines.

Another response code (e.g. FC16) after self-test indicates a failure has been

detected.

Keyboard ID

Sent in response to the Read Keyboard ID command.

Key Code mode

Sent in response to the Read Key Code Mode command. This value

corresponds to the scan set number (0216 = set 2, 0316 = set 3).

6-6 014-001800

Read Only

Programming the Keyboard Interface

TXxH Transmit Holding

Address FFF8 2800 Write Only

The Transmit Holding (TxH) register temporarily stores commands to be transmitted

to the keyboard. Table 6-6 lists the command codes.

The Transmit Holding register bits are defined as follows:

7 0

Data

Bit Name Function

7-0 Data Holds data sent from the CPU to the keyboard.

Table 6-6 Commands

Code

(hex) Command

EE Echo

Request the keyboard to transmit an EE. This command is for diagnostic use only (the
keyboard continues scanning if it was previously enabled).

EF, Fl NOP

Request the keyboard to transmit an FE to the host as acknowledgement of reception.

The keyboard takes no other action.

FF Reset

Halts the keyboard (cease scanning the key array), acknowledge this command by

transmitting an FA, and watch the clock and data lines. If both lines remain high for

500 ps, the keyboard performs a self-test. If either line goes low during this period, the
Reset operation is aborted and the keyboard continues as before this command. The
self-test (600-900 ms in duration) includes a checksum test of ROM and a test of RAM.
The keyboard LEDs turn on for 200 ms, and then off. Upon successful completion of
the self-test, the keyboard transmits AA. If the self-test fails, the keyboard transmits

the appropriate code. The keyboard then sets the typematic repeat delay and rate to the
default values, clears the output buffer, and begins to scan the key array. During the

self-test, the keyboard allows Clock and Data to float high.

FE Resend

Requests the keyboard to resend the most recent transmission. This command is not

valid if the host has sent a transmission more recently than the keyboard, or if the host

has enabled the interface after the most recent keyboard transmission. If the keyboard's

most recent transmission was a Resend command, the keyboard will retransmit the byte it

transmitted before the Resend command. You use this command when the host detects a

parity error in a transmission from the keyboard.

(continued)

014-001800 6-7

Programming the Keyboard Interface

Table 6-6 Commands

Code

(hex) Command

F3 Set typematic repeat delay/rate

Set the typematic delay time and the rate of repeat. These parameters are coded into a

byte that follows the F3 command. The “delay” indicates how long a key may stay down

before the typematic repeat feature is activated. The “rate” indicates how often the

keycode is repeated after the delay period elapses. When the keyboard receives the F3

command, it stops scanning the key array, transmits an FA to the host, and waits for
the second byte. If the most significant bit of the second byte is 1, the F3 command is
aborted, and the keyboard treats the second byte as a new command. If the most

significant bit of the second byte is 0, then the low-order bits are interpreted as

Bit Meaning

7 Always 0

6, 5 Delay

The keyboard adds 1 to this number and divides the sum

by 4 to obtain the delay period in seconds. Thus, the

delay period may vary from 250 ms (002) to 1s (112).

The default delay is 500 ms (012).

4,3 Rate

Exponential component (B) of the rate calculation.

2-0 Rate

Offset (A) in the linear component of the rate calculation.

The rate is the reciprocal of the period, which is calculated

according to the formula:

Period = 0.00417 * (8 + A) * (2**B) s/character

The rate can vary from 2 Hz (111112) to 30 Hz (000002).
The default is 10.9 Hz (010112).

After receiving a valid parameter byte, the keyboard sends an FA to the host. If the
keyboard was not halted when it received the F3, the keyboard resumes scanning the key
array. All typematic specifications may vary +/- 20%.

ED Set/Reset mode indicators

Specify new states (on or off) for the three LEDs on the keyboard. The first byte of this
2-byte command causes the keyboard to cease scanning the key array and transmit an
FA to the host. If the second byte is a valid command (a value of ED or higher), the
ED command is aborted, and the keyboard executes the new command without changing
the states.of the LEDs. If the keyboard was not halted before receiving the ED

command, it continues scanning the key array.

If the second byte is not a valid command, the 3 least significant bits determine the new
states of the LEDs. A high (1) bit means the corresponding LED should be on; a low

(0) bit indicates the LED should be off.

Bit LED

7-3 Reserved

2 Caps lock

1 Num lock

0 Scroll lock

The keyboard sends an FA to the host to acknowledge receipt of the second byte, sets
the LEDs to their new states, and resumes scanning the key array (if the keyboard was
not halted before receiving the ED command). The default state of all three LEDs is
off. |

F2 Read keyboard ID

Request the keyboard to acknowledge this command with an FA followed by the two

keyboard ID bytes, AB and 83, and then resume scanning if previously enabled.

FO Set/Read Key Code mode

Request the keyboard to acknowledge this command with an FA; then wait for an option

code from the host. The keyboard responds to the option code with an FA. If the

option code is 00, the keyboard sends out a byte indicating the existing key code mode
status (02 = scan set 2, 03 = scan set 3). If the option mode is 02 or 03, the keyboard
sets the code mode status to scan set 2 or 3, respectively.

(continued)

6-8 014-001800

Programming the Keyboard Interface

Table 6-6 Commands

Code

(hex) Command

F6 Set default

Cause the keyboard to assume its default state. The output buffer is cleared, and

typematic rates are reset to the default. The keyboard acknowledges this command by

transmitting an FA, and resumes scanning the key array (if it was not halted prior to

receiving the command).

FS Default disable

Cause the keyboard to perform all functions of the Set Default command (F6), except

that the keyboard does not resume scanning the key array after executing the command.

This is the halted state of the keyboard.

F4 Enable

Cause the keyboard to transmit an FA, clear its output buffer, and start to scan the key

array.

FC, FD Typematic key reset 1, 2

Cause the keyboard to respond with an FA, stop scanning, and wait for the option code,

which specifies the key to be set. The keyboard responds to the option code with an FA.

This command cancels the typematic function; then sets the key type of the specified key

to either Make/Break (command FC) or Make (command FD). This command applies

only to scan set 3.

FB Typematic key set

Cause the keyboard to respond with an FA, stop scanning, and wait for the option code

specifying the key to be set. The keyboard responds to the option code with an FA. If

the scan set is 3, the command sets the key type of the specified key to typematic. The

keyboard remains halted after the command.

F7-FA_ All key typematic control

Cause the keyboard to respond with FA, enable or disable the typematic function, and

allow or inhibit the transmission of a break code when a key is released. The operation

is dependent on the actual code as follows:

Typematic Break Code

Command Function Sending

F7 enable disable

F8 disable enable

F9 disable disable

FA enable enable

The keyboard continues scanning if previously enabled. This command applies only to

scan set 3.

(concluded)

014-—001800 6-9

Programming the Keyboard Interface

Keyboard Scan Codes

The keyboard transmits a scan code when a key is depressed. If a key is held down

so that it satisfies the requirements of the typematic function, the scan code is

repeated until the key is released. The scan codes are linked to the position of the

keys, not to the character on the key. The operating system must decode the scan

codes and assign characters to the codes. Figure 6-2 illustrates the keys on a

keyboard, and Table 6-7 identifies the scan codes for the keys.

The system defaults to scan set 2, but can be switched to scan set 3. See the

description of the Receive Holding (RxH) register. With scan code set 3, each key

sends only 1 scan code, and no keys are affected by the state of any other keys.

Table 6-7 lists the scan code values. The values in scan code set 3 remain constant

regardless of the state of the shift keys. Many codes in scan set 2 and scan set 3 are

identical. The state of the shift keys (Ctrl, Alt, and Shift) and the Num Lock key

affect the values in scan code set 2.

Make is transmitted when the key is pressed. Each key has a unique 8—bit make

scan code.

Break is transmitted when a key is released. The break code is 2 bytes long (the first

byte always contains the break code prefix, F0; the second byte is the same as the

make scan code for that key). Each key sends a break code when the key is

released.

Typematic indicates that if the key is held down, the keyboard will repetively transmit

the scan code until the key is released. The typematic scan code for a key is the

same as the key’s make code.

6-10 014-001800

Programming the Keyboard Interface

6-11

a00SS) SISOS ISSA aJa Ls!Sas) GIGS VVIIVOIVVIIVIGE| JO) GOH) GOG)6) GEG) (a 10

—___

l

[

[

Figure 6-2 Position of Keys on Keyboard

014-001800

Programming the Keyboard Interface

Table 6-7 Scan Code Sets 2 and 3

Key #

Sean Code Set 2.
— Codes

B Make Break

Scan Code Set 3

Codes Default

Key Statereak

CO NA A RP WH ND

& Ph HA DPA HLA HP WWWWWW WW WWNNNN NNN NN D Be Se Be ee ee eH OOOOD M FSF WN KH OO WN DMA WNH OO MO WAID NA PWN KH OO TODD NH WH KS CO
— FOOE

F016

os FOIE)

FOS
FO 2E

FO3E

F046
F045

- FO4E..

F066

FOOD
FOS

FOID |

FO24

Se PO 3C
FO 4B

oe FO 4d

OE

16

1E

26

25

2E

36

3D

3E

46

45

4E

55

66

0D

15

1D

24

2D

2C

35

3C

43

44

4D

54

5B

5C

14

1C

1B

23

2B

34

33

3B

42

4B

4C

52

53

SA

12

13

1A

22

21

2A

FO OE

FO 16

FO 1E

FO 26

FO 25

FO 2E

FO 36

FO 3D

FO 3E

FO 46

FO 45

FO 4E

FO 55

FO 66

FO 0D

FO 15

FO 1D

FO 24

FO 2D

FO 2C

FO 35

FO 3C

FO 43

FO 44

FO 4D

FO 54

FO 5B

FO 5C

FO 14

FO 1C

FO 1B

FO 23

FO 2B

FO 34

FO 33

FO 3B

FO 42

FO 4B

FO 4C

FO 52

FO 53

FO 5A

FO 12

FO 13

FO 1A

FO 22

FO 21

FO 2A

Typematic

Typematic

Typematic

Typematic

Typematic

Typematic

Typematic

Typematic

Typematic

Typematic

Typematic

Typematic

Typematic

Typematic

Typematic

Typematic

Typematic

Typematic

Typematic

Typematic

Typematic

Typematic

Typematic

Typematic

Typematic

Typematic

Typematic

Typematic

Make/Break

Typematic

Typematic

Typematic

Typematic

Typematic

Typematic

Typematic

Typematic

Typematic

Typematic

Typematic

Typematic

Typematic

Make/Break

Typematic

Typematic

Typematic

Typematic

Typematic

1

2

101-key keyboard only.

102-key keyboard only.

6-12

(continued)

014-001800

Table 6-7 Scan Code Sets 2 and 3

Programming the Keyboard Interface

Scan Code Set 2 Scan Code Set 3

| _ Codes oo 7 Codes Default
Key # ‘Make Break — Make Break Key State

50 32 _. FO 32 32 FO 32 Typematic

51 31 FO 31, - 31 FO 31 Typematic
52 3A FO3A. 3A FO 3A —_Typematic
53 4] FO 41 a 41 FO 41 Typematic

54 49 — FO49 49 FO 49 Typematic

55 4A FO4A 4A FO 4A Typematic

57 59 FO 59 59 FO 59 Make/Break

58 414 FO 14 11 FO 14 Make/Break

60 i F011 19 FO 19 Make/Break

61 290 FO 29 29 FO 29 Typematic

62 E0 11 BO FO11 39 FO 39 Make

64 EO 14 EOFO14 | 58 FO 58 Make

75 EO 70 EO FO 70 — 67 FO 67 Make

(Shift + Num Lock) E0 70 EO FO 70 © — — —

(Num Lock on) EO 12 EO 70 EO FO 70 EO FO 12 — — —

(Shift) ° EO FO12E070 EO FO 70 E012.

76 E071 : EO FO 71 64 FO 64 Typematic

(Shift + Num Lock) E071 EO FO 71 | _— _— _

(Num Lock on) EO 12 EQ 71 EO FO 71 E0 FO 12 ~ = —

(Shift) ° EQ FO 125071 © EQ F071 E0 12

79 EO 6B | EOFO6B 61 FO 61 Typematic

(Shift + Num Lock) EO 6B EO FO 6B coe — — —

(Num Lock on) EO 12 EO 6B EO FO 6B EO FO 12 — — —

(Shift) ° EO FO12E06B EQ FO6BE012 _

80 EO 6C EO FO6C 6E FO 6E Make

(Shift + Num Lock) E0 6C | EO FO 6C — — —

(Num Lock on) E012 EO 6C EO FO 6C EO FO 12 — ~ —

(Shift) 2 EO FO12E06C EO FO 6C EO 12

81 EO 69 EO FO 69 65 FO 65 Make

(Shift + Num Lock) EO 69 EO FO 69 _ — —

(Num Lock on) EO 12 EO 69 EO FO 69 EO FO 12 — — —

(Shift) EO FO 12 E0 69 EO FO 69 EO 12

83 EO 75 EO FO 75 63 FO 63 Typematic

(Shift + Num Lock) EQ75 _ EO FO 75 — _ —

(Num Lock on) EO 12 EO 75 EO FO 75 EO FO 12 — — —

(Shift) ° EO FO 12 E0 75 EO FO 75 EO 12

84 EO 72 EO FO 72 60 FO 60 Typematic

(Shift + Num Lock) E0 72 EO FO 72 — — —

(Num Lock on) EO 12 EO 72 EO FO 72 EO FO 12 — — —

(Shift) ° BO FO 12 EO 72 EO FO 72 EO 12

85 £0 7D EO FO 7D 6F FO 6F Make

(Shift + Num Lock) E0 7D =. BO FO 7D _— — —
(Num Lock on) E012 E07D © -E0 FO 7D EO FO 12 — — —

(Shift) -EO0FO12E07D _ EQ FO 7D EO 12

3 If the left Shift key is held down, the FO 12 (make) and EO 12 (break) is sent with the other scan codes. If the

right Shift key is held down, FO 59 (make) and FO 59 (break) is sent. If both Shift keys are held down, both sets

of codes are sent with the other scan code.

014-001800

(continued)

6-13

Programming the Keyboard Interface

Key #

Sean Code Set 2

Make

Table 6-7 Scan Code Sets 2 and 3

Codes
Scan Code Set 3

Codes

Make’ Break

Default

Key State

86

(Shift + Num Lock) ~

(Num Lock on)

(Shift)

89 o

(Shift + Num Lock) ©

(Num Lock on)

(Shift) °

90

91

92

93

95

96

95 (Shift) °

97

98

99

100

101

102

103

104

105

106

108

110

112 ~

113

1140

115

116

117

118

119

120

121

122

123

124

(Ctrl, Shift)

(Alt)

125

126 4

Break

-EO7A ——~—«*~O OA
EO7A EOFO7A

-E012E07A —- EO FO 7A EO FO 12
-EOFO12EO7A EO FO7A E012 |

E074 | |a BO FOT4

F074 | BOFO74_

-£012E074 | EO FO74E0 FO 12 —

EO FO12E074 EQ FO74E012 —
OTD FONT re

° 6C ce nee FO 6C oe

6B —————FOOB

69 FN BD

-EO4A - BOFO4A

SIS ~FO7S

-EOFO124A — BO12FO4A.
73 meh : - - - FO 73. oe oe

92 FOFD

1 FOTO

TE FOIE
TMM = FOTD
A RQ

71 OTL

IB ee : FO7B as |
i

~EO5A | -BEOFOSA

76 FON

OS FOOS

06 FO 06
04 | FO 04

— 0c. FO 0C |

03 | FO 03

08 | FO 08

83 : FO 83

0A | FO 0A |

01 FO 01

09 FO 09

78 FO 78 |

07 FO 07

-E012E07C = EO FO 7C EO FO 12

—EQ7C EO FO7C _ |

84 0~C~<~*i‘é‘rR OBR!
TE — FO7E

EFIM77EL 2 —
FO 14 F077 |

(Ctrl) -EO7EEOFO7E —

6D FO 6D

6A FO 6A

76 FO 76

6C FO 6C

6B FO 6B

69 FO 69

77 FO 77

75 FO 75

73 FO 73

72 FO 72

70 FO 70

7E FO 7E

7D FO 7D

74 FO 74

TA FO 7A

71 FO 71

84 FO 84

7C FO 7C

79 FO 79

08 FO 08

07 FO 07

OF FO OF

17 FO 17

1F FO 1F

27 FO 27

2F FO 2F

37 FO 37

3F FO 3F

47 FO 47

4F FO 4F

56 FO 56

SE FO 5E

57 FO 57

SF FO 5F

62 FO 62

Make

Typematic

Make

Make

Make

Make

Make

Make

Make

Make

Make

Make

Make

Make

Make

Make

Make

Typematic

Make

Make

Make

Make

Make

Make

Make

Make

Make

Make

Make

Make

Make

Make

Make

Make

Make

If the left Shift key is held down, the FO 12 (make) and EO 12 (break) is sent with the other scan codes. If the
right Shift key is held down, FO 59 (make) and FO 59 (break) is sent. If both Shift keys are held down, both

sets of codes are sent with the other scan code.

This key is not typematic. All associated scan codes occur on the make of the key.

6-14

(concluded)

014-001800

Programming the Keyboard Interface

STS Status

Address FFF8 2804 Read Only

The Status (STS) register contains the receiver, transmitter, and control signal status

for the keyboard interface.

Its bits are defined as follows:

ETC] 1 | FE} OE} PE | STC| RxRDY| TxRDY

Bit Name Function

7 ETC Enable Transmit Clock register (ENABLE _TXC) Status

0 Indicates that the TxC input is enabled.

1 Indicates that the TxC input is disabled.

1 Always 1.

FE Framing Error

1 Indicates that a framing error occurred.

4 OE Overrun Error

1 Indicates that an overrun error occurred.

3 PE Parity Error

1 Indicates that a parity error occurred.

2 STC Status Change

1 Indicates that the Enable Transmit Clock register changed status or

the Transmit Shift register completed a transmission and a new

character was loaded into the Transmit Holding register. You can

determine if a transmitter-empty condition exists by reading this

register twice while the Enable Transmit Clock remains unchanged.

1 RxRDY Receive Holding register Status

0 Indicates that the Receive Holding register is empty.

1 Indicates that the Receive Holding register contains data.

0 TxRDY Transmit Holding register Status

0 Indicates that the Transmit Holding register contains data.

1 Indicates that the Transmit Holding register is empty.

014-001800 6-15

Programming the Keyboard Interface

MD1, MD2 Mode

Address FFF8 2808 Read/Write

The Mode (MD1, MD2) registers program the UART mode of operation. The first

time a program reads or writes the register’s address, it accesses MD1. The second

time, it accesses MD2. Any subsequent reads or writes recycle the UART internal

sequencer between these two registers.

MD1 is defined as follows:

STB PT | PC CL BRM

Bit Name Function

7-6 STB Number of Stop Bits

01 1 stop bit.

5 PT Parity

O Odd.

4 PC Parity Control

1 Parity enabled.

3-2 CL Character Length

11 8 data bits.

1-0 BRM Baud Rate Multiplier

01 Asynchronous 1x.

MD2 is defined as follows:

CKS

Bit Name Function

7-0 CKS Clock Source

0000 0000 The UART derives its receive and transmit clocks from

the RXC and TXC inputs. The TXC and RXC inputs

are from the KBD_ CLOCK signal, generated by the

keyboard.

6-16 014-001800

Programming the Keyboard Interface

CMD Command

Address FFF8 280C Read/Write

The Command (CMD) register contains commands for the keyboard interface.

Reading this register returns the current command status, and writing to it defines the

command status.

Its bits are defined as follows:

OPM RTS| RE | FB | RxEN| IKT | TXEN

Bit Name Function

7-6 OPM Operation Mode

00 Normal

RTS Reserved and unused (must be written to with a 0).

RE Reset Error

0 Normal

1 Reset the Frame Error, Overrun Error, and Parity Error flags in

the Status register.

3 FB Force Break

Q Normal operation.

2 RxEN Enable Receiver

0 Disable the receiver.

1 Enable the receiver.

1 IKT Inhibit Keyboard Transmission

0 Allow the keyboard to transmit data.

1 Inhibit the keyboard from transmitting data.

0 TXEN Enable Transmitter

O Disable the transmitter.

1 Enable the transmitter.

014-001800 6-17

Programming the Keyboard Interface

DSC Disable Clock

Address FFF8 2810 Write Only

The Disable Clock (DSC) register allows software to force the keyboard clock line low

to prevent the keyboard from sending data. While sending data to the keyboard,

software must prevent the keyboard from sending data. The keyboard clock is

automatically disabled when the system is Reset or when both the transmitter is empty

and Command register bit 1 (Inhibit Keyboard Transmission) is set to 1.

The bit in the Disable Clock register is defined as follows:

7 1 0

Unused DKC

Bit Name Function

0 DKC Disable Keyboard Clock

0 Inhibit the keyboard from transmitting data by forcing the

keyboard clock low.

1 Allow the keyboard to transmit data by releasing the keyboard

clock line.

6-18 014-001800

Programming the Keyboard Interface

ETXC Enable Transmit Clock

Address FFF8 2820 Write Only

The Enable Transmit Clock (ETXC) register allows software to control whether or not

the keyboard clock sources the UART Transmit Clock (TxC) input. While software is

configuring the keyboard interface to receive data, it should disable the transmit clock

using this register. The transmit clock is automatically disabled when the system is

Reset or when both the transmitter is empty and Command register bit 1 (Inhibit

Keyboard Transmission) is set to 1.

The bit in the Enable Transmit Clock register is defined as follows:

7 1 0

Unused EKD

Bit Name Function

0 EKD Enable Keyboard Data

O Enables the keyboard to receive data by providing the keyboard

clock as the source of the UART’s Transmit Clock (TxC) input.

1 Inhibits the keyboard from transmitting data by preventing the

keyboard clock from sourcing the UART’s Transmit Clock (TxC)

input.

014-001800 6-19

Programming the Keyboard Interface

Interrupts

When the keyboard transmits a character, the UART receives the character into the

Receive Holding Register (RHR) and control logic forces the keyboard clock Low to

prevent the keyboard from transmitting more characters. When the UART receives a

scan code, it asserts an interrupt request to the CPU. The UART asserts an interrupt

for each scan code it receives. Also, when the UART receives the scan code,

keyboard interface logic forces the keyboard clock low to inhibit the keyboard from

transmitting more scan codes.

Receiving Data from the Keyboard

In a typical environment, the keyboard service routine should configure the keyboard

interface to receive data from the keyboard except when the program sends

commands to the keyboard. When the keyboard is ready to send data, it first checks

the clock and data lines for a keyboard-inhibit or request-to-send condition (see

Figure 6-3). While inhibited, the keyboard stores keystroke data in its buffer. If the

CPU asserts a request-to-send, the keyboard stores keystroke data in the keyboard

buffer and prepares to receive data from the CPU.

If the keyboard detects an allow-keyboard-transmit condition, it clocks out the 11-bit

data stream. Data is valid at the trailing edge of the clock pulse. During transmission,

the keyboard checks the clock line every 60 ms. If the clock line is forced low by

the CPU while the keyboard is sending data, line contention occurs and the keyboard

stops sending data.

Once keyboard service routine configures the keyboard interface for proper data

format and clock source, it must configure the interface to receive a character as

follows:

1. Inhibit the keyboard from sending characters by writing a 0 to bit 0 of the DSC

register. This forces the keyboard clock low.

Disable data transmission by writing a 1 to bit 0 of the the ETXC register.

Enable the receiver by writing 24 to the CMD register.

Enable the keyboard clock by writing a 1 to bit 0 of the DSC register.Mm tt. WW bh When the RHR is loaded, inhibit the keyboard from sending more characters by

writing a 0 to bit 0 of the DSC register. This forces the clock low.

6. Determine whether the scan code requires transmission to the keyboard. If it

requires transmission, enter the transmit routine described in the next section,

“Transmitting Data to the Keyboard.” If it does not require transmission,

re-enable the keyboard by writing a 1 to the DSC register.

Before reading the character from the receive buffer, the keyboard service routine

must inhibit the keyboard by writing a 0 to bit 0 of the DSC register. Then, the

keyboard service routine can read the character, interpret the scan code, and

determine whether or not it needs to respond with a command (such as lighting an

LED). Then the keyboard service routine should re-enable the keyboard by writing a

1 to bit 0 of the DSC register.

6-20 014-001800

Configure the

keyboard port

v

Inhibit data (write a 0
to bit 0 of the Disable
Clock register)

v

Disable TxC (write a 1
to bit 0 of the Enable

Transmit Clock register)

v

Enable receiver (write 24

to Command register)

\

Allow keyboard to drive

keyboard clock (write 1

to Disable Clock register)

~~
oo

014-001800

Yes
Receive character

available ?

Programming the Keyboard Interface

Inhibit data (write a 0

to bit 0 of the Disable
Clock register)

Examine the scan code

Transmit

command to the
keyboard?

Execute the transmit
data routine

No

Figure 6-3 Receiving Data from the Keyboard

6-21

Programming the Keyboard Interface

Transmitting Data to the Keyboard

To transmit data to the keyboard, the keyboard service routine must use the following

format (see also Figure 6-4):

1.

10.

11.

12.

13.

14.

Disable data transmission (TxC) by writing a 1 to the Enable Transmit Clock

register.

Drive keyboard clock low to prevent further keyboard transmission by writing a 0

to the Disable Clock register.

Determine if a receive character is available by reading the Status register and

checking bit 1. If bit 1 is a 1, read the available character by reading the

Receive Holding register.

Disable the receiver and transmitter by writing a 0 to Command register bits 2

and 0.

Write the data to be transmitted to the keyboard to the Transmit Holding

register.

Enable the transmitter by writing a 1 to Command register bit 0.

Enable TxC by writing a 0 to the Enable Transmit Clock register and and waiting

a minimum of 0.5 us. (This is the first falling edge of TxC.)

Disable TxC by writing a 1 to the Enable Transmit Clock register and waiting a

minimum of 0.5 ws.

Enable TxC by writing a 0 to the Enable Transmit Clock register and waiting a

minimum of 0.5 ms. (This is the second falling edge of TxC.)

Disable TxC by writing a 1 to the Enable Transmit Clock register and waiting a

minimum of 0.5 ws.

Enable TxC by writing a 0 to the Enable Transmit Clock register and waiting a

minimum of 60 ps. (This is the third falling edge of TxC. At this point the

UART will transmit a start bit on TxD, bringing the keyboard data line low to

indicate a Request To Send.)

Allow the keyboard to drive the keyboard clock and clock in the data by writing

a 1 to the Disable Clock register.

Check that the data transmission is complete by polling Status register bit 7 to

determine when it to changes from a 0 to a 1.

When the transmission of a character is complete, reconfigure the keyboard

interface to receive a character (most likely an acknowledge scan code after

sending a command) as described in the previous section, “Receiving Data from

the Keyboard.”

6-22 014-001800

Transmit

data to

v
Disable TxC (write a 1

to bit 0 of the Enable

Transmit Clock register)

v
Inhibit data (write a 0

to bit 0 of the Disable

Clock register)

Read bit 1 of the

Status register

Bit 1 = 1

(receive

character

available) ?

No

Get character (read the

Receive Holding Register)

!
Disable the receiver/transmitter

(write 0 to bits 2 & 0 of the

Command register)

Programming the Keyboard Interface

Enable TxC (write a 0

to bit 0 of the Enable

Transmit Clock register)

| Wait minimum of 0.5 ys |

v

Disable TxC (write a 1

to bit 0 of the Enable

Transmit Clock register)

v

| Wait minimum of 0.5 ys |

v

Enable TxC (write a 0

to bit 0 of the Enable

Transmit Clock register)

!
Write data to Transmit

Holding register)

v

Enable transmitter

(write a 1 to bit 0 of

the Command register)

v

| wai minimum of 0.5 ws

v

Disable TxC (write a 1

to bit 0 of the Enable

Transmit Clock register)

v

Wait minimum of 0.5 ys

v

Enable TxC (write a 0

to bit 0 of the Enable

Transmit Clock register)

v

UART transmits start bit

and brings keyboard Data

Line low (Request to Send)

v

Allow keyboard to send

data (write a 1 to bit 0 of

the Disable Clock register)

Read bit 7 of the

Status register

Wait minimum of 60 ws

Bit 7 = O!1
No (data

transmission

completed) ?

Yes

Reconfigure

the keyboard

interface

Figure 6-4 Transmitting Data to the Keyboard

014-001800 6-23

Programming the Keyboard Interface

Programming the Speaker

The speaker output, J18 of the system board, is programmed through DUART1,

where OP3 is the timer and OP4 is the speaker enable.

Table 6-8 identifies the registers used to program the speaker port.

Table 6-8 Speaker Register Addresses

Address Register Type

FFF8 2010 Auxiliary Control (ACR) Write

FFF8 2018 Counter/Timer Upper Register (CTUR) Read/Write

FFF8 201C Counter/Timer Lower Register (CTLR) Read/Write

FFF8 2034 Output Port Configuration Register(OPCR) Write

FFF8 2038 Set Output Port Bits Commmand (SOPBC) Write

FFF8 203C Reset Output Port Bits Command (ROPBC) Write

For further information on these registers, see the Signetics Microprocessor Data

Manual.

For proper keyboard speaker operation, program the registers as follows:

1.

rn

\O oo: ~ ON

Write 0 to the Output Port Configuration Register (OPCR) on the DUART (base

address FFF8 2000).

Write 06 to the OPCR to enable the timer.

Write 10 to the Reset Output Port Bits Command register (ROPBC) to enable the

speaker.

Write 60 to the Auxilary Control Register (ACR) to select the clock source.

Load the Counter/Timer Upper (CTUR) and Lower (CTLR) registers with the

desired sound frequency.

Start the sound by reading the Start Counter register (read SOPBC).

Wait as long as you want the sound to last.

Disable the speaker by writing 10 to SOPBC.

Stop the sound by reading the Stop Counter register (read ROPBC).

Write 0 to OPCR to clear it.

6-24 014-001800

Programming the Keyboard Interface

The following assembly language example shows how to program the speaker.

def DUART, Oxfff82000

def UACR, 0x10

def CTUP, 0x18

def CTLR, Oxic

def OPCR, 0x34

def ROPB, 0x3c

def STRT, 0x38

def STOP, Ox3c

def SPKR_EN, 0x10

def K TIMER, 0x6

def CLKSRC, 0x60

def Duration, 0x1ic71

;Define the DUART base address.

;Define the registers with offsets.

;Auxiliary Control Register at offset 10.

;Counter/Timer Upper Register.

;Counter/Timer Lower Register.

;Output Port Configuration Register

; (write only).

;Reset Output Port Bits Command register

(write only).

;Start counter (read the Set Output Port

; Bits Command register).

;Stop counter (read the Reset Output Port

; Bits Command register).

;Define the constants.

;Reset value to set signal high.

‘Value to select OP3 mode (in OPCR)

; as free-running 1x clock.

-Value to select external clock (in ACR).

;Constant for duration of beep.

;Set a pitch constant in r2.

;Set beep duration constant in r3.

‘Get the address of the DUART controller.

;Clear Configuration register.

;Kill time.

;sEnable K_TIMER as free running clock

; and enable output port n.

;Resetting individual bits will set high.

;Enable speaker.

;Logically OR ACR bit 7 and X1 select.

;Select source X1 clock.

;Use constant to generate counter high.

‘Generate counter low for 16 bits.

‘Start counter timer.

;Duration of beep.

‘Done?

;Stop counter timer.

‘Clear OPCR.

_beep: or r2,r0,0x8

or r3,r0, Duration

or.u _r6,r0,hi16(DUART)

or r6,r6,1016(DUART)

st r0,r6, OPCR

bsr delayius

or r5,r0,K_ TIMER

st r5,r6,OPCR

bsr delaylus

or r5,r0,SPKR_EN

st r5,r6, ROPB

bsr delay lus

or r5,r5,CLKSRC

st r5,r6, UACR

bsr delay lus

or r5,r0,r2

st r5,r6,CTUP

bsr delayius

or r5,rQ,r2

st r5,r6,CTLR

bsr delayius

Id r0,r6,STRT

waittime:

subu _r3,r3,1

bend ne0O,r3,waittime

ld r0,r6,STOP

bsr delaylus

St r0,r6,OPCR

jmp ri

014-001800 6-25

Programming the Keyboard Interface

ACR Auxiliary Control

Address FFF8 2010 Write Only

The Auxiliary Control Register (ACR) contains speaker configuration parameters.

The bits are defined as follows:

7 6 4 13 0

* CCC *

Bit Name Function

7 * Used by serial ports.

6-4 CTM Counter/Timer Mode

110 The counter/timer uses the CLK input.

111 The counter/timer uses the CLK input divided by 16.

3-0 * Used by serial ports.

6-26 014-—001800

Programming the Keyboard Interface

CTUR, CTLR Counter/Timer

CTUR Address FFF8 2018 Read/Write

CTLR Address FFF8 201C Read/Write

The Counter/Timer Upper Register (CTUR) and the Counter/Timer Lower Register

(CTLR) are 8-bit registers that together form a 16-bit counter/timer.

The CTUR bits are defined as follows:

C15| C14] C13] C12] C11 C10 C9 C8

Bit Name Function

7-0 C15-C8 Counter/Timer Bits 15-8

The CTLR bits are defined as follows:

C7} C6| C5! C4; C3 C2 C1 Co

Bit Name Function

7-0 C7-CO Counter/Timer Bits 7-0

014-001800 6-27

Programming the Keyboard Interface

OPCR Output Port Configuration

Address FFF8 2034 Write Only

The Output Port Configuration Register (OPCR) contains configuration data for the

speaker function.

The bits are defined as follows:

7 5 4 3 2)1 0

* CSE CTW *

Bit Name Function

7-5 * Used by serial and parallel ports.

4 CSE Configure Speaker Enable

0 Configures port output speaker enable.

3, 2 CTW Configure Counter/Timer Waveform

01 Configures the DUART output port 3 to reflect the counter/timer

waveform.

1, 0 * Used by seria] ports.

6-28 014-001800

Programming the Keyboard Interface

SOPBC Set Output Port Bits Command

Address FFF8 2038 Write Only

The Set Output Port Bits Command (SOPBC) register contains speaker function data.

The bit for the speaker function is defined as follows:

7 5 4 }3 0

* DSP *

Bit Name Function

7-5 * Used by serial and parallel ports.

DSP Disable Speaker

1 Disables the speaker by causing output port 4 to go low.

O Leaves ouput port 4 unchanged.

3-0 * Used by serial and parallel ports.

014-001800 6-29

Programming the Keyboard Interface

ROPBC Reset Output Port Bits Command

Address FFF8 203C Write Only

The Reset Output Port Bits Command (ROPBC) register contains speaker function

information.

The bit for the speaker function is defined as follows:

7 5 4 13 0

* ESP *

Bit Name Function

7-5 * Used by serial and parallel ports.

4 ESP Enable Speaker

1 Enables the speaker by resetting output port 4 to go high.

O Leaves ouput port 4 unchanged.

3-0 * Used by serial and parallel ports.

End of Chapter

6-30 014-001800

Chapter 7

Programming the Serial Ports and

Parallel Port

This chapter describes the following topics:

@ The serial and parallel ports.

@ Serial port registers and how to program the serial ports.

@ Parallel port registers and how to program the parallel ports.

Overview of the Serial and Parallel Ports

AViiON 300 stations have two asynchronous serial ports: a mouse port that uses

RS-232-C, and a serial port that supports a modem and uses either RS-232-C or

RS-422. The I/O signals are described in Appendix D, “System Board Connectors.”

A specially—designed cable is needed to communicate using the RS-422 signals. See

the manual Setting Up and Starting AViiONt 300 Series Stations for the part number

and information on this cable.

The RS-422 interface is a set of drivers and receivers in parallel with the RS-232-C

drivers and receivers. They are all connected to the same DUART pins; the selection

of either the RS-232-C protocol or the RS-422 protocol is invisible to the

programmer.

AViiON 400 stations have three asynchronous serial ports: a mouse port and two

serial ports which support modems. All three serial ports communicate using the

RS-232-C protocol.

Both workstations have a parallel port which supports either a Data Products interface

or a Centronics interface.

014-001800 7-1

Programming the Serial Ports and Parallel Port

Components of the Serial and Parallel Ports

The 300 series stations have one DUART which controls two serial ports and a

parallel port as shown in Figure 7-1. The 400 series stations have two DUARTs

(DUART1 and DUART2) which control three serial ports and a parallel port as

shown in Figure 7-2.

(Sbus (32 bits Address/Data) »
Zs

8 bits

8 bits y

Control & Address

Decode LogicDUART1 8 bits
(SCC2692)

Channel al Channel B

NZ
| Parallel Port

RS-232-C or RS-232-C 7

RS-422 Drivers }| Drivers and Status Data
andReceivers Receivers Register | Register

Serial Port Mouse Port Parallel Port

Figure 7-1 300 Series Serial and Parallel! Ports

C Sbus (32 bits Address/Data) »
aN La

8 bits8 bits | | 8 bits
Control & Address |

DUART1 Decode Logic 8 bits . DUART2
(SCC2692) " | (SCC2692)

Channel Al Channel BI“ "| Channel A Channel B
= j t s -

ae |
Parallel PortRS-232-C | RS-232-C L RS-232-c | Unused

Drivers and | Drivers and Status Data Drivers and

Receivers Receivers Register Register Receivers

Serial Port A Mouse Port Parallel Port Serial Port B

Figure 7-2 400 Series Serial and Parallel! Ports

7-2 014-001800

Programming the Serial Ports and Parallel Port

DUART

Each DUART is a Signetics SCC2692 Enhanced Programmable Communications

Interface with two channels, A and B. For DUART1, the mouse port uses channel B

and the serial port uses channel A. In 400 stations, channel A of a second DUART,

DUART2, provides another serial port. The DUART clock input is 3.6864-MHz, and

is not synchronized with the system clock.

Serial Ports

In 400 series stations, channel A of DUART1 and channel A of DUART2 support

RS-232-C interfaces with modem support. In 300 series stations, channel A of

DUART1 supports both RS-232-C and RS-422; only the Receive Data and Transmit

Data lines are RS-422.

In both 300 and 400 series stations, channel B of DUART1 drives a mouse port using

the RS-232-C interface. Only the Receive Data signal is used to communicate. The

remaining signals — Transmit Data, Request to Send, and Data Terminal Ready — are

used as power sources to the mouse.

Parallel Port

The parallel port consists of control logic and buffers that regulate the transmission of

parallel data using either the Data Products or the Centronics protocol. The control

logic includes two registers, the Parallel Port Data (PPD) register and the Parallel Port

Status (PPS) register. In addition, DUART1 provides two control signals, Data Strobe

and Data Select, which are programmed via the DUART’s Output Port Configuration

Register (OPCR), Set Output Port Bits Command (SOPBC) register, and Reset Output

Port Bits Command (ROPBC) register.

014-001800 7-3

Programming the Serial Ports and Parallel Port

Programming the Serial Ports

The serial ports are programmed via the DUART registers. The DUART registers are

accessed as words and are aligned on word boundaries. Each channel has its own

Mode, Command, Clock Select, and Status registers. DUART1 and DUART2 are

programmed independently. Table 7-1 lists the DUART registers and their addresses.

CAUTION: Do not change the contents of the Mode registers, the Clock Select

registers, and the Output Port Configuration Register unless the DUART's

receivers and transmitters are disabled. Changing the contents of these

registers while the DUART is transmitting may cause errors. For

example, the DUART may transmit an incorrect character if the number

of bits per character is changed while the transmitter is active.

CAUTION: Do not sequentially read from and/or write to the registers; put two

nonoperative instructions between register reads or writes. Signetics

requires setup time between read/write inactive and read/write active.

Initializing the Serial Ports

No special initialization process is necessary except to enable the keyboard speaker by

programming the counter/timer. For information on the speaker, see Chapter 6,

“Programming the Keyboard Interface and Speaker.”

Resetting the Serial Ports

When the DUART is reset, it clears the following registers to 0:

Status registers (SRA, SRB).

Interrupt Mask Register (IMR).

Interrupt Status Register (ISR).

Output Port Configuration Register (OPCR).

Output Port Register.

A reset also drives the RTS, DTR, and TxD outputs low.

Interrupts

The DUARTs interrupt the CPU when one of the following conditions occurs:

Channel A or B transmitter is ready.

Channel A or B receiver is ready or its first-in-first-out (FIFO) buffer is full.

Channel A or B detected a beginning or end of a Break Character.

The counter/timer has reached its terminal count or zero.

The state of an input port changed.

IMR and ISR registers are associated with interrupts. Interrupts are masked via IMR.

ISR defines the nature of active interrupts.

1-4 014-001800

Programming the Serial Ports and Parallel Port

Table 7-1 Serial Port Register Addresses

Address Register Type

(A indicates channel A; B indicates channel B)

DUARTI1

FFF8 2000 Mode Registers A (MR1A, MR2A) Read/Write

FFF8 2004 Status Register A (SRA) Read
Clock Select Register A (CSRA) Write

FFF8 2008 Command Register A (CRA) Write '

FFF8 200C Receive Holding Register A (RHRA) Read

Transmit Holding Register A (THRA) Write

FFF8 2010 Input Port Change Register (IPCR) Read

Auxiliary Control Register (ACR) Write

FFF8 2014 Interrupt Status Register (ISR) Read
Interrupt Mask Register (IMR) Write

FFF8 2018 Counter/Timer Upper Register (CTUR) Read/Write

FFF8 201C Counter/Timer Lower Register (CTLR) Read/Write

FFF8 2020 Mode Registers B (MR1B, MR2B) Read/Write

FFF8 2024 Status Register B (SRB) Read

Clock Select Register B (CSRB) Write

FFF8 2028 Command Register B (CRB) Write |

FFF8 202C Receive Holding Register B (RHRB) Read

Transmit Holding Register B (THRB) Write

FFF8 2030 Reserved

FFF8 2034 Input Port Register (IPR) Read

Output Port Configuration Register (OPCR) Write

FFF8 2038 Start Counter Command Register Read

Set Output Port Bits Commmand Register Write

FFF8 203C Stop Counter Command Register Read
Reset Output Port Bits Command Write

DUART2

FFF8 2C00 Mode Registers A (MR1A, MR2A) Read/Write

FFF8 2C04 Status Register A (SRA) Read

Clock Select Register A (CSRA) Write

FFF8 2C08 Command Register A (CRA) Write |

FFF8 2C0C Receive Holding Register A (RHRA) Read

Transmit Holding Register A (THRA) Write

FFF8 2C10 Input Port Change Register (IPCR) Read

Auxiliary Control Register (ACR) Write

FFF8 2C14 Interrupt Status Register (ISR) Read
Interrupt Mask Register (IMR) Write

FFF8 2C18 Counter/Timer Upper Register (CTUR) Read/Write

FFF8 2C1C Counter/Timer Lower Register (CTLR) Read/Write

FFF8 2C20 Mode Registers B (MR1B, MR2B) Unused

FFF8 2C24 Status Register B (SRB) Unused

Clock Select Register B (CSRB) Unused

FFF8 2C28 Command Register B (CRB) Unused

FFF8 2C2C Receive Holding Register B (RHRB) Unused

Transmit Holding Register B (THRB) Unused

FFF8 2C30 Reserved

FFF8 2C34 Input Port Register (IPR) Read
Output Port Configuration Register (OPCR) Write

FFF8 2C38 Start Counter Command Register Unused

Set Output Port Bits Commmand Register Unused

FFF8 203C Stop Counter Command Register Unused
Reset Output Port Bits Command Unused

1 Do not read the Command Registers; reading them may hang the asynchronous line
this line for the system console, the workstation may hang and require a reset.)

014-001800

. (If you use

Programming the Serial Ports and Parallel Port

MR1A, MR1B Mode Registers

MRIA Address FFF8 2000 (DUART1) Read/Write

Address FFF8 2C00 (DUARTZ2) Read/Write

MRIB Address FFF8 2020 (DUART1) Read/Write

The Mode 1 Registers (MR1A and MR1B) define the operating modes of the serial

ports. MRin and MR2n share the same addresses; the state of the Reset Pointer

command, in the Command register, and the state of DUART resets determines which

set of mode registers is accessed. MRIin is selected when the DUART is reset or

when the Reset Pointer command in the command register is asserted. After MRIin is

accessed, MR2n is selected until the DUART is reset.

CAUTION: Do not change the contents of the Mode registers unless the DUART’s

receivers and transmitters are disabled.

RTSE| RRIS}| EM PM PT CF

Bit Name Function

7 RTSE Request to Send Enable

0 Disables the request to send (RTS) signal.

1 Enables the RTS signal.

6 RRIS Receiver Ready Interrupt Select

O Ifa port is ready to receive data, the corresponding State of FIFO

(SOFA or SOFB) bit of the interrupt status register (ISR) is set.

1 When the FIFO buffer fills, the corresponding State of FIFO

(SOFA or SOFB) bit is set.

5 EM Error Mode

OQ Character

1 Block

4,3 PM Parity Mode

00 With parity

10. = No parity

01 ~+=Force parity

11 Miultidrop

2 PT Parity Type

0 Even

1 Odd

1, 0 CF Character Format (bits per character)

00 5

01 6

10 7

11 8

7-6 014-001800

Programming the Serial Ports and Parallel Port

MR2A, MR2B Mode Registers

MR2A Address FFF8 2000 (DUART1) Read/Write

Address FFF8 2C00 (DUART2) Read/Write

MR2B Address FFF8 2020 (DUART1) Read/Write

The Mode 2 Registers (MR2A and MR2B) define the operating modes of the serial

ports. MRin and MR2n share the same addresses; the state of the Reset Pointer

command, in the Command register, and the state of DUART resets determines which

set of mode registers is accessed. MRin is selected when the DUART is reset or

when the Reset Pointer command in the command register is asserted. After MRIn is

accessed, MR2n is selected until the DUART is reset.

7 6 5 4 3 0

CHM | RTE] CTE SBL

Bit Name Function

7, 6 CHM Channel Mode

00 Normal

01 Auto-echo

10 ~=Local loop

11. Remote loop

5 RTE Request to Send Enable

0 Disable RTS.

1 Enable RTS.

4 CTE Clear to Send Enable

0 Disable CTS.

1 Enable CTS.

3-0 SBL Stop Bit Length

0 0.563 4 0.813 8 1.563 C 1.813

1 0.625 5 0.875 9 1.625 D 1.875

2 0.688 6 0.983 A 1.688 E 1.983

3 0.750 7 1.000 B 1.750 F 2.000

014-001800 7-7

Programming the Serial Ports and Parallel Port

CSRA, CSRB Clock Select

CSRA Address FFF8 2004 (DUART1) Write Only

Address FFF8 2C04 (DUARTZ2) Write Only

CSRB Address FFF8 2024 (DUART1) Write Only

The Clock Select registers (CSRA, CRSB) define the receive and transmit baud rates.

CAUTION: Change the contents of the Clock Select registers only while the DUART’s

receivers and transmitters are disabled.

RCS TCS

Bit Name Function

7-4 RCS

3-0 TCS

Receiver Clock Select

Program the receiver clock for channel A (CSRA) or channel B

(CSRB).

Transmitter Clock Select

Program the transmitter clock for channel A (CSRA) or channel B

(CSRB).

Two sets of baud rates are available via the Baud Rate Generator (BRG) bit (Auxiliary

Control Register bit 7) and the Clock Select registers. These registers define the clock

source and baud rate.

Table 7-2 Baud Rate Generator Characteristics

Table 7-2 lists the baud rates for a 3.6864 MHz clock.

CSR Bits Baud Rate

(7-4 or 3-0) BRG =0 BRG =1 16x Clock (KHz) Error (%)

0000 50 75 0.8 (1.2) 0 (0)

0001 110 110 1.759 -0.069

0010 134.5 134.5 2.153 0.059

0011 200 150 3.2 (2.4) 0 (0)

0100 300 300 4.8 0

0101 600 600 9.6 0

0110 1,200 1,200 19.2 0

0111 1,050 2,000 16.756 (32.056) -0.26 (0.175)

1000 2,400 2,400 38.4 0

1001 4,800 4,800 76.8 0

1010 7,200 1,800 115.2 (28.8) 0 (0)

1011 9,600 9,600 153.6 0

1100 38,400 19,200 614.4 (307.2) 0 (0)

1101 Timer Timer

1110 IPx=16x IPx=16x

1111 IPx=1x [Px=1x

014-001800

Programming the Serial Ports and Parallel Port

SRA, SRB Status

SRA Address FFF8 2004 (DUART1) Read Only

Address FFF8 2C04 (DUART2) Read Only

SRB Address FFF8 2024 (DUARTI1) Read Only

The Status registers (SRA and SRB) contain DUART status information.

7 | 6 5 | 4 3 2 1 0

BRK| FE | PE | OE| TxE] TxRDY| FFL| RxRDY

Bit Name Function

7 BRK Break

0 No error.

1 The channel received an all-zero character without a stop bit.

Inhibits further entries into the FIFO until the RxD line returns to

the idle (mark) state.

6 FE Framing Error

0 No error.

1 The last character received did not have a stop bit.

5 PE Parity Error

0 No error.

1 The last character received had the incorrect parity.

4 OE Overrun Error

QO No error.

1 One or more characters in the received data stream were lost.

NOTE: To clear BRK, FE, PE and OE, write 0x40 into the corresponding Command

Register (CRA or CRB).

3 TXE Transmitter Empty

O The transmit register(s) have data, or the transmitter is disabled.

1 Both the transmit holding register and the transmit shift register are

empty.

2 TxRDY Transmitter Ready

0 The transmit holding register has data, or the transmitter is

disabled.

1 The transmit holding register is empty and ready to be loaded with

a character.

1 FFL FIFO Full

O The receive holding register is not full; it has room for more data.

1 The receive holding register (FIFO) is full.

0 RxRDY Receiver Ready

0 The receive holding register is empty.

1 The receive holding register (FIFO) has received a character for the

CPU to read.

014-001800 7-9

Programming the Serial Ports and Parallel Port

CRA, CRB Command

CRA Address FFF8 2008 (DUART1) Write Only

Address FFF8 2C08 (DUARTZ) Write Only

CRB Address FFF8 2028 (DUARTI1) Write Only

The Command registers (CRA, CRB) contain DUART command information. The

commands executed by the CMD bits are performed on the corresponding channel.

CAUTION: Do not read the Command registers; reading them might hang the line.

If connected to the system console, the system might hang and require a

reset.

7 4 3 2 1 0

MSC DTx!| ETx} DRx| ERx

Bit Name Function

7-4 CMD Commands

Bits Function

0000 Not used.

0001 Reset the Mode Register Pointer. Points the mode register

pointer to MRI.

0010 Reset the Receiver. Disables the receiver and flushes the

FIFO.

0011 Reset the Transmitter.

0100 Clear BRK, PE, FE, and OE. Clear the break (BRK),

parity error (PE), framing error (FE), and overrun error

(OE) by clearing SRn[7-4] to 0.

0101 Reset the Change In Break Interrupt. Clears the Change in

Break (BKA or BKB) in the Interrupt Status Register to 0.

0110 Start Break. Forces the TxD output high (spacing). If the

transmitter is empty, the start of the break condition is

delayed up to two bit times. If the transmitter is active, the

break begins when character transmission is completed. If

a character is in the channel’s Transmit Holding Register

(THR), the start of the break is delayed until that

character, or any others loaded subsequently, are

transmitted. To accept this command, the transmitter must

be enabled.

0111 Stop Break. The TxD line goes low within two bit times,

and remains low for one bit time before the next character

is transmitted.

1000 Assert RTS. Assert RTS high.

1001 Clear RTS. Clear RTS low.

1010 Not used.

1011 Not used.

1100 Not used.

1101 Not used.

(continued)

7-10 014-001800

Programming the Serial Ports and Parallel Port

Bit Name Function

7-4 CMD

DTn

ETn

DRn

ERn

Commands (continued)

Bits Function

1110 Stop the DUART Oscillator. Stop the DUART oscillator,

suspending all functions requiring this clock. The contents

of all registers are saved. Disable the transmitter and

receiver before issuing this command. This command is in

Command Register A (CRA) only.

1111 Reset the Power Down Mode. Reset the power down mode

to start DUART oscillator running again. This command is

in Command Register A (CRA) only.

Disable Transmitter

0 No action, transmitter state not changed.

1 Disable the transmitter.

Enable Transmitter

0 No action, transmitter state not changed.

1 Enable the transmitter.

Disable Receiver

0 No action, receiver state not changed.

1 Disable the receiver.

Enable Receiver

0 No action, receiver state not changed.

1 Enable the receiver.

014-001800

(concluded)

7-11

Programming the Serial Ports and Parallel Port

ACR Auxiliary Control

Address FFF8 2010 (DUART]1) Write Only

Address FFF8 2C10 (DUART2) Write Only

The Auxiliary Control Register (ACR) is used to select baud rates, select the

counter/timer mode and source, and enable interrupts.

CAUTION: Some changes to the Auxiliary Control Register must be made only while

the counter/timer is stopped.

7 | 6 4 3 2 1 0

BRG CTM EIPSCl| ElP2Cl| EIP1Cl] EIPOCI

Bit Name Function

7 BRG Baud Rate Generator set select.

Select one of two sets of baud rates. CSRA or CSRB selects the actual

baud rate.

0 Selects the following subset of baud rates: 50, 110, 134.5, 200,

300, 600, 1200, 1050, 2400, 4800, 7200, 9600, 38400, Timer,

IPx=16x, IPx=1x.

1 Selects the following subset of baud rates: 75, 110, 134.5, 150,

300, 600, 1200, 2000, 2400, 4800, 1800, 9600, 19200, Timer,

IPx=16x, IPx=1x.

6-4 CTM Counter/Timer Mode and Source

See “Speaker Registers” in Chapter 6, “Programming the Keyboard

Port.”

3 ERII Enable the RI Interrupt

1 If the state of RI changes, the Input Port Change (IPC) bit of the

ISR register will be set to 1.

O A change in state of RI will not affect IPC.

2 ECDI Enable the DCD Interrupt

1 If the state of DCD changes, the Input Port Change (IPC) bit of

the ISR register will be set to 1.

0 A change in state of DCD will not affect IPC.

1 ESRI Enable the DSR Interrupt

1 If the state of DSR changes, the Input Port Change (IPC) bit of

the ISR register will be set to 1.

O A change in state of DSR will not affect IPC.

0 ETSI Enable the CTS Interrupt

1 If the state of CTS changes, the Input Port Change (IPC) bit of the

ISR register will be set to 1.

0 A change in state of CTS will not affect IPC.

7-12 014-001800

Programming the Serial Ports and Parallel Port

IPCR Input Port Change

Address FFF8 2010 (DUART1)

Address FFF8 2C10 (DUARTZ2)

Read Only

Read Only

The Input Port Change Register (IPCR) contains status information on input ports 0

through 3. These ports input the RI, DCD, DSR, and CTS signals. DUART1

receives these signals from serial port A, and DUART2 receives these signals from

serial port B.

6 5 4 3

IP3SC] IP2SC] IP1SC] IPOSC| IP3S IP2S IP1S IPOS

Bit Name Function

IP3SC

IP2SC

IP1SC

IPOSC

IP3S

IP2S

IP1S

IPOS

IP3 State Change (RI)

O RI did not change state.

1 RI changed state.

IP2 State Change (DCD)

0 DCD did not change state.

1 DCD changed state.

IP1 State Change (DSR)

O DSR did not change state.

1 DSR changed state.

IPO State Change (CTS)

0 CTS did not change state.

1 CTS changed state.

IP3 Current State (RI)

O RI is asserted.

1 RI is not asserted.

IP2 Current State (DCD)

0 DCD is asserted.

1 DCD is not asserted.

IP1 Current State (DSR)

0 DSR is asserted.

1 DSR is not asserted.

IPO Current State (CTS)

O CTS is asserted.

1 CTS is not asserted.

014-001800 7-13

Programming the Serial Ports and Parallel Port

IMR interrupt Mask

Address FFF8 2014 (DUART1)

Address FFF8 2C14 (DUART2)

Write Only

Write Only

The Interrupt Mask Register (IMR) controls interrupts generated through the interrupt

register.

4

MIPC MBKB MSOFB MTxRB MCTR MBKA MSOFA MTxRB

Bit Name Function

MIPC

MBKB

MSOFB

MTxRB

MCTR

MBKA

MSOFA

MTxRA

Input Port Change Interrupt Mask

O Mask the input port change interrupt.

1 Enable the input port change interrupt.

Channel B Break Interrupt Mask

O Mask the channel B break interrupt.

1 Enable the channel B break interrupt.

Channel B State of FIFO Interrupt Mask

0 Mask the channel B state of FIFO interrupt.

1 Enable the channel B state of FIFO interrupt.

Transmitter B Ready Interrupt Mask

QO Mask the transmitter B ready interrupt.

1 Enable the transmitter B ready interrupt.

Counter Ready Interrupt Mask

0 Mask the counter ready interrupt.

1 Enable the counter ready interrupt.

Channel A Break Interrupt Mask

0 Mask the channel A break interrupt.

1 Enable the channel A break interrupt.

Channel A State of FIFO Interrupt Mask

O Mask the channel A state of FIFO interrupt.

1 Enable the channel A state of FIFO interrupt.

Transmitter A Ready Interrupt Mask

0 Mask the transmitter A ready interrupt.

1 Enable the transmitter A ready interrupt.

7-14 014-001800

Programming the Serial Ports and Parallel Port

ISR Interrupt Status

Address FFF8 2014 (DUART1) Read Only

Address FFF8 2C14 (DUARTZ2) Read Only

The Interrupt Status register (ISR) provides the status of all interrupt sources. When

an interrupt condition occurs, the representative bit in the ISR register is set. If the

corresponding bit in the Interrupt Mask Register (IMR) is also set, the DUART

generates an interrupt to the CPU.

IPC} BKB SOFB|TxRB/CTR| BKA| SOFA|TXxRA

Bit Name Function

7 IPC Input Port Change

QO The input ports have not changed state.

1 One of the four input ports has changed state.

NOTE: The contents of IPC are valid only if the ACR register bits [3-0] have been set

to enable input port changes to be registered into IPC.

6 BKB Channel B Change in Break

Used in DUART1 for serial port A; not used in DUART2.

QO The channel B receiver did not detect a break.

1 The channel B receiver detected a break.

5 SOFB Channel B State of FIFO

Used in DUART1 for serial port A; not used in DUART2.

SOFB is programmed to respond to one of two conditions by the

receiver ready interrupt select (RRIS) bit of the mode register

(MR1B). If RRIS is set to 1, SOFB reacts to the state of the

receiver, whether it is full or ready to receive data. If RRIS is

cleared to 0, SOFB reacts to the state of the FIFO receive buffer,

whether full or not full.

O Receiver B is not ready to receive data, or the FIFO buffer is not

full.

1 Receiver B is ready to receive data, or the FIFO buffer is full.

4 TXRB Channel B Transmitter Ready

‘Used in DUART1 for serial port A; not used in DUART2.

0 The transmit holding register is full, the transmitter is disabled.

1 The transmit holding register is empty and ready to be loaded

with a character.

(continued)

014-001800 7-1 5

Programming the Serial Ports and Parallel Port

Bit Name Function

3 CTR Counter/Timer Ready

CTR is programmed to respond to one of two modes, the Counter

mode or the Timer mode, by the Counter/Timer mode (CTM) bits

of the Auxiliary Control register (ACR).

0 The counter has not reached its terminal count, or the timer has

not reached the second Zero state.

1 The counter has reached its terminal count, or the timer has

reached its second zero state. In the timer mode, CTR is set

every other time that the counter reaches zero, not every time that

the timer reaches zero.

2 BKA Channel A Change in Break

Used in DUART1 for serial port A, and DUART72 for serial port B.

QO The channel A receiver did not detect a break.

1 The channel A receiver detected a break.

1 SOFA Channel A State of FIFO

Used in DUART1 for serial port A, and DUART2 for serial port B.

SOFA is programmed to respond to one of two conditions by the

receiver ready interrupt select (RRIS) bit of the mode register

(MR1A). If RRIS is set to 1, SOFA reacts to the state of the

receiver A, whether it is full or ready to receive data. If RRIS is

cleared to 0, SOFA reacts to the state of the FIFO receive buffer,

whether full or not full.

O Receiver A is not ready to receive data, or the FIFO buffer is not

full.

1 Receiver A is ready to receive data, or the FIFO buffer is full.

0 TxRA Channel A Transmitter Ready

Used in DUART1 for serial port A, and DUART2 for serial port B.

O The transmit holding register is full, or the transmitter is disabled.

1 The transmit holding register is empty and ready to be loaded

with a character.

(concluded)

7-16 014-001800

Programming the Serial Ports and Parallel Port

CTUR, CTLR Counter/Timer

CTUR Address FFF8 2018 (DUARTI1) Read/Write

Address FFF8 2C18 (DUARTZ2) Read/Write

CTLR Address FFF8 201C (DUART1) Read/Write

Address FFF8 2C1C (DUARTZ2) Read/Write

The Counter/Timer Registers (CTUR, CTLR) together form a 16-bit counter. (These

registers are write-only; a read of these addresses is actually a read of the physical

counter/timer.)

CTUR is defined as follows:

7 | 6 5 | 4 3 2 1 0

C15} C14} C13} C12} C11} C10} C9 | C8

Bit Name Function

7-0 C15-C8 Counter/Timer Bits 15-8

The CTLR bits are defined as follows:

716 5 | 4 3 2 1 0

C7 | C6 | C5] C4] C3] C2)C1 |} CO

Bit Name Function

7-0 C7-CO0 Counter/Timer Bits 7-0

014-001800 7-17

Programming the Serial Ports and Parallel Port

OPCR Output Port Configuration

Address FFF8 2034 (DUARTI) Write Only

Address FFF8 2C34 (DUARTZ2) Write Only

The Output Port Configuration register (OPCR) configures the output ports OP2-OP7.

CAUTION: Change the contents of the Output Port Configuration Register only while

the DUART’s receivers and transmitters are disabled.

OP7| OP6)/OP5|OP4; OP3 OP2

Bit Name Function

7 OP7 Output Port 7 (DATASTRB)

Used in DUART 1 for the parallel port's DATASTRB signal; not

used for the serial ports.

6 OP6 Output Port 6 (SELECTIN)
Used in DUART1 for the parallel port’s SELECTIN signal; not used

for the serial ports.

5 OP5 Output Port 5 (DTR)

Used in DUART1 for the mouse’s DTR signal; not used in

DUARTZ2.

O Invert DTR.

1 Drive the complement of bit 5 (RxRDY/FFULLB) of the ISR

register.

4 OP4 Output Port 4 (SPKR_EN)

Used in DUART1 for the SPKR_EN signal; not used in DUART2.

O Invert SPKR_EN.

1 Drive the complement of bit 1 (RxRDY/FFULLA) of the ISR

register.

3, 2 OP3 Output Port 3 (K_TIMER)

Used in DUART1 for the K_TIMER signal; not used in DUART72.

00 Invert K_TIMER.

01 C/T OUTPUT

10 TxCB (1x)

11 RxCB (1x)

1, 0 OP2 Output Port 2 (DTR)

Select the DTR output for serial port A (DUART1) or serial port B

(DUART2).

00 Invert DTR.

01 TxC (16x)

10 TxC (1x)

11. =RxC (1x)

7-18 014-001800

Programming the Serial Ports and Parallel Port

Programming the Mouse Port

The mouse connects to the system board through port B of DUART1. This section

defines how to interpret and program the mouse.

Initializing the Mouse Port

You should initialize the mouse port with the following settings:

Baud rate 1200

Data bits 8

Start bits 1

Stop bits 1

Parity None

Data Protocol

When there is a change in the state of the mouse, the mouse transmits five bytes of

data to the system board. The start of a data block is indicated by a sync byte whose

upper five bits are 10000. The lower three bits define the state of the switches (0

indicates depressed.) The next four bytes (DeltaX and DeltaY repeated) contain two

updates of the mouse movement counters. DeltaX is the horizontal distance moved

relative to the grid of the pad, and DeltaY is the corresponding veritical distance.

Each byte is a two’s-complement 8-—bit binary number.

After these five bytes have been transmitted, additional bytes may be sent before

another sync byte is transmitted. The tracking software should ignore these additional

bytes.

Table 7-3 Mouse Data Protocol

Byte — Bits

SYNC 1 0 0 0 0 L M R

DELTAX1 X7 X6 X5 x4 X3 X2 Xl X0

DELTAY1 Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO

DELTAX2 X7 X6 X5 X4 X3 X2 Xl X0

DELTAY2 Y7 Y6 Y5 Y4 Y3 Y2 Yi YO

While the mouse is resting on a flat surface with the cord away from you, positive

motion is to the right (X-direction) or upward (Y-direction, toward the cord.) Bit 7

of the DeltaX and DeltaY bytes defines whether the direction is positive or negative (0

is positive, 1 is negative.)

014-001800 7-19

Programming the Serial Ports and Parallel Port

Tracking Software

A software tracking algorithm is:

1. Read a byte.

2. If the upper bits are 10000, then save the lower three bits in SWITCH_STATUS.

Otherwise repeat Step 1.

3. Process the lower three switch information bits if necessary.

4. Get the next byte and add its value to the variable that is accumulating horizontal

movement. Do not forget to sign—extend the value to the size of the variable used

to store the accumulated movement.

Get the next byte and add its value to the vertical movement.

Get the next byte and add its value to the horizontal movement.

Get the next byte and add its value to the vertical movement.corlUlUlUmMN ODN Go to step 1.

Do not ignore DeltaX2 and DeltaY2.

Programming Hints

The RS-232-C interface on the mouse only transmits data. It does not use the

handshake signals (DSR, CTS, etc.). The tracking software can either ignore these

signals or program the DUART to ignore these signals.

When the mouse is powered up, it transmits a continuous Break or Start bit for

approximately 150 ys. This is the duration of its reset period. You may need to

reset the DUART after this Break.

The mouse does not use parity; all eight bits of each byte contain valid data. Disable

operating system features that clear high-order bits, swallow nulls, respond to *S or

*Q, and/or replicate Delete.

Because the mouse transmits five bytes of data at 1200 baud, the maximum mouse

velocity must be less than 51 in/s for real-time tracking. The mouse’s position is

available 48 times per second.

Sensitivity

Many programmers adjust the sensitivity of the mouse by filtering the mouse input.

Sensitivity is changed by multiplying or dividing the delta motion values by a constant

before moving the cursor on the screen. Multiplying causes the cursor to move

farther relative to the mouse motion, and dividing causes the cursor to move less,

giving finer control over its motion.

Sensitivity can also be nonlinear; rapid mouse motion could move the cursor a greater

distance than slower mouse motion. A common algorithm doubles the cursor motion

relative to the mouse motion if the mouse is moved faster than 64 transitions per

second.

The appropriate sensitivity depends on the application and the user.

7-20 014-001800

Programming the Serial Ports and Parallel Port

Programming the Parallel Port

The parallel port is used to transmit parallel data from the system board.

Registers

The parallel port uses the following registers:

Output Port Configuration Register (OPCR).

Set Output Port Bits Command (SOPBC) register.

Reset Output Port Bits Command (ROPBC) register.

Parallel Port Data (PPD) register.

Parallel Port Status (PPS) register.

The OPCR, SOPBC and ROPEC registers reside in DUART1. Table 7-4 illustrates

the registers and addresses.

Table 7-4 Addresses of Parallel Port Registers

Address Register Type

FFF8 2034 Output Port Configuration Register (OPCR) Write

FFF8 2038 Set Output Port Bits Command (SOPBC) register Write

FFF8 203C Reset Output Port Bits Command (ROPBC) register Write

FFF8 2400 Parallel] Port Data (PPD) register Write
Parallel Port Status (PPS) register Read

Interrupts and Transmitting Data

When the CPU receives a parallel port interrupt, the interrupt service routine must

read the PPS register to determine the nature of the interrupt. If it is a Parallel Port

Demand (PPD) interrupt, the interrupt service routine should write a byte of data to

the PPD register; then pulse the Data Strobe signal (high for a Data Products interface

or low for a Centronics interface) to transmit the data. To pulse the Data Strobe line,

the interrupt service routine must write to the SOPBC and ROPBC registers. After

receiving the data, the parallel device must issue a new demand (Data Products) or an

acknowledgement (Centronics) to request another byte of data. This demand or

acknowledgement generates a new PPD interrupt and the process repeats until all of

the data is transmitted. After the program sends the last character to the parallel

port, it should mask out the parallel port interrupt until ready to send more data.

NOTE: The interrupt service routine should establish a set of parallel port interrupt

priorities so as not to send data when the parallel port has a problem; the

interrupt servce routine should examine the parallel port’s status before

transmitting each character.

014-001800 7-21

Programming the Serial Ports and Parallel Port

Programming the Data Strobe and Data Select Signals

The Set Output Port Bits Command (SOPBC) and Reset Output Port Bits Command

(ROPBC) registers control the Data Strobe (PP_DSTB) and the Data Select (PP_SEL)

signals. You must program these control signals for the appropriate polarity: Data

Products or Centronics. The program must ensure that the Data Strobe signal meets

the timing specification shown in Figure 7-3 for a Data Products interface or in

Figure 7-4 for a Centronics interface.

The following pages describe the parallel port registers.

DEMAND ———“ | } A

DATA «-eeeee= xk DATA VALID >See

0.5 ys min.*| 0.5 ws min.*} 0.5 is min. *

STROBE / N

* Printer-dependent

Figure 7-3 Data Strobe Timing for a Data Products Interface

2.5 ws nom.

ACKNOWLEDGE fon

| 2.5 ws nom

DATA -«-<« “<< DATA VALID >» ereccee eee esreecereresceae

1 ws min. | 1 s min. 1 Ls min.DATA | e . .
STROBE @aegqees#s@eese ®@ ‘ gfeoeeenwnwve eo @ @wqgoeaoueewdweeaeswe & eae @2@#eoeqee @ oe @

Figure 7-4 Data Strobe Timing for a Centronics Interface

7-22 014-001800

Programming the Serial Ports and Parallel Port

OPCR Output Port Configuration

Address FFF8 2034 Write Only

The upper two bits of the Output Port Configuration Register (OPCR), located in

DUART1, configure the DATASTRB and SELECTIN signals of the parallel port.

7 6 5 0

OP7 | OP6 *

Bit Name Function

7 OP7 Output Port 7 Configuration (DATASTRB)

Used in DUART1 for the DATASTRB signal; not used in DUART2.

0 Drive the complement of the current DATASTRB signal.

1 Drive the complement of bit 4 (TxRDYB) of the ISR register.

6 OP6 Output Port 6 Configuration (SELECTIN)

Used in DUART1 for the SELECTIN signal; not used in DUART2.

0 Drive the complement of the current SELECTIN signal.

1 Drive the complement of bit 0 (TxRDYA) of the ISR register.

5-0 * Used for serial ports; not used for parallel port.

014-001800 7-23

Programming the Serial Ports and Parallel Port

SOPBC Set Output Port Bits Command

Address FFF8 2038 Write Only

The upper two bits of the Set Output Port Bits Command (SOPBC) register, located in

DUART1I, set the DATASTRB and SELECTIN signals of the parallel port.

SO7| SO6)

Bit Name Function

5-0

SO7

S06

Set Output Port 7 (DATASTRB)

1 Assert DATASTRB Low.

QO Leave DATASTRB unchanged.

Set Output Port 6 (SELECTIN)

1 Assert SELECTIN Low.

0 Leave SELECTIN unchanged.

Must be Os for parallel port accesses.

7-24 014-001800

Programming the Serial Ports and Parallel Port

ROPBC Reset Output Port Bits Command

Address FFF8 203C Write Only

The upper two bits of the Reset Output Port Bits Command (ROPBC) register, located

in DUART1, reset the DATASTRB and SELECTIN signals of the parallel port.

7 6 5 0

RO7 | RO6 0

Bit Name Function

7 RO7 Reset Output Port 7 (DATASTRB)

1 Set DATASTRB High.

0 Leave DATASTRB unchanged.

6 RO6 Reset Output Port 6 (SELECTIN)

1 Set SELECTIN High.

O Leave SELECTIN unchanged.

5-0 Must be Os for parallel port accesses.

014-001800 7-25

Programming the Serial Ports and Parallel Port

PPD Parallel Port Data

Address FFF8 2400 Write Only

The Parallel Port Data (PPD) register is a temporary buffer for data being transmitted

through the parallel port.

7 0

PPD

Bit Name Function

7-0 PPD Parallel Port Data

Contains the byte of data that the parallel port will transmit.

7-26 014-001800

Programming the Serial Ports and Parallel Port

PPS Parallel Port Status

Address FFF8 2400 Read Only

The Parallel Port Status (PPS) register contains status information on the parallel port.

If a parallel port interrupt occurs, the interrupt service routine should read the PPS

register to find the nature of the parallel port interrupt.

7 6 | 514 | 3 |] 2 1 | 0

Unused | PPI |PPF|PPD| PPE} PPL! PPB

Bit Name Function

7, 6 Unused Ignore these bits.

PPR Parallel Port Ready

1 The parallel port is ready.

QO The parallel port is not ready.

4 PPF Parallel Port Fault

1 A parallel port fault. has occurred.

QO There is no parallel port. fault.

3 PPD Parallel Port Demand

1 The parallel port demand (or acknowledgement) is asserted.

0 The parallel port demand (or acknowledgement) is not asserted.

2 PPE Parallel Port Paper Empty (Centronics only)

1 The printer is out of paper.

O The printer is not out of paper.

1 PPL Parallel] Port On Line

1 The parallel port is on line.

QO The parallel port is off line.

0 PPB Parallel Port Busy (Centronics)

1 The parallel port is busy.

O The parallel port is ready.

Parallel Port Busy (Data Products)

1 The parallel port is ready.

QO The parallel port is busy.

End of Chapter

014-001800 7-27

Chapter 8

Programming the

Local Area Network Interface

This chapter describes the following topics:

@ The LAN interface.

@ Ethernet frame transfers.

@ How to program the LAN interface.

The local area network interface provides an Ethernet interface for IEEE 802.3 based

communications with other systems. The CPU acts as the I/O controller for the LAN

interface and main memory provides its data buffer.

014-001800 8-1

Programming the Local Area Network Interface

Components of the LAN Interface

As shown in Figure 8-1, the LAN interface consists of an Sbus interface, address

extension logic, an Ethernet controller, an Ethernet serial interface, and an

attachment unit interface (AUI) connector.

C Sbus (32 bits))

: Sbus Interface kK Address Extension Logic

|

: |
: |
: |
: |

|

: |
| |
: |

| 16/24 oe :
| | |
: |
: |
7 |
: |
: |
! |

: |

Ethernet Controller

(AMD Am7990)

J
Serial Interface System Board

] [aw Cable

Medium Attachment |
Unit (MAU)

| LAN

Figure 8-1 Components of the LAN Interface

Sbus Interface

The Sbus interface connects the Ethernet controller to the Sbus. When the Ethernet

controller is master of the Sbus, this interface hardware adds the eight address bits

from the address extension logic to the 24-bit addresses produced by the controller to

provide the required 32-bit addresses for the Sbus.

The LAN interface neither asserts nor responds to any kind of bus error.

Since the Ethernet controller runs at a fixed 10-MHz rate and the Sbus is a

synchronous 16.67-MHz or 20-MHz bus, the Sbus interface contains logic to

synchronize the Ethernet controller and Sbus operations.

8-2 014-001800

Programming the Local Area Network Interface

Address Extension Logic

The LAN interface provides an address extension that is not accessible by software.

This extension contains the eight high-order address bits driven on the Sbus whenever

the Ethernet controller is bus master. Since this extension is set by hardware to 0,

the LAN interface can address only the first 16 Mbytes of main memory.

Ethernet Controller

The Ethernet controller is an Advanced Micro Devices AM7990 local area network

controller for Ethernet (LANCE) chip with 24 address bits and 16 data bits. It

functions as either a bus master or a bus slave. The Ethernet controller uses the CPU

as the host processor and main memory as its buffer for Ethernet data.

Serial Interface

The Ethernet serial interface converts the transmit data output of the Ethernet

controller into Manchester-encoded output for the Ethernet; and conversely, it

performs Manchester decoding on the Ethernet’s input to provide receive—data input

for the Ethernet controller.

AUI Connector and Cable

The AUI cable is a 15-pin cable with D15 connectors, as described by the IEEE

802.3 specification. See Appendix D, “System Board Connectors” for the signals.

The AUI cable connects the workstation to a medium attachment unit (MAU).

Medium Attachment Unit (MAU)

The medium attachment unit (MAU) contains the Ethernet transceiver that links the

system board’s Ethernet I/O with the Ethernet LAN. The MAU isolates the LAN

from the AUI cable and controllers, and connects to one of many Ethernet media.

The MAU can be any one of the following types of external 10-MHz MAUs:

10BASE5 (Ethernet).

10BASE2 (Cheapernet or Thin Ethernet).

10BROAD36 (Ethernet over CATV).

10BASET (proposed Ethernet over twisted pair).

any other 10-MHz AUI-compatible MAU or MAU-like device.

014-001800 8-3

Programming the Local Area Network Interface

The

Ethernet Frame Transfers

LAN interface defines the following logical path for incoming and outgoing

Ethernet frames.

Incoming Frame Path

An incoming Ethernet frame traverses the following path from the network media to

the I/O driver buffers:

1. The Ethernet frame enters the LAN interface from the network media via the

AUI connector.

The serial interface Manchester decodes the frame.

The Ethernet controller assembles the bits of the frame into a 16-bit half-word.

The Ethernet controller writes the frame into the area of main memory specified

by the buffer descriptors.

The CPU copies the frame from main memory into the I/O driver buffers.

Outgoing Frame Path

An outgoing Ethernet frame traverses the following path from the I/O driver buffers to

the network media:

1. The CPU copies the frame from the I/O driver buffer into the LAN interface’s

memory buffers in main memory.

The Ethernet controller reads the frame out of the buffers in main memory

specified by the buffer descriptors.

The Ethernet controller assembles the frame into a complete Ethernet frame.

The serial interface Manchester encodes the frame.

The serial interface sends the frame to the network media via the AUI

connector.

014-001800

Programming the Local Area Network Interface

Programming the LAN Interface

The only software accessible components of the LAN interface are the Ethernet

controller’s internal registers. This section describes the following:

Programming the Ethernet controller registers.

Allocating memory to the LAN interface.

LAN interface data structures.

LAN interface software environment.

Initializing the LAN interface.

Resetting the LAN interface.

LAN interface interrupts.

For a complete description of how to program the controller, refer to Advance Micro

Device’s Am7990 Local Area Network Controller (LANCE) Technical Manual.

Programming the Ethernet Controller Registers

The Ethernet interface has two addressable 32-bit registers, which correspond to the

Ethernet controller’s Register Address Pointer (RAP) register and Register Data Port

(RDP) register. Together, these two registers provide access to other registers within

the Ethernet controller.

Both registers are 32-bit, word-access—only registers with the following addresses:

FFF8 C004 (RAP) and FFF8 C000 (RDP). This means that software should access

these registers as 32-bit words using the RISC word load and store instructions. In C

these registers must be defined as int. Since the contents of each register appear in

bits 15-0 of the accessed word, software must mask out bits 31-16 of the accessed

word.

The rest of this section briefly describes these two registers and the four Ethernet

controller Control/Status registers (CSRO, CSR1, CSR2, CSR3). It also gives the

required configurations that these registers must have for the LAN interface to operate

properly.

NOTE: You must disable parity checking by the data CMMU before reading the

Ethernet controller registers. For information on programming the CMMU,

refer to the MC8&8200 User’s Manual.

For a complete description of these registers, refer to Advanced Micro Device’s

Am7990 Local Area Network Controller (LANCE) Technical Manual.

014-001800 8-5

Programming the Local Area Network Interface

RAP Register Address Pointer

Address FFF8 C004 Read/Write

The Register Address Pointer (RAP) register selects one of the Control and Status

Registers (CSRn).

31 16

Reserved

15 2 1 0

Reserved CSR SELECT

Bit Name Function

31-2 Reserved Undefined.

1-0 CSR SELECT Control and Status Register Select

00 CSRO

01 CSRI1

10 CSR2

11 CSR3

8-6 014-001800

Programming the Local Area Network Interface

RDP Register Data Port

Address FFF8 C000 Read/Write

The Register Data Port (RDP) register passes data between the CPU and the Control

and Status Registers (CSRn).

31 16

Reserved

15 0

CSR DATA

Bit Name Function

31-16 Reserved Undefined.

15-0 CSR Data Contents of the CSR selected by the RAP register.

Writing data into these bits wtites the data into the selected CSR.

Reading data from these bits, reads the data from the selected CSR.

CSR1, CSR2, and CSR3 are accessible only when CSRO bit 2 (STOP)

is 1. For the contents of a specific register, refer to the description of

the CSR that follow.

014-001800 8-7

Programming the Local Area Network Interface

CSRO Control and Status Register 0

Read/Write

The Control and Status Register 0 (CSRO) passes control and status between the CPU

and the Ethernet controller.

15 | 14 13 12 11 10 9 | 8 7 6 5 4 3 2 1 0

ERR|BABL] CERR|MISS |MERR | RINT] TINT) IDON INTR INEA RXON!| TXON} TDMD| STOP|STRT | INIT

Bit Name Function Type

15 ERR Error Read

1 Indicates that one of the following errors has

occurred: Babble (BABL), Collision (CERR),

Missed Packet (MISS), or Memory (MERR).

14 BABL ! Babble - Transmitter timeout Read/Write

1 Indicates excessive length in the transmit buffer.

13 CERR ! Collision error Read/Write

1 Indicates a collision after transmission transceiver

test feature.

12 MISS ! Missed Packet Read/Write

1 Indicates the receiver lost a packet.

11 MERR ! Memory Error Read/Write

1 Indicates a memory error occurred.

10 RINT ! Receiver Interrupt Read/Write

1 Indicates the receiver generated an interrupt.

9 TINT ! Transmitter Interrupt Read/Write

1 Indicates the transmitter generated an interrupt.

8 IDON ! Initialization Done Read/Write

1 Indicates that the Ethernet controller has completed

its initialization process.

7 INTR Interrupt Flag Read

1 Indicates the Ethernet controller has generated an

interrupt.

6 INEA Interrupt Enable Read/Write

1 Enables Ethernet controller interrupts.

5 RXON Receiver On Read

1 Indicates the receiver is enabled.

4 TXON Transmitter On Read

1 Indicates the transmitter is enabled.

! Writing a 1 to these bits clears them; writing a 0 to them has no effect.

(continued)

8-8 014-001800

Programming the Local Area Network Interface

Bit Name Function Type

3 TDMD Transmit Demand Write

1 Causes the Ethernet controller to access the transmit descriptor ring

without waiting for the polling time interval to elapse.

2 STOP Stop Read/Write

1 Disables the Ethernet controller from all external activity and clears

its internal logic. Do not write a 1 to this bit. To reset the Ethernet

controller and set this bit to 1, use the Reset Ethernet Subsystem

bit in the CPU’s Diagnostic Control Register (DCR).

1 STRT Start Read/Write

1 Enables the Ethernet controller to send and receive packets,

perform DMA operations, and manage its buffers.

0 INIT Initialize Read/Write

1 Causes the Ethernet controller to begin its initialization procedure.

(concluded)

014-001800 8-9

Programming the Local Area Network Interface

CSR1 Control and Status Register 1

Read/Write

The Control and Status Register 1 (CSR1) passes control and status between the CPU

and the Ethernet controller.

15 1 0

IADRL

Bit Name Function

15-1 IADRL Initialization Block Address

Contains the low-order bits (15-1) of the initialization block.

Must be 0 for the initialization block to begin on an even byte.

8-10 014-001800

Programming the Local Area Network Interface

CSR2 Control and Status Register 2

Read/Write

The Control and Status Register 2 (CSR2) passes control and status between the CPU

and the Ethernet controller.

15 8; 7 0

Reserved [ADRH

Bit Name Function

15-8 Reserved Reserved. Must be written to with 0s; read as Os.

7-0 IADRH Initialization Block Address

Contains the high-order bits (23-16) of the initialization block.

014-001800 8-11

Programming the Local Area Network Interface

CSR3 Control and Status Register 3

Read/Write

The Control/Status Register 3 (CSR3) passes control and status between the CPU and

the Ethernet controller.

1 3]2|1

Reserved 1 0 0

Bit Name Function

15-3 Reserved Reserved. Must be written to with 0s; read as Os.

2 1 Byte Swap (BSWP)

Must be 1 so that the Ethernet controller swaps the high and low-order

bytes on DMA data transfers. Initialization block data and description

ring entries are not swapped.

1 0 ALE Control (ACON)

Must be 0 so that the ALE (Address Latch Enable) signal is asserted

high.

0 0 Byte Control (BCON)

Must be 0 so that the Ethernet controller’s Byte Mask and Hold I/O

pins are defined correctly for the LAN interface.

8-12 014-001800

Programming the Local Area Network Interface

Required Register Configurations

Software must program the CSRO, CSR1, CSR2, and CSR3 registers so they reflect the

hardware implementation of the LAN interface and operating system. Table-1

provides the configuration requirements for each register.

Table-1 Required LAN Register Configurations

Register Configuration Requirements

CSRO Bit 2 (STOP) must never be set to 1 after the Ethernet controller has been initialized.

If software must reset or reinitialize the Ethernet controller, then it should use the

Ethernet Subsystem Reset bit in the CPU’s Diagnostic Control Register (DCR) to reset

the Ethernet controller and set the bit 2 (STOP) to 1. Software must assert this Reset

bit for a minimum of 200 ns.

CSR1 Bit 0 must be O because the initialization block must begin on an even byte boundary.

CSR2 Bits 15-8 must be Os.

CSR3 Bits 2-0 must be set as follows:

Bit Setting

2 BSWP must be 1 to select byte swapping since the workstation will use

big-endian byte ordering. The byte swap feature only swaps Ethernet data

bytes and not the initialization block data or descriptor ring entries.

1 ACON must be 0 since the LAN interface uses Address Latch Enable (ALE).

0 BCON must be 0 since the LAN interface uses byte strobes on its buses.

014-001800 8-13

Programming the Local Area Network Interface

Allocating Memory to the LAN Interface

Since neither the Ethernet controller nor the LAN interface provides local storage for

buffering, the Ethernet controller uses main memory as its buffer for Ethernet data.

Since the LAN interface does not implement any address mapping and produces only

physical addresses, software must ensure that the Ethernet controller does not access

areas of memory not intended for it.

Due to the limited addressing capabilities of the Ethernet controller and the value of

the LAN interface address extension, the Ethernet controller can only access the first

16 Mbytes of main memory. The combination address produced by the Ethernet

controller and the LAN interface’s address extension logic provides what can be

conceptualized as a Cache/Memory Management Unit (CMMU) page descriptor.

Figure 8-2 shows the Sbus addresses produced by the Ethernet controller, Figure 8-3

shows the page descriptor conceptualization, and Table-—2 describes this

conceptualization.

Since the LAN interface only produces bus transactions that are not snooped by the

CMMwUs, the main memory assigned to the LAN interace cannot be cached.

31 24 | 23 16

0—0 Ethernet Controller Address (bits 23-16)

15 0

Ethernet Controller Address (bits 15-0)

Figure 8-2 Sbus Addresses Produced by the LAN interface

31 24 | 23 16

0—0 PFA (bits 23-16)

15 12 111 10] 9 |] 8 7 | 6 5 | 4 3 2 140

PFA (bits 15-12) Res WT| SP} G {Cl {Res} Mj} U | WP/]Res| V

Figure 8-3 Conceptual CMMU Page Descriptor Produced by the LAN Interface

8-14 014-001800

Programming the Local Area Network Interface

Table-2 Conceptual CMMU Page Descriptor Produced by the LAN Interface

Bit Name Function

31-12 PFA Page Frame Address.

Bits 31-24 are wired to 0; bits 23-12 are the Ethernet controller

address bits 23-12.

11-10 ~=—‘ Res Reserved

9 WT Write through (not implemented).

8 SP Supervisor protection (not implemented).

7 G Global (Wired to 0 (equals not global)).

6 CI Cache inhibit (not implemented).

5 Res Reserved

4 M Modified (not implemented).

3 U Used (not implemented).

2 WP Write protect.

Set to 0 equals writeable.

1 Res Reserved

0 V Valid (Set to 1 (equals valid)).

LAN Interface Data Structures

Since the workstation uses the 68000 byte ordering scheme, the LAN interface stores

data structures in main memory in the same manner as specified for the Motorola

68000 in Advanced Micro Device’s Am7990 Local Area Network Controller (LANCE)

Technical Manual.

The only restrictions on these data structures are that all data referred to by the LAN

interface must be within the first 16 Mbytes of main memory. Software must assign

the LAN interface a special fixed and contiguous area in the first 16 Mbytes of main

memory and declare this area cache-inhibited during operating system initialization.

Since the CPU communicates with the Ethernet controller through main memory

locations, it must also set up an initialization block and two buffer descriptor rings.

The CPU sets these up when it executes PROM-based software during powerup, as

described in the Chapter 2, “Programming the System Board.”

The Ethernet controller uses the initialization block to set internal registers that are

not accessible through its two register ports. The two buffer descriptor rings provide

the physical address of the memory buffers that the Ethernet controller uses to move

data through the LAN interface. One descriptor ring is the data structure that

controls the memory buffers for data transmitted over the Ethernet. The other

descriptor ring is the data structure that controls the memory buffers for data received

from the Ethernet. The Ethernet controller reads and writes to the buffer descriptor

rings. An ownership bit in each ring element provides mutual exclusion. For a full

description of the CPU-controller protocol and the data structures, refer to Advanced

Micro Device’s Am7990 Local Area Network Controller (LANCE) Technical Manual.

014-001800 8-15

Programming the Local Area Network Interface

Software Environment

Perform the following tasks to set up the LAN interface to operate properly. Note

that none of the following spaces can be cached or swapped.

1. Set aside at least 16 Kbytes in the first 16 Mbytes of main memory for use as the

Ethernet buffer space.

Set aside a 2-Kbyte region in the first 16 Mbytes of main memory for the

Ethernet controller’s ring descriptors. The Ethernet controller can deal with two

buffer descriptor rings, each consisting of 128 entries. Each buffer descriptor is

four half-words long, and must be doubleword aligned (address bits 2-0 are 0)

and contiguous with the previous buffer descriptor.

Set up the Ethernet controller’s initialization block somewhere in the first 16

Mbytes of main memory with the restriction that it is half-word aligned (bit 0 of

address is 0). The initialization block contains the address of the two buffer

descriptor rings and the Ethernet physical network address. The address of the

initialization block is set in the Ethernet controller’s CSR1 and CSR2. For more

details, see the following section, “Initializing the LAN Interface.”

Align the buffers pointed to by the buffer descriptor ring entries on half-word

boundaries in the first 16 Mbytes of main memory.

Initializing the LAN Interface

Initialize the LAN interface as follows:

1. Clear the Ethernet Subsystem Reset bit to 0 in the CPU Diagnostic Control

Register (hardware resets the LAN interface). This clears the CSRO bit 2

(STOP) to 0.

Leave the Ethernet subsystem Reset bit in the CPU Diagnostic Control Register

set to 0 for a minimum of 200 ns; software sets this bit to 1.

Initialize the following LAN interface data structures in main memory:

@ Transmit descriptor ring

@ Receive descriptor ring

@ Initialization block, containing the following:

Mode

Network Physical Address (PADR)

Logical Network Address Filter (LADRF)

Receive Descriptor Ring Pointer (RDRP)

Transmit Descriptor Ring Pointer (TFRP)

Load the address of the initialization block into the Ethernet controller’s CSR1

and CSR2.

Load 000416 into the Ethernet controller’s CSR3. This value is required by the

workstation.

Set the Ethernet controller’s CSRO bit 0 (INIT) to 1.

Wait for the Ethernet controller to set CSRO bit 8 (IDON) to 1.

Set the Ethernet controller’s CSRO bit 1 (STRT) bit to 1.

8-16 014-001800

Programming the Local Area Network Interface

Resetting the LAN Interface

The following events occur when software clears the Ethernet Subsystem Reset bit to 0

in the CPU Diagnostic Control Register for a minimum of 200 ns:

1. The Sbus interface is reset to an idle state, making the LAN interface registers

inaccessible.

2. The Ethernet controller is in a hardware reset state so that the following

conditions exist:

@ RAP register is cleared.

@ CSRO bit 2 (STOP) is set to 1 and the other CSRO bits are cleared to Os.

After a hardware reset, software must reinitialize the Ethernet controller’s CSR1,

CSR2, and CSR3, as described in the earlier section, “Initializing the LAN Interface.”

LAN Interface Interrupts

The LAN interface generates an interrupt whenever the Ethernet controller generates

an interrupt by asserting its interrupt pin. The Ethernet controller can generate an

interrupt on the following conditions:

@ Transmitter time-out because the packet was too long (BABL).

@ Missed packet because the receiver dropped a packet (MISS).

@ Memory error because the memory system did not acknowledge within 25.6 ms

(MERR).

@ Receiver interrupt because a packet was received (RINT).

e Transmitter interrupt because a packet was sent (TINT).

@ Initialization was completed (IDON).

When an interrupt occurs, the software must clear the CPU’s interrupt logic by

clearing the source of the interrupt in the Ethernet controller.

End of Chapter

014-001800 8-17

Chapter 9

Programming the Small Computer

System Interface Port

This chapter describes the following topics:

The SCSI port.

How to program the protocol controller registers.

How to reset and initialize the protocol controller.

Protocol controller interrupts.

How to program the DMA controller.

How to manipulate pointers and counters.

How to implement the selection time-out function.

DMA controller interrupts.

Overview of the SCSI Port

The Small Computer System Interface (SCSI) is an ANSI defined standard for

computer and peripheral interconnection. All the workstation’s mass-storage devices

are external to the computer and connect to the computer via the SCSI port on the

system board. The SCSI port allows the workstation to attach to mass—storage devices

and other peripherals.

The workstation’s SCSI port supports the following options allowed by the SCSI

standard:

Disconnect/reconnect.

Single-ended drivers and receivers.

Asynchronous transfer protocol.

Shielded connector.

SCSI bus parity.

Initiator mode.

014-001800 9-1

Programming the Small Computer System Interface Port

Components of the SCSI Port

As shown in Figure 9-1, the SCSI port consists of three major functional components:

a SCSI slave interface, a SCSI protocol controller, and a direct-memory access

(DMA) controller. This section describes these components briefly.

Te Wht te)
Bits Bits Bits

31-1 4 ry Buffer Processor Bus

Sbus DMA High Byte
Control Transceivers

Signals = DMA Low Byte

ANT

/WR
SCSI /RD
Slave cs »

Interface Buffer & Transceiver ALE SCSI Bus
Control Signals

—< SCSI
tree errr eee ' Protocol

* Transfer Counter ° Controller
@~r @@ eo he we ww ow rewewenowrad owewee yz (AlC-6250)

' Map Register * Transfer Direction §
ee ee

' Offset Register ' Stop Register ° —} BREQ
eereeecceve ea Lew e ween een e! "| BACK

DMA Master and Slave Interface

INT-02411

Figure 9-1 SCSI Port Components

SCSI Slave Interface

The SCSI slave interface accepts Sbus signals and generates the necessary signals for

slave accesses to the protocol controller.

SCSI Protocol Controller

The SCSI protocol controller is an Adaptec AIC-6250 SCSI Protocol Controller chip

that handles all the SCSI bus protocol, as well as providing the interface between the

SCSI bus and the host system. The controller contains an 8—byte first-in-—first-out

(FIFO) buffer, SCSI bus control, a 16-bit DMA data path, an 8-bit microprocessor

port, and single-ended drivers.

9-2 014-001800

Programming the Small Computer System Interface Port

DMA Controller

The SCSI port provides direct-memory access between the protocol controller and

main memory using a discrete DMA controller dedicated to this task. The DMA

controller is a one-channel, 16-bit controller consisting of the following registers:

DMA Map register, DMA Offset register, DMA Transfer Count register, DMA

Transfer Direction register, DMA Stop register.

The DMA slave interface accepts Sbus control signals and produces the necessary

signals for slave accesses to the DMA controller registers. The DMA master interface

accepts and generates signals between the Sbus and the protocol controller for bus

mastership control.

Programming the SCSI Controller

The protocol controller handles operations on the SCSI bus one phase at a time. It

supports both the initiator and target roles, and SCSI bus arbitration, as well as

automatic response to selection and reselection. Software can set up the protocol

controller to look automatically for the SCSI bus free phase and, upon detection of

this phase, to arbitrate for control of the SCSI bus. If the protocol controller wins

arbitration, it proceeds automatically to the selection or reselection phase. Software

can also set up the protocol controller to generate an interrupt when the

selection/reselection is completed. Software can then set up the protocol controller to

accomplish the desired bus phases one at a time, such as looking for an expected

phase and undertaking certain data transfer tasks or else indicating a phase mismatch.

The protocol controller allows three methods of data transfer to and from the host:

DMA transfer, automatic programmed I/O (PIO), and microprocessor PIO. The

workstation’s SCSI port supports each of these methods, although for transfers in the

data phase, the DMA transfer method is the method of choice. For a detailed

description of these transfer methods, refer to the Adaptec AJC-6250

High-Performance SCSI Protocol Chip data sheet.

Software sets up the protocol controller by programming its 16 internal registers that

are mapped into the workstation’s address space at addresses FFF8 A000 through

FFF8 A03C. Table 9-1 gives the memory map for these registers; the rest of the

section describes each register briefly. For detailed information on these registers,

refer to the Adaptec AJC-6250 High-Performance SCSI Protocol Chip data sheet.

NOTE: Before reading the AIC-6250 registers, you must disable parity checking.

For information on disabling parity, refer to the MC88&200 User’s Manual.

014-001800 9-3

Programming the Small Computer System Interface Port

Table 9-1 Memory Map of the Protocol Controller Registers

Address Register Type Reset State’

FFF8 A000 0— DMA Byte Count (low) Read/write Unaffected

FFF8 A004 1— DMA Byte Count (middle) Read/write Unaffected

FFF8 A008 2— DMA Byte Count (high) Read/write Unaffected

FFF8 AOOC 3 — Interrupt Mask Register 0 Write 0000 0000 2

FFF8 A010 4— Offset Control Write 0000 0000 2

FFF8 A014 5 — FIFO Status Read xx11 0000 #

FFF8 A018 6 — Revision Control Read 0000 0000 2

Interrupt Mask Register 1 Write 0000 0000 2

FFF8 A01C 7 — Status Register 0 Read See text

Control Register 0 Write See text

FFF8 A020 8 — Status Register 1 Read See text

Control] Register 1 Write See text

FFF8 A024 9 — SCSI Signal Read/write 0000 0000 °

FFF8 A028 A — SCSI ID Read/write Unaffected

FFF8 A02C B — Source/Destination ID Read Unaffected

FFF8 A030 C — Memory Data Unused Unaffected

FFF8 A034 D — Port A Unused 0000 0000 2

FFF8 A038 E — Port B Read/write 0000 0000 2

FFF8 A03C F — SCSI Latch Data Read Unaffected

SCSI Busy Reset (TGT) Write See text

' Contents of the register following a system reset unless otherwise stated.

2 Contents of the register following a hardware or software SCSI port reset.

3 Contents of the register following a hardware or software SCSI port reset or a SCSI bus reset.

014-001800

Programming the Small Computer System Interface Port

DMABCL, DMABCM, DMABCH DMA Byte Count

DMABCL Address FFF8 A000 Read/Write

DMABCM Address FFF8 A004 Read/Write

DMABCH Address FFF8 A008 Read/Write

The DMA Byte Count Low (DMABCL or Register 0), DMA Byte Count Middle

(DMABCM or Register 1), and DMA Byte Count High (DMABCH or Register 3) are

8-bit registers that contain, respectively, the low, middle, and high bytes of the DMA

count. ~The DMA count is the number of bytes to be transferred over the SCSI bus

during a DMA transfer. These registers are used only when the protocol controller is

set up for DMA transfer mode. A reset does not affect these registers, and on

powerup their condition is unknown.

014-001800 9-5

Programming the Small Computer System Interface Port

IMO Interrupt Mask 0

Address FFF8 A00C Write Only

The Interrupt Mask register 0 (IMO or Register 3) enables or disables interrupts that

may occur during certain operational conditions. A hardware or software SCSI port

reset clears this register to all 0s. A SCSI bus reset clears bit 6 to 0.

9-6 014-001800

Programming the Small Computer System Interface Port

OFC Offset Control

Address FFF8 A010 Write Only

The Offset Control register (OFC or Register 4) must contain all 0s to select

asynchronous operation for the workstation’s SCSI port. A hardware or software

SCSI port reset clears this register to all Os.

014-001800 9-7

Programming the Small Computer System Interface Port

FIFOS FIFO Status

Address FFF8 AQ14 Read/Write

The FIFO Status register (FIFOS or Register 5) contains either FIFO status or DMA

control information. When read, it provides the status of the FIFO buffer. When

written, it controls the enabling and direction of the DMA transfer. Either a

hardware or sofware SCSI port reset or a SCSI bus reset will set this register to xx11

0000.

9-8 014-001800

Programming the Small Computer System Interface Port

RC Revision Control

IM1 Interrupt Mask 1

Address FFF8 A018 Read/Write

The Revision Control or Interrupt Mask register 1 (Register 6) contains either chip

revision or masking information. When read, this register is the Revision Control

(RC) register and provides the manufacturer chip revision. When written, this register

is Interrupt Mask register 1 (IM1), and it allows software to enable and disable

interrupts that may occur during certain operations. A hardware or software SCSI

port reset clears this register to all Os.

014-001800 9-9

Programming the Small Computer System Interface Port

SRO Status 0

CRO | Control 0

Address FFF8 A01C Read/Write

The Status Register 0 or Control Register 0 (Register 7) contains either status or

control information for the protocol controller.

When read, this register is Status Register 0 (SRO), and it provides various status

information about the protocol controller. The power-on reset leaves bits 1 and 0

unchanged and clears bits 7-2 to 0. A hardware or software SCSI port reset sets bit

7 to 1 and clears bits 5, 3, and 2 to 0. Bit 4 is set to 1 if Register 6 bit 2 (Enable

Bus Free Detect Interrupt) is set to 1.

When written, this register is Control Register 0 (CRO), and it allows software to

control various functions of the protocol controller. The power-on reset clears all bits

except bit 6 to 0. A hardware or software SCSI port reset clears bits 5-3 to 0.

9-10 014-001800

Programming the Small Computer System Interface Port

SR1 Status 1

CR1 Control 1

Address FFF8 A020 Read/Write

The Status Register 1 or Control Register 1 (Register 8) contains additional status or

control information for the protocol controller.

When read, this register is Status Register 1 (SR1), and it provides additional status

for the protocol controller. A hardware or software SCSI bus reset sets bit 6 to 1 and

clears bits 5-0 to 0. Bit 7 is normally 1 as determined by the BACK*/BREQ* signal.

When written, this register is Control Register 1 (CR1). The power-on reset clears all

bits except bit 5 to 0. A hardware or software SCSI port reset sets bits 7-3 to 1 and

clears bit 2 to 0.

014-001800 9-11

Programming the Small Computer System Interface Port

SCSIS SCSI Signal

Address FFF8 A024 Read/Write

The SCSI Signal register (SCSIS or Register 9) contains either status or control

information for SCSI bus signals. When read, this register provides the status of

several of the SCSI bus signals. When written, this register allows software to control

these SCSI bus signals. A hardware or software SCSI port reset or a SCSI bus reset

clears this register to all Os. Note that reading this register while it is in transition

produces a parity error interrupt.

9-12 014-001800

Programming the Small Computer System Interface Port

SCSIID SCSI Identification

Address FFF8 A028 Read/Write

The SCSI ID register (SCSIID or Register A) acts as the SCSI ID register and the

SCSI Data register. Prior to arbitration, this register contains the SCSI ID. Upon

selection/reselection it is the SCSI Data register. A reset does not affect this register,

and on powerup its contents are unknown.

014-001800 9-1 3

Programming the Small Computer System Interface Port

SRDTID Source/Destination Identification

Address FFF8 A02C Read Only

The Source/Destination ID register (SRDTID or Register B) contains both the source

and destination IDs after the selection/reselection phase. A reset does not affect this

register, and on powerup its conditions are unknown.

9-14 014-001800

Programming the Small Computer System Interface Port

PTB Port B

Address FFF8 A038 Read/Write

The Port B register (PTB or Register E) is an 8-bit register that contains the upper

data byte of a 16-bit data transfer. A hardware or software SCSI port reset clears

this register to all Qs.

014-001800 9-15

Programming the Small Computer System Interface Port

SCSILD SCSI Latch Data

SCSIBR SCSI Busy Reset

Address FFF8 A03C Read/Write

The SCSI Latch Data or SCSI Busy Reset register (Register F) contains SCSI

information. When read, this register is the SCSI Latch Data (SCSILD) register, and

a reset does not affect it. When written, it is the SCSI Busy Reset (SCSIBR) register

and it is valid in Target mode only.

9-16 014-001800

Programming the Small Computer System Interface Port

Resetting and Initializing the SCSI Controller

The SCSI port is reset when either the system power-up code, other software, or the

SCSI bus causes the SCSI port reset signal to go low. A system reset sets the protocol

controller’s software reset bit (Control Register 1, bit 0) to 1. To complete the reset

operation properly, software must clear this bit back to 0.

After the software reset bit is set to 1, software must initialize the protocol controller

to set up certain parameters critical for its proper operation. To initialize the protocol

controller, perform the following tasks:

Set the Clock Frequency Mode (bit 2) to 0.

2. Set up Port B as the upper 8 bits of the 16-bit DMA bus by writing 1 to Register

| 8 (CR1) bit 6.

3. Set up Port A as an output port by writing 1 to Register 7 (CRO) bit 4.

4. Select single-ended drivers and receivers by writing 0 to Register 7 (CRO) bit 3.

5. Select asynchronous mode of operation by writing 0s to Register 4 (OFC) bits

3-0.

SCSI Controller Interrupts

The protocol controller can generate an interrupt for any of the following conditions:

Successful selection.

Successful reselection.

Successful arbitration.

Command complete.

Error (including a reset).

Phase change.

SCSI bus parity error.

Bus free phase detection.

Phase mismatch.

DMA data parity error.

SCSI reset.

Software can enable or disable these interrupts using the protocol controller’s Interrupt

Mask registers. For more information, refer to the Adaptec AJC-6250

High-Performance SCSI Protocol Chip data sheet.

014-001800 9-17

Programming the Small Computer System Interface Port

Programming the DMA Controller

The protocol controller requests DMA service by generating a system SCSI bus

request. This request occurs if either the last transfer did not cross a page boundary

or the terminal transfer count has not been reached. After the DMA controller

receives and acknowledges its control of the Sbus, it proceeds with a transfer if the

following conditions are met:

@ The Map register is valid.

@ The transfer will not write to write-protected memory.

@ The Mbus retry signal is not active.

If any of these conditions exist, the DMA controller relinquishes bus mastership. If

either the Map register contents are invalid or a write protect error occurs, the SCSI

port generates an interrupt to indicate the error condition. The DMA controller will

not arbitrate for bus mastership until these error conditions are cleared. If the retry

signal caused the DMA controller to relinquish bus mastership, the DMA controller

will re-arbitrate for bus mastership on the next clock cycle.

Once the DMA controller receives bus mastership, the Map register generates the

appropriate page address on Sbus bits 31-12 and the Offset register generates the

lower 11 address bits on Sbus bits 11-1. Sbus bit 0 is not driven since half-word

(16-bit) transfers are the only type supported for SCSI DMA accesses. Since the

half-word transfer must be on an even boundary, Sbus bit 0 is always undefined

during a read of this register.

During the data phase, data is driven onto the Sbus, the Offset register is

incremented, and the Transfer Count register is decremented. The DMA controller

transfers only one half-word per request.

Since the DMA controller provides 32 address bits, software can place SCSI data

anywhere within the CPU’s 4—Gbyte address range. The DMA Map and Offset

registers segment memory into 4-Kbyte pages. The upper 20 address bits specify the

page within memory and the lower 12 bits provide the offset within the page.

During DMA transfers, the Sbus interface maps Sbus bits into the protocol controller

so that it will store bytes in main memory in a big-endian format.

Software programs the DMA controller by setting up its registers. These registers are

mapped to address space FFF8 B000 through FFF8 BO018, as shown in Table 9-2.

NOTE: Software must mask any bits not listed in the following register descriptions

(their state is unknown).

Table 9-2 Memory Map of the DMA Controller Registers

Address Register Type

FFF8 BOOO DMA Map Register Read/write

FFF8 BO04 DMA Offset Register Read/write

FFF8 B008 DMA Transfer Count Register Read/write

FFF8 BOOC DMA Transfer Direction Register Write

FFF8 BO10 Clear DMA Map Valid Error Interrupt Write

FFF8 B014 Clear DMA write Protect Error Interrupt Write

FFF8 B018 DMA ‘Stop Register Write

9-18 014-001800

Programming the Small Computer System Interface Port

DMAMAP DMA Map

Address FFF8 B000 Read/Write

The DMA Map (DMAMAP) register contains DMA mapping information.

31 16

PFA

15 12 11 8 7 6 3 2 1 0

PFA Xx G Xx WwW Xx V

Bit Name Function

31-12 PFA Page Frame Address

Physical address of the memory page.

11-8 Xx Do not care when written to, and undefined when read.

7 G Global

When set to 1, the memory mapped by this DMA map register is

global memory. This bit is driven onto the Mbus signal C5; other

caches sample this signal when snooping the bus for cache coherency.

This bit is not driven onto the Sbus when this register is read.

Xx Do not care when written to, and undefined when read.

2 W Write Protect

When set to 1, the memory mapped by this register is write protected.

When cleared, a DMA device can write to main memory. A DMA

device attempting to write to write-protected memory generates an

interrupt and aborts the cycle before memory is corrupted. This bit is

not driven onto the Sbus when this register is read.

Xx Do not care when written to, and undefined when read.

0 V Valid

When set to 1, the contents of the DMA Map register are valid. This

bit must be set when software loads the register with a valid descriptor.

Invalid DMA Map register contents prevent a DMA cycle from

occurring and generate an interrupt. This bit is not driven onto the

Sbus when this register is read.

014-001800 9-1 9

Programming the Small Computer System Interface Port

DMAOFF DMA Offset

Address FFF8 B004 Read/Write

The DMA Offset (DMAOFF) register contains the DMA address offset.

15 1 | 0

AO

Bit Name Function

11-1 AO Address Offset

Specifies the address offset within the 4-Kbyte page specified by the

DMA Map register. When these bits are written, they receive

memory address bits 11-1; when they are read, they provide address

bits 11-1. Every time a half-word is transferred during a DMA

operation, this register is incremented by 1 automatically. When the

contents of this register roll over from OFFF to 1000, an interrupt is

generated to indicate a page boundary has been crossed. Sbus bit 12

cannot be read during a slave access of this register; thus a value of

000 (or 001 since bit 0 is undefined) is read when a page boundary

has been crossed.

0 X Undefined - Ignore

Because DMA transfers occur on half-word boundaries only, this bit

is meaningless, and thus ignored. Since this bit is undefined when the

register is read, software must mask it off when reading the register.

9-20 014-001800

Programming the Small Computer System Interface Port

DMATC DMA Transfer Count

Address FFF8 B008 Read/Write

The DMA Transfer Count (DMATC) register contains the DMA transfer count.

12 1 0

TR X

Bit Name Function

12-1 TR Transfer Count

Specifies the number of bytes to be transferred (up to 1000). When

written these bits reflect Sbus bits 12-1. The maximum transfer count

supported by the hardware is 4 Kbytes. Since Sbus bit 0 is ignored, an

even number of bytes must be specified.

0 X Undefined - Ignore

This bit is ignored, and thus an even number of bytes is specified for

the transfer count. Since this bit is undefined when the register is

read, software must mask it off. Sbus bit 0 is ignored, thus, the

transfer count must be a number of bytes.

014-001800 9-21

Programming the Small Computer System Interface Port

DMATD DMA Transfer Direction

Address FFF8 BOOC Write Only

The DMA Transfer Direction (DMATD) register indicates the direction for a DMA

transfer. Writing a 1 to bit 0 of this register sets up the DMA transfer to read from

memory to the protocol controller. Writing a 0 to bit 0 of this register sets up the

DMA transfer to write to memory from the protocol controller. Software must

program this register every time it programs the DMA registers for a transaction.

9-22 014-001800

Programming the Small Computer System Interface Port

DMACMV Clear DMA Map Valid Interrupt

Address FFF8 B010 Write Only

The Clear DMA Map Valid Interrupt (DMACMV) register clears DMA Valid

interrupts. If this interrupt stopped a DMA transfer, the transfer restarts when this

register is cleared. Because the condition of the DMA Valid bit in the DMA Map

register caused the initial fault, software must rewrite the DMA Map register before

clearing this interrupt so that the DMA Valid bit is not still set when the DMA

transfer restarts.

014-001800 9-23

Programming the Small Computer System Interface Port

DMACWP Clear DMA Write Protect Interrupt

Address FFF8 B014 Write Only

The Clear DMA Write Protect Interrupt (DMACWP) register clears DMA write

protect interrupts. If this interrupt stopped a DMA transfer, the transfer restarts when

this register is cleared. Because the condition of the write-protect bit in the DMA

Map register caused the initial fault, software must rewrite the DMA Map register

before clearing the interrupt so that the DMA Write-Protect bit is not still set when

the DMA transfer restarts.

9-24 014-001800

Programming the Small Computer System Interface Port

DMASTP DMA Stop

Address FFF8 B018 Write Only

The DMA Stop (DMASTP) register restarts or inhibits DMA transfers. Writing 0016

to this register restarts a DMA transfer that was stopped because of a reset, a page

boundary crossing, or a terminal count condition. The transfer restarts only if the

page boundary and terminal count conditions are cleared first. For this reason,

software should program this DMA register last. Writing 0116 to this register prevents

software from starting a DMA transfer.

014-001800 9-25

Programming the Small Computer System Interface Port

Manipulating Pointers and Counters

Because memory is segmented into 4-Kbyte pages, software must set up the DMA

registers every time a page boundary is encountered. When a page boundary is

encountered, the Offset register generates an interrupt, causing the DMA Stop register

to produce a stop condition that masks the bus request to the system. Software must

keep track of the number of bytes actually transferred to/from memory. It can do

this by storing the initial programmed transfer count, incrementing a register for each

page boundary crossing, and reading the Transfer Count register for the number of

bytes transferred in the current page. This number is important for resetting pointers

to memory data if a SCSI bus error occurs.

Software must always maintain a way to recover from a disconnect or an error by

readjusting pointers to main memory to reprogram the DMA controller registers. If a

disconnect occurs while transferring data from the SCSI bus to main memory, the

DMA controller’s FIFO buffer could contain some valid data. The DMA controller

continues to transfer this data to main memory even though a phase mismatch

interrupt occurred. If the disconnect occurs while transferring data from main

memory to SCSI, the data remaining in the FIFO buffer is lost, but the exact number

of bytes transferred across the SCSI bus is known, so the pointer to main memory can

be set back. Software can accomplish this using the protocol controllers DMA
registers, the DMA controller’s Transfer Count register, and any other registers that

software set up.

NOTE: The protocol controller does not give the system any indication when only 1

byte is present in its FIFO buffer during DMA transfer mode. For this

reason, only transfers with an even number of bytes are supported.

Further, all peripheral devices will disconnect after an even number of bytes

have been transferred across the SCSI bus. If a phase has an odd number

of bytes of information, that phase must be handled using the protocol

controller’s automatic PIO mode.

Implementing a Selection Time—Out Function

Software must use the programmable interval timer (PIT) in the system control logic

to provide a selection time-out function for the SCSI port. Each time the protocol

controller generates a successful arbitration interrupt, software must set an event to go

off in approximately 250 ms, the ANSI recommended time-out period. Ifa

successful selection interrupt occurs before this time-out period, the time-out event

must be removed. Software should turn off the time-out process when responding to

a successful selection.

9-26 014-001800

Programming the Small Computer System Interface Port

DMA Controller Interrupts

The DMA controller generates three types of interrupts: a transfer count or offset

interrupt, a write-protect interrupt, and a Map register Valid Error interrupt. You

can program the DMA controller to generate:

e A transfer count or offset interrupt when either of the following conditions occurs:

The DMA Transfer Count register reaches the terminal count. Writing any data

except a 0 or a 1 to the DMA Transfer Count register clears the interrupt from

this source. On reset, the DMA Transfer Count register also generates an

interrupt.

The DMA Offset register reaches terminal count indicating a page boundary has

been crossed. Writing any data to the DMA Offset register clears the interrupt

condition from this source.

e A write—protect interrupt when the Write Protect bit of its DMA Map register is 1

and the DMA controller tries to write to main memory.

@ A map register interrupt when the Valid bit of its DMA Map register is 0 and a

DMA transfer is attempted.

End of Chapter

014-00 1800 9-27

Appendix A

Address Map

The following are maps of the workstation address space, beginning at 0000 0000.

The maps include system memory, boot PROM, video memory, and all workstation

registers (excluding registers within the CPU). Table A-1 is the address map for 300

series stations; Table A-2 is the map for 400 series stations.

Table A-1 300 Series Station Address Map

Mnemonic TypeAddress Resource Name

0000 0000 - 07FF FFFF System Memory (128 Mbytes) Read/write

0000 0000 - 0001 FFFF Boot PROM during boot (128 Kbytes) Read

8000 0000 - 87FF FFFF Video Memory (128 Mbytes)

8000 0000 - 83FF FFFF Color Memory

8400 0000 - 87FF FFFF Overlay/Window ID Memory

FFCO 0000 - FFC1 FFFF Boot PROM after boot (128 Kbytes)

FFFO 0000 - FFFO 1883 CMMU Registers (For information on the CMMU registers, see the

MC88200 User’s Manual.)

CMMU0 (Data CMMU) Registers

System Control Registers

FFFO 0000 CMMU ID IDR Read

FFFO 0004 System Command SCR Write

FFFO 0008 System Status SSR Read

FFFO 000C System Address SAOR Read/Write

FFFO 0104 System Control SCTR Read/Write

Pbus Fault Registers

FFFO 0108 Pbus Status PFSR Read

FFFO 010C Pbus Address PFAR Read

Area Pointers

FFFO 0200 Supervisor Area SAPR Read/Write

FFFO 0204 User Area UAPR Read/Write

BATC Write Pointers

FFFO 0400 Port 0 BWPO Write

FFFO 0404 Port 1 BWP1 Write

FFFO 0408 Port 2 BWP2 Write

FFFO 040C Port 3 BWP3 Write

FFFO 0410 Port 4 BWP4 Write

FFFO 0414 Port 5 BWPS5 Write

FFFO 0418 Port 6 BWP6 Write

FFFO 041C Port 7 BWP7 Write

Cache Diagnostic Ports

FFFO 0800 Data Port 0 CDPO Read

FFFO 0804 Data Port 1 CDP1 Read

FFFO 0808 Data Port 2 CDP2 Read

FFFO 080C Data Port 3 CDP3 Read

FFFO 0840 Tag Port 0 CTPO Read

FFFO 0844 Tag Port 1 CTP1 Read

FFFO 0848 Tag Port 2 CTP2 Read

FFFO 084C Tag Port 3 CTP3 Read

FFFO 0880 Set Status CSSP Read

(continued)

014-001800 A-1

Address Map

Table A-1 300 Series Station Address Map

Address Resource Name Mnemonic Type

FFFO 0000 - FFFO 1883 CMMU Registers (continued)

CMMUI1 (Instruction CMMU) Registers

System Control Registers

FFFO 1000 CMMU ID IDR Read

FFFO 1004 System Command SCR Write

FFFO 1008 System Status SSR Read

FFFO 100C System Address SAOR Read/Write

FFFO 1104 System Control SCTR Read/Write

Pbus Fault Registers

FFFO 1108 Pbus Status PFSR Read

FFFO 110C Pbus Address PFAR Read

Area Pointers

FFFO 1200 Supervisor Area SAPR Read/Write

FFFO 1204 User Area UAPR Read/Write

BATC Write Pointers

FFFO 1400 Port 0 BWPO Write

FFFO 1404 Port 1 BWP1 Write

FFFO 1408 Port 2 BWP2 Write

FFFO 140C Port 3 BWP3 Write

FFFO 1410 Port 4 BWP4 Write

FFFO 1414 Port 5 BWPS5 Write

FFFO 1418 Port 6 BWP6 Write

FFFO 141C Port 7 BWP7 Write

Cache Diagnostic Ports

FFFO 1800 Data Port 0 CDPO Read

FFFO 1804 Data Port 1 CDP1 Read

FFFO 1808 Data Port 2 CDP2 Read

FFFO 180C Data Port 3 CDP3 Read

FFFO 1840 Tag Port 0 CTPO Read

FFFO 1844 Tag Port 1 CTP1 Read

FFFO 1848 Tag Port 2 CTP2 Read

FFFO 184C Tag Port 3 CTP3 Read

FFFO 1880 Set Status CSSP Read

FFF8 0000 - FFF8 1FFF BBSRAM/RTC

FFF8 0000 - FFF8 1FDC NOVRAM Bytes 0000 - 2039

FFF8 1FEO - FFF8 1FFC Time-of-Boot (TOB) Clock Registers

FFF8 1FEO Control Read/Write

FFF8 1FE4 Seconds Read/Write

FFF8 1FE8 Minutes Read/Write

FFF8 1FEC Hour Read/Write

FFF8 1FFO Day Read/Write

FFF8 1FF4 Date Read/Write

FFF8 1FF8 Month Read/Write

FFF8 1FFC Year Read/Write

(continued)

A-2 014-001800

Address Map

Table A-1 300 Series Station Address Map

Address Resource Name Mnemonic Type

FFF8 2000 - FFF8 2FFF I/O Registers

DUART1 Serial & Parallel Port Registers

FFF8 2000 Mode Registers A MR1A, MR2A Read/Write

FFF8 2004 Status Register A SRA Read

Clock Select Register A CSRA Write

FFF8 2008 RESERVED Read !

Command Register A CRA Write

FFF8 200C Receive Holding Register A RHRA Read

Transmit Holding Register A THRA Write

FFF8 2010 Input Port Change IPCR Read

Auxiliary Control ACR Write

FFF8 2014 Interrupt Status ISR Read

Interrupt Mask IMR Write

FFF8 2018 Counter/Timer Upper Register CTUR Read/Write

FFF8 201C Counter/Timer Lower Register CTLR Read/Write

FFF8 2020 Mode Registers B MR1B, MR2B Read/Write

FFF8 2024 Status Register B SRB Read

Clock Select Register B CSRB Write

FFF8 2028 RESERVED Read !

Command Register B CRB Write

FFF8 202C Receive Holding Register B RHRB Read

Transmit Holding Register B THRB Write

FFF8 2030 RESERVED Read/Write

FFF8 2034 Input Port Configuration Register IPCR Read

Output Port Configuration Register OPCR Write

FFF8 2038 Start Counter Command Register SRCC Read

Set Output Port Bits Command Register SOPBC Write

FFF8 203C Stop Counter Command Register STCC Read

Reset Output Port Bits Register ROPBC Write

FFF8 2400 Parallel Port Data Register PPD Write

Parallel Port Status Register PPS Read

Keyboard Port Registers

FFF8 2800 Receive Holding Register RxH Read
Transmit Holding Register TxH Write

FFF8 2804 Status Register STS Read

FFF8 2808 Mode Register 1 MD1 Read/Write
Mode Register 2 MD2 Read/Write

FFF8 280C Command Register CMD Read/Write

FFF8 2810 Disable Clock Register DSC Write

FFF8 2820 Enable Transmit Clock ENABLE _TXC Write

FFF8 3000 - FFF8 3FFF CIO Registers

FFF8 3000 Port A Data register

FFF8 3004 Port B Data register

FFF8 3008 Port C Data register

FFF8 300C Control register

FFF8 4000 - FFF8 4FFF System Control] Logic Registers

FFF8 4000 Interrupt Status ISR Read/Write

FFF8 4004 Interrupt Enable IER Write

FFF8 4008 Diagnostic Control DCR Write

FFF8 400C Diagnostic Status DSR Read

FFF8 4010 Parity Address PAR Read

FFF8 4014 Soft Interrupt SWIR Write

! Do not read these registers. Reading address FFF8 202816 may hang the asynchronous line. (If you

use this line for the system console, the workstation may hang and require a reset.)

(continued)

014-001800 A-3

Address Map

Table A-1 300 Series Station Address Map

Address Resource Name Mnemonic Type

FFF8 9000 - FFF8 90FF Color Graphics Subsystem Registers — Broadcast.

FFF8 9000 Control and Status Register 0 CSRO Read/Write

FFF8 9004 Stop/Resume Register STOP Read/Write

FFF8 9008 Control and Status Register 1 CSR1 Read/Write

FFF8 900C Command Register CMD Read/Write

FFF8 9010 Plane Mask Register MASK Read/Write

FFF8 9014 Background Color Register BACK Read/Write

FFF8 9018 Line Pattern Register LPAT Read/Write

FFF8 901C Pattern Control/WID Register PC/WID Read/Write

FFF8 9020 CRT Control Register 0 CRT0 Read/Write

FFF8 9024 CRT Control Register 1 CRT1 Read/Write

FFF8 9028 CRT Control Register 2 CRT2 Read/Write

FFF8 902C Reserved

FFF8 9030 Internal State 0 STATEO Read

FFF8 9034 Internal State 1 STATE] Read

FFF8 9038 - FFF8 903C Reserved

FFF8 9040 Parameter Register 0 PARMO Read/Write

FFF8 9044 Parameter Register 1 PARMI1 Read/Write

FFF8 9048 Parameter Register 2 PARM2 Read/Write

FFF8 904C Parameter Register 3 PARM3 Read/Write

FFF8 9050 Parameter Register 4 PARM4 Read/Write

FFF8 9054 Parameter Register 5 PARMS Read/Write

FFF8 9058 Parameter Register 6 PARM6 Read/Write

FFF8 905C Parameter Register 7 PARM7 Read/Write

FFF8 9060 Parameter Register 8 PARMS8 Read/Write

FFF8 9064 Parameter Register 9 PARM9 Read/Write

FFF8 9068 Parameter Register 10 PARM10 Read/Write

FFF8 906C Parameter Register 11 PARM11 Read/Write

FFF8 9070 Parameter Register 12 PARM12 Read/Write

FFF8 9074 Parameter Register 13 PARM13 Read/Write

FFF8 9078 Parameter Register 14 PARM14 Read/Write

FFF8 907C Parameter Register 15 PARM15 Read/Write

FFF8 9080 - FFF8 909C Reserved

FFF8 90A0 Data Port Register DATA Read/Write

FFF8 90A4 Palette Pointer 0 PLTO Read/Write

FFF8 90A8 Palette Pointer 1 PLT1 Read/Write

FFF8 90AC Blink Control Register BLNK Read/Write

FFF8 90B0O - FFF8 90BC Reserved

FFF8 90CO RAMDAC Address Register DACO Read/Write

FFF8 90C4 RAMDAC Color Palette RAM DAC] Read/Write

FFF8 90C8 RAMDAC Control Register DAC2 Read/Write

FFF8 90CC RAMDAC Overlay Palette RAM DAC3 Read/Write

FFF8 90D0 - FFF8 90FF Reserved

(continued)

A-4 014-001800

Address Map

Table A-1 300 Series Station Address Map

Address Resource Name Mnemonic Type

FFF8 9000 - FFF8 90FF Monochrome Graphics Subsystem Registers

FFF8 9000 Execution Address Origin (bits 15-0) EADORG Read/Write

FFF8 9004 Execution Address Origin (bits 7-0) EADORG Read/Write

Dot Address Origin (bits 11-8) DADORG Read/Write

FFF8 9008 Execution Address 1 (bits 15-0) EAD1 Read/Write

FFF8 900C Execution Address 1 (bits 7-0) EAD1 Read/Write
Dot Address 1 (bits 11-8) DAD1 Read/Write

FFF8 9010 Execution Address 2 (bits 15-0) EAD2 Read/Write

FFF8 9014 Execution Address 2 (bits 7-0) EAD2 Read/Write
Dot Address 2 (bits 11-8) DAD2 Read/Write

FFF8 9018 Plane Displacement Source (bits 15-0) §PDISPS Read/Write

FFF8 901C Plane Displacement Source (bits 7-0) PDISPS Read/Write

FFF8 9020 Plane Displacement Dest. (bits 15-0) PDISPD Read/Write

FFF8 9024 Plane Displacement Dest. (bits 7-0) PDISPD Read/Write

FFF8 9028 Plane Maximum PMAX Read/Write

FFF8 902C Drawing Mode 0 (bits 3-0) MODO Read/Write
Drawing Mode 1 (bits 7-4) MOD1 Read/Write

FFF8 9030 Pattern Pointer (bits 15-0) PTPN Read/Write

FFF8 9034 Pattern Pointer (bits 7-0) PTPN Read/Write

FFF8 9038 Stack Pointer (bits 15-0) STACK Read/Write

FFF8 903C Stack Pointer (bits 7-0) STACK Read/Write

FFF8 9040 - FFF8 9076 Not available.

FFF8 9078 Control (bits 15-8) CTRL Write

Bank (bits 7-0) BANK Write

Status (bits 15-0) STATUS Read

FFF8 907C PUT/GET Port PGPORT

CAUTION: Do NOT read from or write to the PGPORT register; the SCSI bus will hang!

FFF8 9080 X Read/Write

FFF8 9084 Y Read/Write

FFF8 9088 DX Read/Write

FFF8 908C DY Read/Write

FFF8 9090 XS Read/Write

FFF8 9094 YS Read/Write

FFF8 9098 XE Read/Write

FFF8 909C YE Read/Write

(continued)

014-001800 A-5

Address Map

Table A-1 300 Series Station Address Map

Address Resource Name Mnemonic Type

FFF8 9000 - FFF8 90FF Monochrome Graphics Subsystem Registers (continued)

FFF8 90A0 XC Read/Write

FFF8 90A4 YC Read/Write

FFF8 90A8 DH Read/Write

FFF8 90AC DV Read/Write

FFF8 90B0 Pitch Source PITCHS Read/Write

FFF8 90B4 Pitch Destination PITCHD Read/Write

FFF8 90B8 Stack Maximum STMAX Read/Write

FFF8 90BC Plane Select PLANES Read/Write

FFF8 90CO Pattern Count PTNCNT Read/Write

FFF8 90C4 X Clipping Minimum XCLMIN Read/Write

FFF8 90C8 Y Clipping Minimum YCLMIN Read/Write

FFF8 90CC X Clipping Maximum XCLMAX Read/Write

FFF8 90D0 Y Clipping Maximum YCLMAX Read/Write

FFF8 90D4 - FFF8 90D6 Not available.

FFF8 90D8 Clipping Mode (bits 9-8) CLIP Read/Write

Magnifier Horizontal (bits 7-4) MAGH Read/Write

Magnifier Vertical (bits 3-0) MAGV Read/Write

FFF8 90DC Command Read/Write

FFF8 90E0 Display Control DISP_CTRL Write

FFF8 90E4 Address Control (bits 14-12) AC Write

Display Pitch (bits 11-0) DISP_PCH Write

FFF8 90E8 Display Address (bits 15-0) DAD Write

FFF8 90EC Display Address (bits 7-0) DAD Write

Word Count (bits 15-8) WC Write

FFF8 90F0 Cursor Mode Select (bit 15) CRS Write

Cursor Enable (bit 14) CE Write

Cursor X Coordinate (bits 11-0) GCSRX Write

FFF8 90F4 Cursor Y Start GCSRYS Write

FFF8 90F8 Cursor Y End (bits 11-0) GCSRYE Write

Word Count (bits 15-12) WC Write

FFF8 90FC Horizontal Sync HS Write

Horizontal Back Porch HBP Write

Half Horizontal Time HH Write

Horizontal Display Period HD Write

Horizontal Front Porch HFP Write

Vertical Sync VS Write

Vertical Back Porch VBP Write

Lines per Field L/F Write

Vertical Front Porch VFP Write

CAUTION: Only write to HS, HBP, HH, HD, HFP, VS, VBP, L/F, and VFP if you are

resetting the workstation; do not write to them at any other time!

NOTE: Since HS, HBP, HH, HD, HFP, VS, VBP, L/F, and VFP are all located at

address FFF8 90FC, you must write to them in the listed order.

(continued)

014-001800

Address Map

Table A-1 300 Series Station Address Map

Address Resource Name Mnemonic Type

FFF8 A000 - FFF8 AFFF — SCSI Port Registers

FFF8 A000 0 - DMA byte count (low) DMABCL Read/Write

FFF8 A004 1 - DMA byte count (middle) DMABCM Read/Write

FFF8 A008 2 - DMA byte count (high) DMABCH Read/Write

FFF8 A00C 3 - Interrupt Mask Register 0 IMO Write

FFF8 A010 4 - Offset Control Register OFC Write

FFF8 A014 5 - FIFO Status Register FIFOS Read

FFF8 A018 6 - Revision Control RC Read

Interrupt Mask Register 1 IM1 Write

FFF8 AOIC 7 - Status Register 0 SRO Read

Control Register 0 CRO Write

FFF8 A020 8 - Status Register 1 SR1 Read

Control Register 1 CR1 Write

FFF8 A024 9 - SCSI Signal Register SCSIS Read/Write

FFF8 A028 A - SCSI ID Register SCSIID Read/Write

FFF8 A02C B - Source/Dest ID SRDTID Read

FFF8 A030 C - Memory Data Register MMD Read/Write

FFF8 A034 D - Port A Register PTA Read/Write

FFF8 A038 E - Port B Register PTB Read/Write

FFF8 A03C F - SCSI Latch Data SCSILD Read

SCSI BSY RST (TGT) SCSIBR Write

FFF8 BOOO - FFF8 BFFF DMA Registers

FFF8 B000 Map Register DMAMAP Read/Write

FFF8 B004 Offset Register DMAOFF Read/Write

FFF8 B008 Transfer Count Register DMATC Read/Write

FFF8 BOOC Transfer Direction Register DMATD Write

FFF8 BO10 Clear DMA Map Valid Error Interrupt DMACMV Write

FFF8 B014 Clear DMA Write Protect Error Interrupt DMACWP Write

FFF8 B018 DMaA Stop Register DMASTP Write

FFF8 C000 - FFF8 CFFF LAN Interface Registers

FFF8 C000 Register Data Pointer RDP Read/Write

FFF8 C004 Register Address Pointer RAP Read/Write

(concluded)

014-001800 A-7

Address Map

Table A-2 400 Series Station Address Map

FFCO 0000 - FFC1 FFFF

FFEO 0000 - FFE1 FFFF

FFFO 0000 - FFFO 3883

System Control Registers

Boot PROM After Boot (128 Kbytes)

SRAM

CMMU Registers

Address Resource Name Mnemonic Type

0000 0000 - O7FF FFFF System Memory (128 Mbytes) Read/write

0000 0000 - 0001 FFFF Boot PROM During Boot (128 Kbytes) Read

1000 0000 - 7FFF FFFF VME A32 space (1.75 Gbytes) Read/write

8000 0000 - 87FF FFFF Video Memory (256 Mbytes) Read/write

8000 0000 - 83FF FFFF Color Memory

8400 0000 - 87FF FFFF Overlay/Window ID Memory

8800 0000 - 8FFF FFFF Z-buffer memory Read/write

9000 0000 - FDFF FFFF VME A32 Space Read/write

FE00 0000 - FEFF FFFF VME A24 Space (16 Mbytes) Read/write

(For information on the CMMU registers, see the MC88200 User’s

Manual.)

CMMUO0O (CPU0, Data CMMU) Registers

FFFO 0000 CMMU ID IDR Read

FFFO 0004 System Command SCR Write

FFFO 0008 System Status SSR Read

FFFO 000C System Address SAOR Read/Write

FFFO 0104 System Control SCTR Read/Write

Pbus Fault Registers

FFFO 0108 Pbus Status PFSR Read

FFFO 010C Pbus Address PFAR Read

Area Pointers

FFFO 0200 Supervisor Area SAPR Read/Write

FFFO 0204 User Area UAPR Read/Write

BATC Write Pointers

FFFO 0400 Port 0 BWPO Write

FFFO 0404 Port 1 BWP1 Write

FFFO 0408 Port 2 BWP2 Write

FFFO 040C Port 3 BWP3 Write

FFFO 0410 Port 4 BWP4 Write

FFFO 0414 Port 5 BWPS5 Write

FFFO 0418 Port 6 BWP6 Write

FFFO 041C Port 7 BWP7 Write

Cache Diagnostic Ports

FFFO 0800 Data Port 0 CDPO Read

FFFO 0804 Data Port 1 CDP1 Read

FFFO 0808 Data Port 2 CDP2 Read

FFFO 080C Data Port 3 CDP3 Read

FFFO 0840 Tag Port 0 CTPO Read

FFFO 0844 Tag Port 1 CTP1 Read

FFFO 0848 Tag Port 2 CTP2 Read

FFFO 084C Tag Port 3 CTP3 Read

FFFO 0880 Set Status CSSP Read

(continued)

A-8 014-001800

Address Map

Table A-2 400 Series Station Address Map

Mnemonic TypeAddress Resource Name

FFFO 0000 - FFFO 3883 CMMU Registers (continued)

CMMU1 (CPUO, Instruction CMMU) Registers

System Control Registers

014-001800

FFFO 1000 CMMU ID IDR Read

FFFO 1004 System Command SCR Write

FFFO 1008 System Status SSR Read

FFFO 100C System Address SAOR Read/Write

FFFO 1104 System Control SCTR Read/Write

Pbus Fault Registers

FFFO 1108 Pbus Status PFSR Read

FFFO 110C Pbus Address PFAR Read

Area Pointers

FFFO 1200 Supervisor Area SAPR Read/Write

FFFO 1204 User Area UAPR Read/Write

BATC Write Pointers

FFFO 1400 Port 0 BWP0 Write

FFFO 1404 Port 1 BWP!1 Write

FFFO 1408 Port 2 BWP2 Write

FFFO 140C Port 3 BWP3 Write

FFFO 1410 Port 4 BWP4 Write

FFFO 1414 Port 5 BWPS5 Write

FFFO 1418 Port 6 BWP6 Write

FFFO 141C Port 7 BWP7 Write

Cache Diagnostic Ports

FFFO 1800 Data Port 0 CDPO Read

FFFO 1804 Data Port 1 CDP1 Read

FFFO 1808 Data Port 2 CDP2 Read

FFFO 180C Data Port 3 CDP3 Read

FFFO 1840 Tag Port 0 CTPO Read

FFFO 1844 Tag Port 1 CTP1 Read

FFFO 1848 Tag Port 2 CTP2 Read

FFFO 184C Tag Port 3 CTP3 Read

FFFO 1880 Set Status CSSP Read

(continued)

Address Map

Table A-2 400 Series Station Address Map

Address Resource Name Mnemonic Type

FFFO 0000 - FFFO 3883 CMMU Registers (continued)

CMMU2 (CPU1, Data CMMU) Registers

System Control Registers

FFFO 2000 CMMU ID IDR Read

FFFO 2004 System Command SCR Write

FFFO 2008 System Status SSR Read

FFFO 200C System Address SAOR Read/Write

FFFO 2104 System Control SCTR Read/Write

Pbus Fault Registers

FFFO 2108 Pbus Status PFSR Read

FFFO 210C Pbus Address PFAR Read

Area Pointers

FFFO 2200 Supervisor Area SAPR Read/Write

FFFO 2204 User Area UAPR Read/Write

BATC Write Pointers

FFFO 2400 Port 0 BWPO0 Write

FFFO 2404 Port 1 BWP1 Write

FFFO 2408 Port 2 BWP2 Write

FFFO 240C Port 3 BWP3 Write

FFFO 2410 Port 4 BWP4 Write

FFFO 2414 Port 5 BWP5 Write

FFFO 2418 Port 6 BWP6 Write

FFFO 241C Port 7 BWP7 Write

Cache Diagnostic Ports

FFFO 2800 Data Port 0 CDPO Read

FFFO 2804 Data Port 1 CDP1 Read

FFFO 2808 Data Port 2 CDP2 Read

FFFO 280C Data Port 3 CDP3 Read

FFFO 2840 Tag Port 0 CTPO Read

FFFO 2844 Tag Port 1 CTP1 Read

FFFO 2848 Tag Port 2 CTP2 Read

FFFO 284C Tag Port 3 CTP3 Read

FFFO 2880 Set Status CSSP Read

(continued)

A-10 014-001800

Table A-2 400 Series Station Address Map

Address Map

014-001800

Address Resource Name Mnemonic Type

FFFO 0000 - FFFO 3883 CMMU Registers (continued)

CMMU3 (CPU1, Instruction CMMU) Registers

System Control] Registers

FFFO 3000 CMMU ID IDR Read

FFFO 3004 System Command SCR Write

FFFO 3008 System Status SSR Read

FFFO 300C System Address SAOR Read/Write

FFFO 3104 System Control SCTR Read/Write

Pbus Fault Registers

FFFO 3108 Pbus Status PFSR Read

FFFO 310C Pbus Address PFAR Read

Area Pointers

FFFO 3200 Supervisor Area SAPR Read/Write

FFFO 3204 User Area UAPR Read/Write

BATC Write Pointers

FFFO 3400 Port 0 BWPO Write

FFFO 3404 Port 1 BWP1 Write

FFFO 3408 Port 2 BWP2 Write

FFFO 340C Port 3 BWP3 Write

FFFO 3410 Port 4 BWP4 Write

FFFO 3414 Port 5 BWPS5 Write

FFFO 3418 Port 6 BWP6 Write

FFFO 341C Port 7 BWP7 Write

Cache Diagnostic Ports

FFFO 3800 Data Port 0 CDPO Read

FFFO 3804 Data Port 1 CDP1 Read

FFFO 3808 Data Port 2 CDP2 Read

FFFO 380C Data Port 3 CDP3 Read

FFFO 3840 Tag Port 0 CTPO Read

FFFO 3844 Tag Port 1 CTP1 Read

FFFO 3848 Tag Port 2 CTP2 Read

FFFO 384C Tag Port 3 CTP3 Read

FFFO 3880 Set Status CSSP Read

FFF8 0000 - FFF8 1FFF BBSRAM/RTC

FFF8 0000 - FFF8 1FDC NOVRAM Bytes 0000 - 2039

FFF8 1FEO - FFF8 1FFC Time-of-Boot (TOB) Clock Registers

FFF8 1FEO Control Read/Write

FFF8 1FE4 Seconds Read/Write

FFF8 1FE8 Minutes Read/Write

FFF8 1FEC Hour Read/Write

FFF8 1FFO Day Read/Write

FFF8 1FF4 Date Read/Write

FFF8 1FF8 Month Read/Write

FFF8 1FFC Year Read/Write

(continued)

A-11

Address Map

Table A-2 400 Series Station Address Map

Address Resource Name Mnemonic Type

FFF8 2000 - FFF8 2FFF

Serial Port Registers — DUART1

FFF8 2000

FFF8 2004

FFF8 2008

FFF8 200C

FFF8 2010

FFF8 2014

FFF8 2018

FFF8 201C

FFF8 2020

FFF8 2024

FFF8 2028

FFF8 202C

FFF8 2030

FFF8 2034

FFF8 2038

FFF8 203C

Parallel Port Registers

FFF8 2400

Keyboard Port Registers

FFF8 2800

FFF8 2804

FFF8 2808

FFF8 280C

FFF8 2810

FFF8 2820

1/O Registers

Mode Registers A

Status Register A

Clock Select Register A

RESERVED

Command Register A

Receive Holding Register A

Transmit Holding Register A

Input Port Change

Auxiliary Control

Interrupt Status

Interrupt Mask

Counter/Timer Upper Register

Counter/Timer Lower Register

Mode Registers B

Status Register B

Clock Select Register B

RESERVED

Command Register B

Receive Holding Register B

Transmit Holding Register B

RESERVED

Input Port Configuration Register

Output Port Configuration Register

Start Counter Command Register

Set Output Port Bits Command Register

Stop Counter Command Register

Reset Output Port Bits Register

Paralle] Port Data Register

Parallel] Port Status Register

Receive Holding Register

Transmit Holding Register

Status Register

Mode Register 1

Mode Register 2

Command Register

Disable Clock Register

Enable Transmit Clock

MRI1A, MR2A Read/Write

SRA

CSRA

CRA

RHRA

THRA

IPCR

ACR

ISR

IMR

CTUR

CTLR

MRIB, MR2B

SRB

CSRB

CRB

RHRB

THRB

IPCR

OPCR

SRCC

SOPBC

STCC

ROPBC

PPD

PPS

RxH

TxH

STS

MD1

MD2

CMD

DSC

ENABLE _ TXC Write

Read

Write

Read !

Write

Read

Write

Read

Write

Read

Write

Read/Write

Read/Write

Read/Write

Read

Write

Read !

Write

Read

Write

Read/Write

Read

Write

Read

Write

Read

Write

Write

Read

Read

Write

Read

Read/Write

Read/Write

Read/Write

Write

' Do not read these registers. Reading them may hang the asynchronous line. (If this line is

for the system console, the workstation may hang and require a reset.)

A-12

(continued)

014-001800

Table A-2 400 Series Station Address Map

Address Map

Address Resource Name Mnemonic Type

FFF8 2000 - FFF8 2FFF I/O Registers (continued)

Serial Port Registers — DUART2

FFF8 2C00 Mode Registers A MR1A, MR2A Read/Write

FFF8 2C04 Status Register A SRA Read

Clock Select Register A CSRA Write

FFF8 2C08 RESERVED Read !

Command Register A CRA Write

FFF8 2COC Receive Holding Register A RHRA Read

Transmit Holding Register A THRA Write

FFF8 2C10 Input Port Change IPCR Read

Auxiliary Control ACR Write

FFF8 2C14 Interrupt Status ISR Read

Interrupt Mask IMR Write

FFF8 2C18 Counter/Timer Upper Register CTUR Read/Write

FFF8 2C1C Counter/Timer Lower Register CTLR Read/Write

FFF8 2C20 Mode Registers B MR1B, MR2B Read/Write

FFF8 2C24 Status Register B SRB Read

Clock Select Register B CSRB Write

FFF8 2C28 RESERVED Read '

Command Register B CRB Write

FFF8 2C2C Receive Holding Register B RHRB Read

Transmit Holding Register B THRB Write

FFF8 2C30 RESERVED Read/Write

FFF8 2C34 Input Port Configuration Register IPCR Read

Output Port Configuration Register OPCR Write

FFF8 2C38 Start Counter Command Register SRCC Read

Set Output Port Bits Command Register SOPBC Write

FFF8 2C3C Stop Counter Command Register STCC Read

Reset Output Port Bits Register ROPBC Write

FFF8 3000 - FFF8 3FFF CIO Registers

FFF8 3000 Port A Data register

FFF8 3004 Port B Data register

FFF8 3008 Port C Data register

FFF8 300C Control register

' Do not read these registers. Reading them may hang the asynchronous line. (If this line is for the

system console, the workstation may hang and require a reset.)

014-001800

(continued)

A-13

Address Map

Table A-2 400 Series Station Address Map

Address Resource Name Mnemonic Type

FFF8 4000 - FFF8 4FFF System Control] Logic Registers

FFF8 4004 Interrupt Enable CPU0 IENO Write

FFF8 4008 Interrupt Enable CPU1 IEN1 Write

FFF8 4040 Interrupt Status IST Read

FFF8 4080 Set Software Interrupt SETSWI Write

FFF8 4084 Clear Software Interrupt CLRSWI Write

FFF8 4088 Interrupt Source Status ISS Read

FFF8 408C Clear Interrupt CLRINT Write

FFF8 40C0 Diagnostic Control Register DCR Write

FFF8 40C4 Diagnostic Status Register DSR Read

FFF8 40C8 Parity Address Register PAR Read

FFF8 5004 VMEbus Interrupt Acknowledge and Vector 1 VIAV1

Read

FFF8 5008 VMEbus Interrupt Acknowledge and Vector 2 VIAV2

Read

FFF8 500C VMEbus Interrupt Acknowledge and Vector 3 VIAV3

Read

FFF8 5010 VMEbus Interrupt Acknowledge and Vector 4 VIAV4

Read

FFF8 5014 VMEbus Interrupt Acknowledge and Vector 5 VIAVS

Read

FFF8 5018 VMEbus Interrupt Acknowledge and Vector 6 VIAV6

Read

FFF8 501C VMEbus Interrupt Acknowledge and Vector 7 VIAV7

Read

FFF8 8010 Extended Address EXTAD Read/Write

FFF8 8014 Extended Address Modifier EXTAM Read/Write

FFF8 8018 CPU Configuration WHOAMI Read

FFF8 9000 - FFF8 90FF Color Graphics Subsystem Registers — Broadcast.

FFF8 9000 Control and Status Register 0 CSRO Read/Write

FFF8 9004 Stop/Resume Regisver STOP Read/Write

FFF8 9008 Control and Status Regisicr 1 CSR1 Read/Write

FFF8 900C Command Register CMD Read/Write

FFF8 9010 Plane Mask Register MASK Read/Write

FFF8 9014 Background Color Register BACK Read/Write

FFF8 9018 Line Pattern Register LPAT Read/Write

FFF8 901C Pattern Control/WID Register PC/WID Read/Write

FFF8 9020 CRT Control Register 0 CRTO Read/Write

FFF8 9024 CRT Control Register 1 CRT1 Read/Write

FFF8 9028 CRT Control Register 2 CRT2 Read/Write

FFF8 902C Reserved

FFF8 9030 Internal State 0 STATEO Read

FFF8 9034 Internal] State 1 STATE] Read

FFF8 9038 - FFF8 903C Reserved

(continued)

A-14 014-001800

Table A-2 400 Series Station Address Map

Address Map

014-001800

Address Resource Name Mnemonic Type

FFF8 9000 - FFF8 90FF Color Graphics Subsystem Registers — Broadcast.

FFF8 9040 Parameter Register 0 PARMO Read/Write

FFF8 9044 Parameter Register 1 PARM1]1 Read/Write

FFF8 9048 Parameter Register 2 PARM2 Read/Write

FFF8 904C Parameter Register 3 PARM3 Read/Write

FFF8 9050 Parameter Register 4 PARM4 Read/Write

FFF8 9054 Parameter Register 5 PARMS5S Read/Write

FFF8 9058 Parameter Register 6 PARM6 Read/Write

FFF8 905C Parameter Register 7 PARM?7 Read/Write

FFF8 9060 Parameter Register 8 PARM8 Read/Write

FFF8 9064 Parameter Register 9 PARM9 Read/Write

FFF8 9068 Parameter Register 10 PARM10 Read/Write

FFF8 906C Parameter Register 11 PARM11 Read/Write

FFF8 9070 Parameter Register 12 PARM12 Read/Write

FFF8 9074 Parameter Register 13 PARM13 Read/Write

FFF8 9078 Parameter Register 14 PARM14 Read/Write

FFF8 907C Parameter Register 15 PARM15 Read/Write

FFF8 9080 - FFF8 909C Reserved

FFF8 90A0 Data Port Register DATA Read/Write

FFF8 90A4 Palette Pointer 0 PLTO Read/Write

FFF8 90A8 Palette Pointer 1 PLT1 Read/Write

FFF8 90AC Blink Control Register BLNK Read/Write

FFF8 90B0 - FFF8 90BC Reserved

FFF8 90C0O RAMDAC Address Register DACO Read/Write

FFF8 90C4 RAMDAC Color Palette RAM DAC1 Read/Write

FFF8 90C8 RAMDAC Control Register DAC2 Read/Write

FFF8 90CC RAMDAC Overlay Palette RAM DAC3 Read/Write

FFF8 90D0 - FFF8 90DCReserved

FFF8 90E0 - FFF8 91F0 Z-Buffer Registers

FFF8 90E0 Command Register CMD Read/Write

FFF8 90E4 Interrupt Register IR Read/Write

FFF8 90E8 Z-Constant Register Z_CNST Read/Write

FFF8 90EC Initial Z-Depth Register Z_INIT Read/Write

FFF8 90FO DZ/DX Register Z XINC Read/Write

FFF8 90F4 DZ/DY Register Z_YINC Read/Write

FFF8 90F8 Hither Clip Register HCLP Read/Write

FFF8 90FC Yon Clip Register YCLP Read/Write

FFF8 90E0 Configuration Register CNFG Read/Write

FFF8 90E4 State O Register STO Read/Write

FFF8 90E8 State 1 Register ST1 Read/Write

FFF8 90EC State 2 Register ST2 Read/Write

FFF8 90FO State 3 Register ST3 Read/Write

FFF8 90F4 - FFF8 90FF Reserved

(continued)

A-15

Address Map

Table A-2 400 Series Station Address Map

| Address Resource Name Mnemonic Type

FFF8 9100 — FFF8 94FF Color Graphics Subsystem Registers — POSN 00, 01, 10, 11.

(Use offsets from Broadcast addresses.)

FFF8 A000 - FFF8 AFFF SCSI Port Registers

FFF8 A000 0 - DMA byte count (low) DMABCL Read/Write

FFF8 A004 1 - DMA byte count (middle) DMABCM Read/Write

FFF8 A008 2 - DMA byte count (high) DMABCH Read/Write

FFF8 A00C 3 - Interrupt Mask Register 0 IMO Write

FFF8 A010 4 - Offset Control Register OFC Write

FFF8 A014 5 - FIFO Status Register FIFOS Read

FFF8 A018 6 - Revision Control RC Read

Interrupt Mask Register 1 IM1 Write

FFF8 A01C 7 - Status Register 0 SRO Read

Control Register 0 CRO Write

FFF8 A020 8 - Status Register 1 SR1 Read

Control Register 1 CR1 Write

FFF8 A024 9 - SCSI Signal Register SCSIS Read/Write

FFF8 A028 A - SCSI ID Register SCSIID Read/Write

FFF8 A02C B - Source/Dest ID SRDTID Read

FFF8 A030 C - Memory Data Register MMD Read/Write

FFF8 A034 D - Port A Register PTA Read/Write

FFF8 A038 E - Port B Register PTB Read/Write

FFF8 A03C F - SCSI Latch Data SCSILD Read

SCSI BSY RST (TGT) SCSIBR Write

FFF8 BO0OO - FFF8 BFFF DMA Registers

FFF8 BOO0O Map Register DMAMAP Read/Write

FFF8 B004 Offset Register DMAOFF Read/Write

FFF8 BO008 Transfer Count Register DMATC Read/Write

FFF8 BOOC Transfer Direction Register DMATD Write

FFF8 B010 Clear DMA Map Valid Error Interrupt DMACMV Write

FFF8 B014 Clear DMA Write Protect Error Interrupt DMACWP Write

FFF8 B018 DMA ‘Stop Register DMASTP Write

FFF8 C000 - FFF8 CFFF LAN Interface Registers

FFF8 C000 Register Data Pointer RDP Read/Write

FFF8 C004 Register Address Pointer RAP Read/Write

FFFF 0000 - FFFF FFFF VMEbus A16 space (64 Kbytes) Read/Write

(concluded)

End of Appendix

A-16 014-001800

Appendix B

Power-Up Flowchart

The following flowcharts outline the steps the workstation performs during either a

cold start or a warm start. A cold start is initiated when the workstation is powered

up, while a warm start results from a software system reset. The cold start flow begins

with the “Initial Power-Up Flowchart” (Figure B-1), and the warm start begins with

the “Reset Flowchart” (Figure B-2). This appendix discusses powerup to the point of

booting an operating system (Automatic Program Load); it does not include booting

an operating system.

Cold start

V

Power switch turned on

V

de voltages stabilize

v

Power-OK signal from power

supply sets the power-on reset flag

(DSR register, bit 0)

Video circuitry Set console !/O
, = serial port

operational input/output

oN | System board power
Is keyboard Set console I/O LED lit, video monitor
present = KB/GDM Dd power LED lit,

? diagnostic LED lit

v

[se console |/O Go to
= serial port Reset Flowchart

input/output &

GDM output

Figure B-1 Initial Power-Up Flowchart

014-001800 B-1

Workstation Power-up Flowchart

Warm start From

cold start

| Power-on Reset signal is asserted |<—

Y
Vector base register set to 0

(maps PROM to physical address 0)

. ‘CPU/CMMU. mezzanine 2 configuration
Placed! in WHOAMI | register pe pee

V

| Address translation cache entries are invalidated

V

| Device ID is read into the CMMU ID register ' |

V

CMMU registers are initialized! |

Vv

@ Diagnostic LED is lit

e i/O devices held in reset state

e PROM begins executing program

at address 0000 000016

t
CMMU control set to:

e No parity checking,

@ No snooping

e Fairness arbitration protocol '

Vv

Go to Initialize

Flowchart

' In dual-processor workstations, this procedure

is performed for both CPU chip sets.

Shaded boxes apply only
pe to 400 series stations.

Figure B-2 Reset Flowchart

014-001800

Workstation Power-up Flowchart

Initializing

Enable the entire

memory, and set the
mezzanine configuration '

\

Mask all interrupts * |

Turn the video raster on

Read the power-on reset

signal (DSR register, bit 0)

Yes
Cold reset

\

No ; Go to
PROM-resident

Warm reset testing flowchart

initialize the:

e caches!

e keyboard

e |/O controllers

\

Enable parity and instruction caching
(address translations remain off) |

]

Initialize GDM screen for
installed graphics option

Vv

Start the

Automatic

Program Load

a Shaded boxes apply only
to 400 series stations.

1 In dual-processor workstations, this procedure
is performed for both CPU chip sets.

Figure B-3 Initialize Flowchart

B-3
014-001800

Workstation Power-up Flowchart

PROM-resident

testing

v

CPU test verifies that:

e CPU can execute instructions

e CPU I/O pins can be toggled '

Tests CMMU caches:

e Data store

e Tag store

e Status store '

Set corresponding

kill bit Error

No

rr

\

Size system memory |

User prompted to:

halt the console or

update configuration

Sized =

expected

| Test system memory |

Vv

Enabie:

e Parity logic

e Instruction CMMU !

Shaded boxes apply only

to 400 series stations.

1 In dual-processor workstations, this procedure

is performed for both CPU chip sets.

2 At this point in a dual-processor configuration,

CPU1 is idled with the SCM running on CPUO.

‘Test dual-processor
interrupts

i =

Test system components

Vv

Test:

e SCSI controller

e Ethernet controller

interface, registers,
Test VMEbus

and interrupts

v
Start the

Automatic

Program Load ?

Figure B-4_ PROM-Resident Testing Flowchart

End of Appendix

014-001800

Appendix C

Boot File Format

If you are booting a non-Data General operating system, you must provide part of the

bootstrap code in the form of an a.out file. With the exception of certain

restrictions, this a.out file must conform to the AT&T common object file format

(coff). The rest of this appendix describes the booting sequence, the arguments

passed by the bootstrap program, and the a.out file.

Booting Sequence

When you boot the workstation from tape, the bootstrap program provided in the

system PROM reads a file off the boot device starting at block 0. This bootstrap

program expects to find the a.out file at block 0. It loads the a.out file into main

memory based on file-header information contained within the file. It passes

arguments to the a.out file that define the boot path. Then it starts executing the

program in the a.out file.

For information on booting from disk, refer to your Data General sales representative.

Arguments Passed by the Bootstrap Program

When booting the system, the bootstrap program passes the arguments contained in

the following 88000 registers to the a.out file:

@ r2 = Pointer to boot string entered by user or NOVRAM.

@ r3 = Device, cracked from boot string.

@ r4 = Unit number, cracked from boot string.

@ r5 = Part number, cracked from boot device.

NOTE: The bootstrap program does not pass the memory size. Use the SCM system

call .MSIZE to pass the memory size. For more SCM system call

information, see Chapter 2, “Programming the System Board.”

014-001800 C-1

Boot File Format

a.out File

When using a non-Data General operating system, you must provide the a.out file.

With the exception of certain restrictions, this file must conform to the AT&T

common object file format (coff). The restrictions are listed in the sections that

follow and the AT&T common object file format as specified in the Binary

Compatibility Standard (BCS), 880pen Consortium, Ltd. The next sections describe

the parts of this coff file.

Contents of File Header

The file header contains the data structures described in the 4.2 File Header section

of the BCS document. The bootstrap program uses the following fields and ignores all

others:

@ f_magic

@ f_nscns

@ f_opthdr

e f_flags

(Also note that the magic number, MC88MAGIC, is 0D.)

Contents of Optional Header

The optional header file contains the data structures described in the 4.3 Optional

Header section of the BCS document. The bootstrap program uses the “magic” and

“entry” fields and ignores all others.

Contents of Section Header File

The section header file contains the data structures described in the 4.4 Section

Headers section of the BCS document. The bootstrap program uses the following

fields and ignores all others:

@® s name

@ s_vaddr

@® s size

@® s_scnptr

e s flags

Although the s_vendor field is not marked “ignored by exec,” do not use this field.

C-2 014-001800

Boot File Format

Section Header File Restrictions

The header file must conform to the following restrictions:

@ The system supports exactly one each of the .text, .data, and .bss sections. All

other section types are ignored without side effects.

@ The virtual address s_vaddr specifies the virtual address at which the section Is

loaded and aligned on an 8-byte boundary. The system treats this value as a

physical address.

@ The Raw Section Data offset specifier s_scnptr specifies the start of the Raw Data

to be loaded (on an 8-byte boundary). Sections that specify this value as 0 have

no section data and their address space should be filled with 0s. The system does

not perform the zero fill when s_scnptr has a value of 0.

@ The system memory map at boot time consists of 3 Mbytes of contiguous physical

memory beginning at physical location 0. A bootable image should not specify

.text or .data section destinations greater than the 3-Mbyte boundary. The .bss

section is exempt from this restriction since no memory is loaded or initialized by

the .bss section.

End of Appendix

014-001800 C-3

This appendix identifies the connectors and signals available on your workstation.

Table D-1 lists the connectors for the workstations.

connectors on 300 series stations, and Figure D-2 identifies the system board

Figure D-3 identifies the external connectors on

400 series stations, and Figure D-4 identifies the system board connectors on 400

connectors on 300 series stations.

Appendix D

System Board Connectors

Figure D-1 identifies the external

series stations. The remainder of the Appendix describes the signals present in the

connectors.

Table D-1 Connectors on the System Board

Subsystem Connector Connector
Number Type

Monochrome graphics J2 BNC (Female)

Color graphics J1, J2, J3 BNC (Female)

LAN interface J6 D15 (Female)

Serial port (300 Series) J10 D25 (Male)

Serial ports (400 Series) J4, J10 D25 (Male)

Parallel port J7 D25 (Female)

Mouse port (300 Series) J9 Mini DIN-8 (Female)

Mouse port (400 Series) J9 Mini DIN-8 (Female)

Keyboard port J8 DIN-8 (Female)

SCSI port JS D50

VMEbus (400 Series) J30, J31 96-pin

014-001800

1/O Connections and Specifications

ve Display Monitor Power Rear View of Chassis

O a\| |

COC CQQOQC

UI U op °COCCI 3

Scooce

95.0333

00 0 S
\ \ \ \ \ ~ ON 0 |

a CAN
Serial Port

J7 J5

J2 Parallel Port SCS] Bus

Monochrome

or Green

J1 J3

Red Blue

Graphics

J9

Mouse Port

J8

Keyboard Port

D-2 014-001800

l/O Connections and Specifications

J9

014-001800

J1

J2

J3

J4

J5

J7

J8

J10

J18

a ©) O GI

ec fe fe ec PPre 7

a s il | Wh I L
C P c L T C r

_ J17 J16 J15 J14 J13 J12 J11

CMMU CPU CMMU

O

0 ce
ebiete J4

tit Uilitililitit
Jt

hdididi
—__l.,
L J | _ T

J7 J10 J5 J6

J2. J3

Color Graphics Monitor (Red) J11. Memory Board 1
Color Graphics Monitor (Green), or J12_ Memory Board 2
Monochrome Graphics Monitor J13_ Memory Board 3

Color Graphics Monitor (Blue) J14. Memory Board 4
Power Supply J15 Memory Board 5

SCSI Bus J16 Memory Board 6

LAN J17 Memory Board 7
Parallel Port

Keyboard

Mouse

Serial Port

Speaker and LED

Figure D-2 300 Series System Board Connectors

J8

D-3

I/O Connections and Specifications

Rear View of Chassis

~~ |,
SCSI Bus

J8

Keyboard

J9

Mouse

J10

Serial Port

VME Slot 2

Serial Port

J7

Parallel Port

J3 — B

Color Graphics J2—G

J1—R

LAN

Figure D~3 400 Series External Connectors

D-~—4
014-001800

014-001800

J22 Optional CPU Set (Mezzanine Board)

J30 VMEbus (P1)

J31 VMEbus (P2)

J800 Graphics Controller (Mezzanine Board)

J19 Gz] J18 qa LC ul}
O ~ O

J17 ut Li. ui}

CMMU CPU CMMU | 316 GG LE a

J1i5 ug I ul]

| E::::zz22:=22:| J22

| 2222222222222 | 1800
J14 (B TI cD

J13 Uy LI LU

J1i2 Ue 3 ul}

J1i ug Tf Tal

LTS wee eee eee ee Mute e cece een eee

a

FAR

bilidtil = Aodidiil TL 0)
O

WaT TTT

J6 J7 J4 J10 J9 J8

J4 Serial Port #1 J11. Memory Board 1

J5 SCSI Bus J12 Memory Board 2

J6 Ethernet LAN J13_ Memory Board 3

J7 Parallel Port J14 Memory Board 4

J8 Keyboard J15 Memory Board 5

JQ Mouse J16 Memory Board 6

J10 Serial Port #2 J17 Memory Board 7

J19 Speaker and LED J18 Memory Board 8

Figure D-4 400 Series System Board Connectors

1/O Connections and Specifications

D-5

I/O Connections and Specifications

Serial Port Connector (300 Series)

Serial devices connect to the serial port through a 25-pin D-connector (J10).

Table D-2 identifies the serial port signals.

Table D-2 Serial Connector Signals (300 Series)

Pin Signal Direction

Oo CO NWN tn & W HN
peck fee fem feeWN == ©
14-19

20

21

22

23-25

CG (RS-232-C)

TxD (RS-232-C)

RxD (RS-232-C)

RTS (RS-232-C)

CTS (RS-232-C)

DSR (RS-232-C)

SG (RS-232-C)

DCD (RS-232-C)

RxD + (RS-422)

RxD - (RS-422)

TxD + (RS-422)

TxD - (RS-422)

RS-422 Select (Ground selects RS-422)

Unused

DTR (RS-232-C)

Unused

RI (RS-232-C)

Unused

From system board

To system board

From system board

To system board

To system board

To system board

To system board

To system board

From system board

From system board

To system board

Serial Port Connectors (400 Series)

Serial devices connect to the serial port through 25-pin D-connectors (J4 and J10).

J4 is channel A and J10 is channel B. Table D--3 identifies the serial port signals.

Table D-3 Serial Connector Signals (400 Series)

Pin Signal Direction

CG

TxD

RxD

RTS

CTS

DSR

SG

DCD

-19 Unused

20 DTR

21 Unused

22 RI

23-25 Unused

Oo ODN NA PP WN
From system board

To system board

From system board

To system board

To system board

014-001800

1/O Connections and Specifications

Parallel Port Connector (300 Series)

A parallel device connects to the parallel port through a 25-pin connector (J7).
Table D-4 identifies the parallel port signals.

Table D-4 Parallel Connector Signals (300 Series)

Pin Signal Function

1 DATASTRB This strobe pulse reads data in from the printer. Timing

and polarity for this signal depend on whether software

configured the parallel port as a Data Products-type

interface or a Centronics-type interface. For more

information, see “Programming the Data Strobe and Data

Select Signals” in Chapter 7.

2-9 D1 - D8 D1 is the least significant bit.

10 DEMAND Indicates that the printer is demanding another character.

11 BUSY Tells the system that the printer is busy and cannot accept

another character.

12 PE Indicates that the printer is out of paper.

13 SELECT The system selects the printer using this signal.

14 Unused

15 FAULT Indicates a printer error.

16 ONLINE Indicates that the printer is on line.

17-25 Unused

Parallel Port Connector (400 Series)

A parallel device connects to the parallel port through a 27-pin connector (J7).

Table D-5 identifies the parallel port signals.

Table D-5 Parallel Connector Signals (400 Series)

Pin Signal Function

1 DATASTRB This strobe pulse reads data in from the printer. Timing

and polarity for this signa] depend on whether software

configured the parallel port as a Data Products—type

interface or a Centronics—type interface. For more

information, see “Programming the Data Strobe and Data

Select Signals” in Chapter 7.

2-9 D1 - D8 D1 is the least significant bit.

10 DEMAND Indicates that the printer is demanding another character.

11 BUSY Tells the system that the printer is busy and cannot accept

another character.

12 PE Indicates that the printer is out of paper.

13 SELECT The system selects the printer using this signal.

14 Unused

15 FAULT Indicates a printer error.

16 ONLINE Indicates that the printer is on line.

17-25 Unused

014-001800 D-7

1/O Connections and Specifications

Keyboard Connector

The keyboard cable connects to the keyboard port through an 8-pin DIN connector

(J8). Table D-6 identifies the keyboard signals.

Table D-6 Keyboard Signals

Pin Signal Direction

1 Clock To keyboard

2 Data From keyboard

3 Unused 2 sw -

4 Ground =

5 +5 V To keyboard

6-8 Unused 2s =

Speaker Connector

The speaker and LED cable connects to the system board through a 4—-pin connector

(J18 in 300 Series, J19 in 400 Series). Table D-6 identifies the signals.

Table D-7 Speaker Signals

Pin Signal

1 Speaker enable

2 +5 V

3 Unused

4 Optional CPU present (asserted low if optional CPU is present)

Mouse Connector

The mouse connects to the mouse port through an 8-pin connector (J9)._ The mouse

is compatible with the EIA RS-232-C interface (1200 baud, asynchronous, 1 start bit,

1 stop bit, 8 data bits). It obtains its power from the RS-232-C interface (+/- 13.2

Vmax. and 15 mA max). Table D-8 identifies the mouse port signals.

Table D-8 Mouse Signals

Pin Signal Direction

1 RTS From system board

2 DTR From system board

3-5 Unused =

6 GND —“‘“CTMésSC RRR

7 TxD From system board

8 RxD (mouse data) To system board

D-8 014-001800

Power Connector (300 Series)

|/O Connections and Specifications

The power connector supplies power and power status signals to the system board of

300 series workstations. Table D-9 identifies the power signals.

014-001800

Table D-9 Power Connector (300 Series)

Pin Signal Direction

1 IRQ_PF* To system board

2 -12V_NET To system board

4,3 -6V To system board

5 POWER OK To system board

6 Ground To system board

8,7 +12V_NET To system board

18-9 Ground To system board

24-19 +5V To system board

D-9

1/O Connections and Specifications

SCSI Connector (300 Series}

In the 300 series station, the SCSI bus connector (J5), located on the system board,

projects immediately out the back of the computer. Table D-10 identifies the signals

at JS.

Table D-10 SCSI Connector (300 Series)

Pin Signal Pin Signal

1 1/O 22 BSY

3 SEL 28 DBP

5 ACK 30 DBS

7 ATN 32 DB2

9 TERMPWR 35 C/D

13 DB6 37 RST

15 DB3 42 Unused

17 DBO 45 DB7

18 REQ 47 DB4

20 MSG 49 DB1

NOTE: Pins not listed connect to ground.

SCSI Connector (400 Series)

In the 400 series station, the SCSI bus connector (J5), located on the system board,

does not appear on the outside of the chassis. A SCSI cable connects to J5, to

internal drives, and to an external SCSI connector. Table D-11 identifies the signals

at JS on the system board.

Table D-11 SCSI Connector (400 Series)

Pin Signal Pin Signal

1 DBO 26 TERMPW

R

4 DB1 32 ATN

6 DB2 36 BSY

8 DB3 38 ACK

10 DB4 40 RST

12 DBS 42 MSG

14 DB6 44 SEL

16 DB7 46 C/D

18 DBP 48 REQ

25 Unused 50 I/O

NOTE: Pins not listed connect to ground.

D-10 014-001800

I/O Connections and Specifications

LAN Connector

The LAN interface provides a D15 connector for an AUI cable. The AUI cable

connects the workstation to an external medium attachment unit (MAU). The MAU

contains the Ethernet transceiver and the medium dependent interface (MDI) for

connection to the physical network. The MAU provides electrical isolation between

the AUI cable and the physical network. The Ethernet interface can be attached via

the AUI cable to any one of the following types of external 10-MHz MAUs:

10BASES5 (Ethernet), 10BASE2 (Cheapernet or Thin Ethernet), 10BROAD36

(Ethernet over CATV), 10BASET (proposed Ethernet over twisted pair), or any other

10-MHz AUI compatible MAU or MAU-like device that does not require the

Control Out signal specified in the AUI definition. Table D-12 identifies the LAN

signals.

Table D-12 LAN Interface Connector Signals

014-001800

Pin Signal Circuit Name

1 Ground CI-S (Control In Shield)

2 Collision + CI-A (Control In A)

3 Transmit + DO-A (Data Out A)

4 Ground DI-S (Data In Shield)

5 Receive + DI-A (Data In A)

6 Ground VC (Voltage Common)

7 No Connection CO-A (Control Out circuit A)

8 Ground CO-S (Control Out Shield)

9 Collision - CI-B (Control In B)

10 Transmit - DO-B (Data Out B)

11 Ground DO-S (Data Out Shield)

12 Receive - DI-B (Data In B)

13 +12 V VP (Voltage Plus)

14 Ground VS (Voltage Shield)

15 No Connection CO-B (Control Out B)

Shell Ground PG (Protective Ground)

D-11

1/O Connections and Specifications

VMEbus Connectors (400 Series)

Figure D-5 shows the location of the VMEbus slots and connectors and identifies the

pin and row positions. Table D-13 identifies the VMEbus signals on connector J1;

Table D-14 identifies the VMEbus signals on connector J2. The manual The VMEbus

Specification describes the signals and interface in detail.

SlotSlot

0

o_____/o
_ep 4 of \oOOO

Figure D-5 VMEbus Slots, Connectors, and Pin Designations

014-001800D-12

1/O Connections and Specifications

Table D-13 VMEbus Connector J1

Pin Signals
Row A Row B Row C

1 DOO BBSY* DOs

2 DO1 BCLR* (Unused) DO9

3 DO02 ACFAIL* D10

4 DO3 BGOIN* (Unused) D11

5 D04 BGOOUT* (Unused) D12

6 DO05 BG1IN* (Unused) D13

7 DO6 BG1OUT* (Unused) D14

8 DO? BG2IN* (Unused) D15

9 GND BG2OUT* (Unused) GND

10 SYSCLK BG3IN* SYSFAIL*

11 GND BG30UT* BERR*

12 DS1* BRO* (Unused) SYSRESET*

13 DS0* BR1* (Unused) LWORD*

14 WRITE* BR2* (Unused) AM5

15 GND BR3* A23

16 DTACK* AMO A22

17 GND AM1 A21

18 AS* AM2 A20

19 GND AM3 A19

20 IACK* GND A18

21 IACKIN* SERCLK (Unused) A17

22 IACKOUT * SERDAT* (Unused) A16

23 AM4 GND A15

24 A0Q7 IRQ7* A14

25 AO06 IRQ6* A13

26 A05 IRQ5* Al2

27 A04 IRQ4* A11

28 A003 IRQ3* A10

29 A02 IRQ2* A099

30 A0t IRQ1* A08

31 -12V +5V STDBY (Unused) +12V

32 +5V +5V +5V

014-001800 D-13

1/O Connections and Specifications

Table D-14 VMEbus Connector J2

Pin Signals
Row A Row B Row C

1 +5V +5V GND

2 +5V GND GND

3 +5V Unused GND

4 +5V A24 GND

5 +5V A25 GND

6 +5V A26 GND

7 +5V A27 GND

8 +5V A28 GND

9 +5V A29 GND

10 +5V A30 GND

11 +5V A31 GND

12 +5V GND GND

13 +5V +5V GND

14 +5V D16 GND

15 +5V D17 GND

16 +5V D18 GND

17 +5V D19 GND

18 +5V D20 GND

19 +5V D2 GND

20 +5V D22 GND

21 +5V D23 GND

22 +5V GND GND

23 +5V D24 GND

24 Unused D25 GND

25 Unused D26 GND

26 Unused D27 GND

27 +12V D28 GND

28 Unused D29 GND

29 GND D30 GND

30 GND D31 GND

31 GND GND GND

32 GND +5V GND

D-14

End of Appendix

014-001800

index

Within this index, the page reference is the first page for an entry (even if the subject

spans several pages).

A

Address, map, A-1

Addressing

a VME controller from a CPU, 2-12

GCS registers from a CPU, 2-12

memory, 2-3, 2-7

from a VME controller, 2-12

monochrome graphics

frame buffer, 4-6

registers, 4-6

VME controllers, 2-9

ALL function. See Color graphics,

automatic LUT load function

Arbitration, Mbus, 1-12

Architecture, 1-1

system board, 1-3

workstation, 1-2

Automatic LUT Load (ALL) function,

5-58, 5-59

a.out file, boot, C-2

B

Back porch, 4-6, 5-27

Blocks of data, 1-8

Boot

aout file, C-2

arguments passed by bootstrap

program, C-1

code, 2-26

file format, C-1

PROM, 1-11, 2-26

sequence, C-1

Bootstrap program, C-1

Broadcast registers, 5-9

Bus

arbitration, Mbus, 1-12

faults, 3-28

Mbus (Memory bus), 1-12

Sbus (System bus), 1~13

VMEbus, 1-16

014-001800

C

Cache coherency, 1-7

Cache/memory management unit

(CMMU)

cache coherency, 1-6

description, 1-6

further information, 1-8

CIO

registers, 2-25

timers configuration, 2-25

Clipping, color graphics, 5-7

Clocks

keyboard

disable, 6-18

enable transmit, 6-19

protocol, 6-4

time-of-boot (TOB), 2-23

registers, 2-23

time-of-day (TOD), 1-19, 2-25

CMMU. See Cache and memory

management unit (CMMU)

Codes, keyboard

host commands, 6-7

response, 6-6

scan, 6-10, 6-12

Color graphics

automatic LUT load (ALL) function,

5-58

palette storage, 5-58

registers, 5-58

broadcast registers, 5-9

clipping, 5-7

commands, 5-31

BITBLT (Bit Block Transfer), 5-47

bits, 5-34

CLINE (Continue Line After Clip),

5-39

LINE (Line Draw), 5-36

POLY (Polygon Assist), 5-42

RXFER (Read Transfer), 5-51

WXFER (Write Transfer), 5-53

components

24-bit color, 5-3

8—bit color, 5-2

Index-1

index

Color graphics, components (continued)

clock generator, 5-5

digital to analog converter, 5-5

frame buffer, 5-4

graphics controller, 5-3

lookup table, 5-5

RAMDAC, 5-5

Z—-buffer, 5-5

context switching, 5-8

features, 5-1

frame buffer

access, 5-57

access restrictions, 5-57

programming, 5-56

global registers, 5-15

Mbus, frame buffer access, 5-57

pipelining, 5-7

programming, frame buffer, 5-56

RAMDAC, access, 5-64

restrictions, 5-65

registers, 5-14

addresses, 5-11

BACK (Background Color), 5-15

BLINK (Blink), 5-62

CMD (Command), 5-31

fixed-point format, 5-13

CRTn (CRT Timing), 5-24

CSRO (Control and Status Register

0), 5-7, 5-20

CSR1 (Control and Status Register

1), 5-21

DATA (Dataport), 5-16

initializing, 5-66

LPAT (Line Pattern), 5-18

MASK (Plane Mask), 5-17

PARMn (Parameter), 5-30

PC_WID (Pattern Control/Window

ID), 5-19

PLTO (Palette_0 Pointer), 5-60

PLT1 (Palette_1 Pointer), 5-61

STATEn (Internal State), 5-28

STOP (Stop), 5-8, 5-29

software handshaking, 5-7

subsystem, 1-14

Z-buffer. See Z—-buffer

Commands

drawing

color graphics, 5-31

See also Color graphics

monochrome graphics, 4-7

See also Monochrome graphics

keyboard, 6-17

Index-2

Configuration, of workstation, 1-2

Contacting Data General, vii

Context switching, color graphics, 5-8

Control logic, 1-3, 1-11

Controllers, interrupt, 1-19

Conventions used in this manual, iv

CPU, 1-5

further information, 1-5

programming, 2-2

registers, 1-5

set

components, 1-5

the CMMU, 1-6

the CPU, 1-5

D

Data block, 1-8

Data General

contacting, vii

user’s group, Vil

DMA transfers, 1-8

Documentation, related, v

DRAM, 1-9

Drawing commands

color graphics, 5-31

monochrome graphics, 4-7

DUART, 1-3

E

Errors, system, 3-27

Ethernet controller. See Local area

network (LAN) interface

F

Faults, bus, 3-28

Formatting data, 6-4

Frame

buffers

color graphics, 5-56

Ethernet, 8-16

transfers, Ethernet, 8-4

Front porch, 4-6, 5-27

014-001800

G

Global registers (color graphics), 5-15

Graphics

color. See Color graphics

monochrome. See Monochrome

graphics

Z-buffer. See Z—buffer

H

Handshaking, software, 5-7

1/O

connectors, D-1

keyboard, D-8

local area network (LAN), D-11

mouse port, D-8

parallel port, D-7

power, D-9

serial port, D-6

small computer system interface

(SCSI), D-10

speaker, D-8

VMEbus, D-12

subsystem

keyboard port, 1-15

local area network (LAN) interface,

1-16

serial port, 1-15

small computer system interface

(SCSI) port, 1-15

VMEbus interface, 1-16

Initializing system flowchart, B-3

Instruction set, further information, 2-2

Interface

keyboard. See Keyboard interface

LAN. See Local area network (LAN)

interface

Mbus/Sbus, 1-13

main memory, 1-10

VMEbus, 1-16

Interrupt

controller, 1-19

keyboard, 6-20

Interrupts

interrupt handler, 3-4

VME, IRQn interrupts, 3-24

014-001800

index

K

Keyboard

connector, D-8

port, 1-15

position of keys, 6-11

receiving data from, 6-20

Keyboard interface, 6-3

components, 6-2

clock and timing logic, 6-2

keyboard speaker, 6-2

UART, 6-2

data

clock protocol, 6-4

format, 6-4

receiving, 6-20

transmitting, 6-22

interrupts, 6-20

overview, 6-1

registers, 6-5

ACR (Auxiliary Control), 6-26

CMD (Command), 6-17

CTLR (Counter/Timer Lower), 6-27

CTUR (Counter/Timer Upper),

6-27

DSC (Disable Clock), 6-18

ENABLE _TXC (Enable Transmit

Clock), 6-19

host commands, 6-7

keyboard scan codes, 6-10

MDn (Mode), 6-16

OPCR (Output Port Configuration),

6-28

ROPBC (Reset Output Port Bits

Command), 6-30

RxH (Receive Holding), 6-6

response codes, 6-6

SOPBC (Set Output Port Bits

Command), 6-29

STS (Status), 6-15

TxH (Transmit Holding), 6-7

scan codes, 6-12

speaker registers

ACR (Auxiliary Control), 6-26

CTLR (Counter/Timer Lower), 6-27

CTUR (Counter/Timer Upper),

6-27

DUART register map, 6-24

OPCR (Output Port Configuration),

6-28

ROPBC (Reset Output Port Bits

Command), 6-30

SOPBC (Set Output Port Bits

Command), 6-29

index-3

index

L

Local area network (LAN) interface,

1-16, 8-1

allocating memory to the LAN

interface, 8-14

components, 8-2

AUI connector, 8-3

address extension logic, 8-3

Ethernet controller, 8-3

medium attachment unit (MAU),

8-3

Sbus interface, 8-2

serial interface, 8-3

connector, D-11

DMA transfers, 1-7

data structures, 8-15

frame transfers, 8-4

frame path, 8-4

programming, 8-1, 8-5

data structures, 8-15

initializing, 8-16

interrupts, 8-17

resetting, 8-17

software environment, 8-16

registers, 8-5

CSRO (Control and Status Register

0), 8-8

CSR1 (Control and Status Register

1), 8-10

CSR2 (Control and Status Register

2), 8-11

CSR3 (Control and Status Register

3), 8-12

RAP (Register Address Pointer),

8-6

RDP (Register Data Port), 8-7

required register configurations,

8-13

Logic

memory interface, 1-10

system control, 1-3, 1-11

Z-buffer configuration, 5-73

M

MAU (Medium attachment unit), 8-3

Main memory

DRAM, 1-9

interface, 1-10

location, 1-9

parity, 1-9

Index-4

Manuals

commenting, vii

related, v

Mbus

arbitration, 1-12

description, 1-12

signals, 1-12

snooping, 1-7

Memory

addressing, 2-3, 2-7, 2-12

interface and control logic, 1-9

read cycles, 1-10

video, 4-5

coordinate system, 4-11

sample program, 4-11

write cycles, 1-10

Mode, Keyboard, 6-16

Monochrome graphics

commands, 4-7

components, 4-3

display memory bus, 4-4

features, 4-2

frame buffer, 4-5

initializing registers, 4-11

interrupts, 4-8

Mbus interface, 4-4

operational differences

addressing registers, 4-6

frame buffer locations, 4-6

horizontal front and back porches,

4-6

reading display memory values, 4-6

word count, 4-6

programming, 4-7

programming the frame buffer, 4-18

sample program, 4-11, 4-13

subsystem, 1-14

Mouse port

See also Serial ports

connector, D-8

DUART registers, baud rate generator

characteristics, 7-8

data protocol, 7-19

initializing the, 7-19

programming the, 7-19

sensitivity, 7-20

tracking software, 7-20

014-001800

N

NADGUG (North American Data

General User’s Group), vii

Nonvolatile RAM (NOVRAM), 2-23,

2-24

memory map, 2-24

Pp

Palette

pointers, 5-58

storage, 5-58

Parallel port, 7-3, 7-21

components, 7-2

connector, D-7

data strobe and data select signals,

7-22

overview, 7-1

registers, 7-21

addresses, 7-21

OPCR (Output Port Configuration),

7-23

PPD (Parallel Port Data), 7-26

PPS (Parallel Port Status), 7-27

ROPEC (Reset Output Port Bits

Command), 7-25

SOPBC (Set Output Port Bits

Command), 7-24

Parity, main memory, 1-9

Pbus, 1-5, 1-6

PIT. See Programmable interval timer

(PIT)

Pipelining, color graphics, 5-7

Porch

back, 5-27

front, 5-27

Porches, front and back, 4-6, 5-27

Ports

keyboard, 1-15

LAN, 1-16

mouse, 1-15

parallel, 1-15

SCSI, 1-15

serial, 1-15

Power, connector, D-9

Powerup, 2-26

flowchart, B-1

PROM, testing, system flowchart, B-4

014-001800

Index

Processor bus (Pbus), 1-5, 1-6

Programmable interval timer (PIT),

Programming

CPU, 2-2

color graphics, 5-56

system board, 2-1

Programming sample, monochrome

graphics, 4-11

R

RAMDAC, access, 5-64

Read cycles, memory, 1-10

Receiving data from the keyboard, 6-20

References, related manuals, v

Registers

CIO, 2-25

CPU, 1-5

color graphics. See Color graphics,

registers

graphics, monochrome. See Graphics,

monochrome, registers

keyboard interface, 6-5

See also Keyboard interface,

registers

response codes, 6-6

monochrome graphics. See

Monochrome graphics, registers

system board

interrupt. See System board,

interrupt registers

system control. See System board,

system control registers

system control, 2-16

time-of—boot (TOB) clock, 2-23

Related documents, v

Reset, system flowchart, B-2

Response codes, keyboard interface, 6-6

Ss

Sample program, monochrome graphics,

4-11

Sbus, description, 1-13

SCM

See also System Control Monitor

(SCM)

system calls, 2-27

index-5

Index

SCSI port. See Small computer system

interface (SCSI) port

Serial ports, 1-15, 7-3, 7-4

components, 7-2

connector, D-6

DUART, 7-3

DUART registers, baud rate generator

characteristics, 7-8

initializing, 7-4

interrupts, 7-4

overview, 7-1

registers

ACR (Auxiliary Control), 7-12

CRA and CRB (Command), 7-10

CSRA and CSRB (Clock Select),

7-8

CTLR (Counter/Timer Lower), 7-17

CTUR (Counter/Timer Upper),

7-17

IMR (Interrupt Mask), 7-14

IPCR (Input Port Change), 7-13

ISR (Interrupt Status), 7-15

MRIiA and MR1B (Mode), 7-6

MR2A and MR2B (Mode), 7-7

OPCR (Output Port Configuration),

7-18

SRA and SRB (Status), 7-9

resetting, 7-4

Signals

Mbus, 1-12

Sbus, 1-13

VMEbus, 1-17

Small computer system interface (SCSI),

connector, D-10

Small computer system interface (SCSI)

port, 1-15

components, 9-2

DMA controller, 9-3

protocol controller, 9-2

Slave interface, 9-2

DMA controller, 9-18

interrupts, 9-27

map register, 9-27

offset, 9-27

transfer count, 9-27

registers, 9-18

DMA registers

DMACMV (Clear DMA Map Valid

Interrupt), 9-23

DMACWP (Clear DMA Write

Protect Interrupt), 9-24

DMAMAP (DMA Map), 9-19

DMAOFF (DMA Offset), 9-20

Index-6

DMASTP (DMA Stop), 9-25

DMATC (DMA Transfer Count),

9-21

DMATD (DMA Transfer Direction),

9-22

DMA transfers, 1-7

implementing a selection timeout

function, 9-26

manipulating pointers and counters,

9-26

overview, 9-1

protocol controller

initializing, 9-17

interrupts, 9-17

resetting, 9-17

registers, 9-3

CRO (Control 0), 9-10

CR1 (Control 1), 9-11

DMABCn (DMA Byte Count), 9-5

FIFOS (FIFO Status), 9-8

IMO (Interrupt Mask 0), 9-6

IM1i (Interrupt Mask 1), 9-9

OFC (Offset Control), 9-7

PTB (Port B), 9-15

RC (Revision Control), 9-9

SCSIBR (SCSI Busy Reset), 9-16

SCSIID (SCSI Identification), 9-13

SCSILD (SCSI Latch Data), 9-16

SCSIS (SCSI Signal), 9-12

SRO (Status 0), 9-10

SR1 (Status 1), 9-11

SRDTID (Source/Destination

Identification), 9-14

Snooping the Mbus, 1-7

Speaker

connector, D-8

keyboard, 6-2

Specifications, of connectors, D-1

Status, keyboard, 6-15

Subsystems, graphics, 1-14

color, 1~14

monochrome, 1-14

Z—buffer controller, 1-15

Symbols used in this manual, iv

System

Control Monitor (SCM), 2-27

system calls, 2-27

calls (SCM), 2-27

control, registers, 2-16

errors, 3-27

initialization flowchart, B-3

PROM-resident testing flowchart, B-4

reset flowchart, B-2

014-001800

System board

connectors. See I/O, connectors

interrupt registers

CLRINT (Clear Interrupt), 3-19

CLRSWI (Clear Software Interrupt),

3-21

IENn (Interrupt Enable), 3-12

IER (Interrupt Enable), 3-9

ISR (interrupt Status), 3-7

ISS (Interrupt Source Status), 3-18

IST (Interrupt Status), 3-15

SETSWI (Set Software Interrupt),

3-20

SWIR (Software Interrupt), 3-11

VIAVn (VME Interrupt

Acknowledge and Vector), 3-26

programming, 2-1

system control registers

DCR (Diagnostic Control Register),

2-17

DSR (Diagnostic Status Register),

2-19

EXTAD (Extended Address), 2-15

EXTAM (Extended Address

Modifier), 2-11

PAR (Parity Address Register), 2-20

WHOAMI (Who Am I), 2-22

System Control Monitor, environment

control word, 2-30

System control logic, 1-3, 1-11

T

Testing, PROM, B-4

Time-of-boot (TOB) clock, 2-23

registers, 2-23

Time-of-day (TOD) clock, 1-19, 2-25

Time-out function, 9-26

bus cycle termination, 2-5

Timer, programmable interval (PIT),

2-25

Timing services, 1-19

Operating system use, 1-19

TOB. See Time-of-boot (TOB) clock

TOD. See Time-of-day (TOD) clock

Transfers, DMA, 1-7

Transmitting data, to the Keyboard,

6-22

014-001800

index

U

UART, keyboard interface, 6-2

User’s group, Data General, vil

V

Video memory, 4-5

coordinate system, 4-11

sample program, 4-11

VME interrupts, IRQn interrupts, 3-24

VMEbus

connector, D-12

description, 1-16

interface, 1-16

signals, 1-17

W

Workstation

address, map, A-1

configuration, 1-2

power-up (flowchart), B-1

Write cycles, memory, 1-10

Z

Z—-buffer, 1-15, 5-5

components, 5-72

configuration logic, 5-73

DataPath/ALU unit, 5-73

Mbus interface, 5-73

memory controller, 5-73

Z-controller unit, 5-73

programming, 5-74

registers

addresses, 5-74

HCLP (Hither Clip), 5-82

SHADOW (Shadow), 5-89

STO (State 0), 5-85

ST1 (State 1), 5-86

ST2 (State 2), 5-87

ST3 (State 3), 5-88

YCLP (Yon Clip), 5-83

Z_CNST (Z-Buffer Constant), 5-78

Z_ INIT (Z-Depth Initial), 5-79

Z XINC (DZ/DX), 5-80

Z YINC (DZ/DY), 5-81

ZCMD (Z-Buffer Command), 5-75

ZCNFG (Z-Buffer Configuration),

5-84

ZIR (Z-Buffer Interrupt), 5-77

index-7

Documentation Set

This section lists additional documents currently available for AVON 300 and 400

series stations. Those documents specifically referred to in the text of this manual are

also listed in the “Related Manuals” section of the Preface.

Hardware Manuals

AViiONTM 300 and 400 Series Stations: Programming System Control and I/O

Registers (014-001800)

Describes the workstation architecture and explains how to program the system

control logic, monochrome and color graphics controller subsystems, keyboard

port, mouse port, serial and parallel ports, LAN interface, and SCSI port.

Ethernet/IEEE 802.3 Local Area Network Installation Guide (014-000793)

Explains how to install both the coaxial cable plant of an Ethernet local area

network (LAN) and the transceivers that connect the network to a node

communication controller.

Expanding and Maintaining AViiONTM 400 Series Stations (014-001859)

Explains how to add or replace components (mouse, keyboard, monitor, drives,

memory modules, system board assembly, CPU board, Z-buffer board, graphics

board, power supply, fan assembly, and PROM).

Maintaining AViiONTM 300 Series Stations (014-001803)

Explains how system administrators can replace components (mouse, keyboard,

monitor, memory modules, system board assembly, power supply, SCSI bus

fuse, and fan).

Installing and Operating the Model 10565 Peripheral Housing Unit (014-001810)

Describes how to unpack, install, and power up the subsystem. Explains how to

replace the power supply, line cord, and fan, and provides general instructions

for replacing a drive. Lists electrical and environmental specifications of the

subsystem.

MC88100 RISC Microprocessor User’s Manual (014-001809)

Describes the Motorola 88100 Central Processing Unit (CPU), including the

registers, addressing modes, internal and bus timing, and assembly—language

instruction set.

MC88200 Cache/Memory Management Unit User’s Manual (014-001808)

Describes the Motorola 88200 Cache/Memory Management Unit (CMMU),

including the CMMU registers, the cache and cache coherency, memory

management and user/supervisor space, the Processor bus (Pbus) and the

Memory bus (Mbus).

014-001800 Docset-1

Documentation Set

Setting Up and Installing VMEbus Options in AViiONTM Systems (014-001867)

Describes how to jumper VME controllers to operate in an AViiON

environment. Explains how to install and remove the controller boards in the

system’s VME card cage, and how to jumper the VME printed circuit

backplane when necessary. Also supplies instructions for connecting external

devices to the controller boards.

Setting Up and Starting AViiONTM 300 Series Stations (014-001801)

Describes how to unpack and connect system components and optional devices.

Explains how to power up the workstation and prepare for the operating system

installation. Includes electrical and environmental specifications of the

workstation, including the computer unit, monitor, keyboard, and mouse.

Setting Up and Starting AViiONTM 400 Series Stations (014-001858)

Describes how to unpack and connect system components and optional devices.

Explains how to power up the workstation, run diagnostics, and prepare for the

operating system installation. Includes electrical and environmental

specifications of the workstation, including the computer unit, monitor,

keyboard, and mouse.

Using AViiONTM System Diagnostics (014-001863)

Describes how to can use menu-based utilities to verify system hardware, test

terminal or graphics display, test the functionality of a graphics keyboard and

mouse, check for faults in LAN connections, and maintain cartridge tape and

diskette media on AViiON hardware models.

Using the AViiONTM System Control Monitor (SCM) (014-001802)

Describes how to can use the commands and menus of the firmware monitor

program to bring up software, control their system environment, and debug

programs on AViiON hardware models.

Software Manuals

88o0pen Binary Compatibility Standard (069-701043)

Describes the binary standards for developing portable 88K code using the C

programming language.

Installing and Managing the DG/UXTM System (093-701052)

Shows how to install and manage the DG/UX operating system on AViiON

hosts that will run as stand-alone, server, or client systems. Intended for

system administrators who are familiar with the UNIX operating system.

Docset-2 014-001800

Documentation Set

Installing the DG/UXTM System on an AViiONTM Workstation with a Hard Disk

(069-000520)

Describes installing the DG/UX operating system on an AViiON workstation

with a preloaded hard disk. Assumes that the workstation will operate in a

stand-alone environment since the workstation is not connected to an Ethernet

LAN and, therefore, does not require the installation of network software.

Supports those who are unfamiliar with UNIX, and assumes no previous

knowledge of the DG/UX system or UNIX. But does assume the reader has

some familiarity with another operating system, such as MS-DOS®.

Other Organizations’ Documents

The following documents are available from other organizations.

uPD72120 Advanced Graphics Display Controller User’s Manual

Describes the pPD72120 graphics controller and how to program it. This

document is available from NEC Electronics, Inc.

AIC-6250 High-Performance SCSI Protocol Chip

Describes the AIC-6250 SCSI controller and how to program it. This

document is available from Adaptec, Inc.

AM7990 Local Area Network Controller (LANCE) Technical Manual

Describes the AM 7990 LAN controller and how to program it. This document

is available from Advanced Micro Devices, Inc.

Brooktree® Product Databook

This document is available from Brooktree Corporation.

Memory Products Databook

This document is available from SGS-Thompson Microelectronics.

SCN2661 Enhanced Programmable Communications Interface (EPCI) Product

Specification

Describes the SCC2692 universal synchronous/asynchronous data

communications controller and how to program it. This document is available

from Signetics, Inc.

SCC2692 Dual Asynchronous Receiver Transmitter (DUART) Product Specification

Describes the SCN2661 DUART and how to program it. This document is

available from Signetics, Inc.

The VMEbus Specification (Motorola document number HB212)

Describes Motorola’s Versa Modula Europa bus (VMEbus), and how to

program using the VMEbus. This document is available from Motorola Corp.

Z8536 CIO Counter/Timer and Parallel I/O Unit Technical Manual

Describes the Z8536 CIO and how to program it. This document is available

from Zilog, Inc.

014-001800 Docset-3

134-755-02

moisten & seal

a

CUSTOMER DOCUMENTATION COMMENT FORM

Your Name Your Title

Company Phone

Street

City State Zip

We wrote this book for you, and we made certain assumptions about who you are and how you would

use it. Your comments will help us correct our assumptions and improve the manual. Please take a

few minutes to respond. Thank you.

Manual Title Manual No.

Who are you? CEDP/MIS Manager OAnalyst/Programmer [JOther

C)Senior Systems Analyst () Operator

CL] Engineer OEnd User

How do you use this manual? (List in order: | = Primary Use)

— Introduction to the product —— Tutorial Text —— Other

—— Reference _... Operating Guide

Yes No

About the manual: Is it easy to read? O 0

Is it easy to understand? O O

Are the topics logically organized? O O

Is the technical information accurate? O O

Can you easily find what you want? O O

Does it teil you everything you need to know? O O

Do the illustrations help you? O O

If you wish to order manuals, use the enclosed TIPS Order Form (USA only) or contact your

sales representative or dealer.

Comments:

SALVLS GALINA

JHL NI

GS lvW Al

AYVSSAOAN

ADVLSOd ON

I8S10 VW OHOELSAM 92 °ON LINHAd SSV190 LSHI4

O0686-18STO YW ‘o10q}se,

O0PP *Od “Od
SAU Je}nduloy OOTP

Il{-d SW

uOoT}DJUSUINIOG IeWIO}sNyD

[erouaryeyec] 4p

JAaSSSYQOV Ad Alvd AG TIM AOVLSOd

TIVIN Alda SSANISNG

134-755-02

Cut here and insert in binder spine pocket

(»DataGeneral mT
Data General Corporation, Westboro, Massachusetts 01590 14-081 880-45

