¢y DataGeneral

Customer Documentation

Green Hills Software
C-88000" User’s Guide

Green Hills Software
C-88000" User’s Guide

069-100230-01

For the latest enhancements, cautions, documentation changes, and other information
on this product, please see the Release Notice (085-series) supplied with the software.

Ordering No. 069-100230

Copyright © 1983,1984,1985,1986,1987,1988,1989,1990 Green Hills Software, Inc.
All Rights Reserved

Printed in the United States of America

Rev. 01, May 1990

Copyright © 1983,1984,1985,1986,1987,1988,1989,1990 by Green Hills Software, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or other-
wise, without the prior written permission of Green Hills Software, Inc.

DISCLAIMER

GREEN HILLS SOFTWARE, INC. MAKES NO REPRESENTATIONS OR WARRANTIES WITH
RESPECT TO THE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.
Further, Green Hills Software, Inc. reserves the right to revise this publication and to make changes
from time to time in the content hereof without obligation of Green Hills Software, Inc. to notify any
person of such revision or changes.

Green Hills Software, Inc.

510 Castillo St. 230 Second Ave.
Santa Barbara, Ca. 93101 Waltham, Ma. 02154
(805) 965-6044 (617) 890-7889

Fax: 965-6343 Fax: 890-4644

Green Hills Software is a trademark of Green Hills Software, Inc.

C-88000 is a trademark of Green Hills Software, Inc.

UNIX is a trademark of Bell Laboratories.

DEC, VAX, and VMS are trademarks of Digital Equipment Corporation.

4.2BSD is a trademark of the Board of Regents of the University of California at Berkeley.

1. Overview

C-88000

Table of Contents

...

1.1. The Green Hills C DOCUMENIALON SEL ...cveiivveiiriinieiieiinieiieiiieieressessssessessssessiosssscsesens

1.2. User

2.1. Intro

’S GUIAE SITUCIUIE ovvviviirietiecetecteeserecte b ettt ssre b eeraecssbesare st sessssestesantesaresssaess

. The C LANGUAZE ...coovieviriereiieteieieestree e seses et eeetene st st s sesas st st asasa st st sesssasessssanassasasasasesssessans

AUCLION ..veeiiceieeeeeie ettt ste e rae st e ceseess e ssaesbesesaesastenssessssestesnnnessbesrnaestessnnsensees

2.1.1. PICPIOCESSOT ...cueeveueeverireerrnssressssessesansesensesansesessssessssensasensssessssessesessssassssassssesansesaons
2.1.2. Predefined IAENLfIErSccocvivevienesenieinininieisessseesesstscessssesssseresssaessssssssssssesanas

2.1.3.
2.2. PCC
2.2.1.
222,
2.2.3.
2.24.
2.2.5.
2.2.6.
2.3. New
2.3.1.
2.3.2.
2.3.3.
2.34.
2.3.5.
2.3.6.

3. CLibrary
4. Motorola

Structure and Union Assignment and COMPAriSONScevcuvveveniererieessasssscesens
COMPALDILILY ...vovveeninirieeeierireceeererereer sttt ettt sttt see s s sen e eresesesen s s e e sesenn
Old Fashioned CONSIUCES ...c.ouciiiniiriinininieireiennereresesensiesisessessressaesssessesesessens
ENUMETated TYPESocvvuevereiieriiientrtcie ettt st st r et ere e s sen e senenes
The VARARGS FaCIlity ...ccccveveerevenieinreiinesinecisreieeeteserse e see e sasessssessssesessesesses
Bt FIBIAS ..ovviuirireereeirenirnieiiseseetesese st cstesasssestere e st stesssrasansesasesssessssssasssassesesanes
Extern and COMIMONc.oviiiviririererineerienieese e e st sae s seesesseseseessesassssessasesassessns
ASM STALCINEINLcuviviuiueirueterereeeaeseteesteaetsisesesssescssesesesssesesasasesesesesssssssssessresssesssssas
1.8.5 FRALUTESeeeuenerreeceeeeeretere ettt ettt ses s saee s sas s asssasassssaasesssns

Preprocessing DITECHIVEScucvurueererereecrureseresnserenesesessesasessessasesenssssssssssssssssssass
Predefined Preprocessing MacCTOSccoveveveeceeecierenenererieenesssiseesssssssssssssesess
TrZraph SEQUENCESccvveiririreeerrere e er et rats et et sbs s sn st ssssasesneses
TyPe QUALIIELSovvvirieeeiceceetee ettt ses et st et ese e e sssnsas s sssnenas
2.3.6.1. VOIALIE .eeveveieereieciiiecreere sttt sttt st ererese s s e se s bbb s s s s s e snesane
2.306.2. COMSL .evrerrieierteiet ettt sttt st st st e s s st et s e e es b b s sntesabe s sssnanas

88000 TATZCL «...eeeiuirtieeie ettt ettt e e st ae et eete s e e esaesasaseeseaseanseseesssseesnesnaneas

4.1, INOAUCLION ...oviiiiiiieiiiieiieeteeteeietre st ertes e e st stesesaeseessaseasassseseesessensensensensesnossesesesressens
4.2. Motorola 88000 CharaCEriSHESeceererrerereereriesreseresesessessesessseessessssessssensesssessessssenns
4.3. Compiler OUPUL FOIMALccouriuiririierieiieesreeeesseas s sssesseteaessssesssessssssssesesssssesessansnes
4.4, REGISIET USAZE .oovvveeeeeieirreeiireereresessesssesssesseesessaessesesessssssesessssasesessssssesesesessssnsesssessnsessees
4.5. Calling CONVENLONScccevverierrrirreresrerersressesartesssssessesessessssesessesessessssesassesessessnsessssessesens

o OPUIMUZALON «..cvveveveerreeeieiiessesessesssessssssssss st sesesesssssssssssasesssesesssesesssesesssstssesesesesesersssesesesesssesens

5.1, INMOAUCLION ...vvieveviieeie ettt ctee e sreveteveaeeres b s resessenesbesesseseeresssnssessenessansssarsssenss
5.2, General OPHMIZALONS ..c.c.ocooveveeiviieerereeeeeseere e enreeesesersreseessresssassssessssssssssssssssesesesssnnsens

5.2.1.
5.2.2.
5.23.
5.24.
5.2.5.

Register Allocation by COIOTINGccoviveeieeeerirneneereirine e esesvss s eeenennes
MemOTry ALICCALON ...ccouiiieiirieeeeee sttt ettt ettt et se e sa et eseseaansvassesnans
Entry and Exit Code OplMIZAtONc.ccvuvureririnereresrinsiesenssssessssssssssssssesssessssses
Static Address ELIMINALIONcccoveeeirierinrerenieieeetnerieiseiesie e st e sessesessesesseseesassenes
REGISLEr COALESCING ...ovueveucrenenieecrerineareeteeerere e ietsreresesssssssesesssssessssssssssssssasssssns

C-88000

O O 0 3 9 9 390NN www

[T NG T (O I O R R R e e e i e e e e e e e e e
N = — © O 0 0O O OO W == OO0 0O

CHAPTER 1

Overview

1.1. The Green Hills C Documentation Set

The Green Hills C standard compiler documentation set includes a User’s Guide and Language Refer-
ence Manual. Additional documentation on product installation and execution is provided separately.
You may need to refer to separate documentation describing the assembler, librarian and linker for
your target system, and also the operating system and hardware architecture.

1.2. User’s Guide Structure

The Green Hills C User’s Guide is system specific, and describes compile time options, porting and
optimization, and considerations for the target operating environment.

Overview
The Overview describes the structure of the documentation for the compiler.
Language Features

This section describes the main features of Green Hills C Version 1.8.5, language
enhancements/extensions and compatibility.

Target

The Target chapter describes the target processor and operating system environment in which
your program will operate. It describes calling conventions, register allocation and memory
allocation strategies. It describes restrictions imposed on the compiler by the target system. It
also tells how to modify the output of the compiler to be compatible with diffcrent target
environments.

Optimization

The Optimization chapter gives detailed information about the optimizations used by Green
Hills C to improve program performance. It also explains how to get the best performance out
of your program.

Porting Programs to C

This chapter tells you about difficulties that you may encounter in moving a program
developed with another compiler to Green Hills C. It gives specific examples of difficulties
that may be encountered and how to resolve them.

Overview 3

CHAPTER 2

The C Language

2.1. Introduction

C-88000 is a complete implementation of the C programming language, and supports three separate
modes; ANSI, FullANSI and PCC. These terms are used throughout this document whenever a partic-
ular construct is supported only in a specific mode. If no specific mode is mentioned, the construct is
supported in all three modes.

Full ANSI mode (-ANSI or -X153) provides 100 percent compliance with the ANSI C X3J11 standard
and disallows any non-compliant constructs.

ANSI mode (-ansi or -X316) provides 90 percent compliance with the ANSI C X3J11 standard, allow-
ing certain useful, but non-compliant, constructs to be supported while providing an ANSI C frame-
work.

PCC mode (the default) is provided for compatibility with PCC, the Portable C Compiler. PCC is the
most widely used implementation of C. It is the compiler that is used to implement and maintain
UNIX, the largest and most important body of C code. Therefore, Green Hills has chosen to use PCC,
and in particular the Berkeley 4.2BSD VAX implementation of PCC, as the default definition of the C
language.

C-88000 in PCC mode contains everything in the basic C language, as well as all of the documented
Western Electric extensions, and all of the undocumented features of the Berkeley compiler used in
implementing UNIX. There are hundreds of extensions to the basic C language which are imple-
mented in all versions of PCC. Without these extensions it is impossible to compile UNIX and many
existing C applications programs. Several of the most important of these extensions are listed in the
section on PCC compatibility, but this is by no means a complete list.

Currently, the user documentation for C-88000 consists of this document, along with Kernighan and
Ritchie. When ANSI or FullANSI modes are used, the ANSI publication X3J11/88-083 should be used
as additional documentation. Unix implementations will also need the documentation provided with
UNIX (the Western Electric extensions).

A complete and concise C Reference Manual for the Green Hills family of C compilers is currently

under development and will be available in mid-1990. This document will replace the supplementary
documentation currently required in addition to the C-88000 User’s Guide.

The C Language 5

The C Language 7

unions that will be compared, it is important to either have no holes in the memory representation or
for each such variable to be explicitly initialized with a structure assignment from a global variable
known to have zeros in the holes.

A structure or a union may be passed as an argument to a function without restriction. The structure or
union is copied when it is passed, so passing a very large structure or union is not recommended.

2.2. PCC Compatibility

2.2.1. Old Fashioned Constructs

The default behavior of the compiler in PCC mode is to allow old fashioned initialization (such as int x
5) and old style reflexive operators (such as x =+ 5), but generate the messages:

warning: Old-fashioned initialization
-or- warning: Old-fashioned assignment operator

The -X84 option causes the compiler to disallow these constructs in PCC mode (in ANSI and Ful-
1ANSI modes these are always illegal).

The following table shows examples of the old and new style syntax which is affected by -X84.

Ooud New

Initializers intx 5,y 6; int x=5,y=6;

Operators X =+ 5 X += 5
X =- 6 X -= 6
X =* 9 X *= 9
X =/ 4 X = 4
X = y X = y
X = 0 X I= 0
X = 1 X "= 1
X =% Z X Y= z
X =<< 3 X <<= 3
X =>> 5 X >>= 5

2.2.2. Enumerated Types

Enum identifiers are signed integers by default for compatibility with PCC. The compile time option
-X6 allows them to be allocated to the smallest predefined type which allows representation of all listed
values, including unsigned integer types.

2.2.3. The VARARGS Facility

C-88000 supports the UNIX VARARGS facility. The VARARGS facility allows a function to access

its parameters in left to right order even if the number and/or types of the parameters are not known
until run time. To use the VARARGS facility:

C-88000

The C Language 9

2.2.5. Extern and Common

In PCC, the default storage class for a variable declared in the outer scope is ‘‘common’’. That is, the
variable will be allocated separately from this module. It will be allocated with the same initial address
as all other variables of storage class ‘‘common’’ with the same name declared in the outer scope of
other modules. The size of the variable allocated will be the size of the largest of the ‘“‘common’’ vari-
ables of that name. In PCC, the storage class ‘‘extern’’ defines a variable to be a reference to the
““common’’ variable of that name. If there is an ‘‘extern’’ declaration for a name there must be at least
one ‘“‘common’’ declaration of that name in the program. There may be many ‘‘extern’” and ‘‘com-
mon”’ declarations of the same name. The PCC model for ‘‘extern’’ and ‘‘common’’ is supported by
all UNIX versions of C-88000.

In some target environments ‘‘common’’ is not implemented, or it is implemented very poorly. In
those cases a different interpretation is made for the default storage class. If a variable is declared
‘““extern’’ in one module there must be exactly one declaration of a variable of the same name and type
with the default storage class in exactly one module in the same program. There may be many
“‘extern’’ declarations for the variable. This interpretation for the default storage class seems to fit the
definition in Kernighan and Richie better than the PCC definition.

If the second method is followed, a program can be ported to any implementation of C. The first
method is more convenient when using include files. It is the only method used in UNIX. Most UNIX
programs cannot be ported unchanged to target environments that do not support ‘‘common’’.

2.2.6. asm Statement

The asm statement (for inline assembly code) in C-88000 is the same as in PCC. In C-88000 the asm
statement can be used anywhere a statement can appear. If -X436 is specified, the asm statement can

be used anywhere a declaration can appear, even between functions.

Since the code generated by C-88000 is substantially different than the code generated by other com-
pilers it is usually necessary to modify most asm statements.

The predefined identifier _ _asm is available in all modes, the predefined identifier asm is not available
in FullANSI mode.

The asm statement is not supported in compilers which generate object code directly.

C-88000

The C Language 11

__STDC_ _ is a predefined preprocessor symbol available only in Full ANSI mode.
It is a decimal constant with the value of 1 indicating full conformance
to the ANSI XJ311 standard.

2.3.5. Trigraph Sequences

A set of nine alternate representations for graphic characters not supported on all terminals is provided
as part of the ANSI standard support in 1.8.5. These alternate representations all begin with the two
character prefix *“??"’ and are called trigraph sequences. They are recognized and replaced by their
ASCII counterparts during the initial translation phase of the compiler. Trigraph sequences are recog-
nized and converted only in ANSI and FullANSI modes.

2.3.6. Type Qualifiers

There are two new type qualifiers in ANSI and FullANSI modes, const and volatile, which may be
specified no more than once in a specifier or qualifier list.

2.3.6.1. volatile

When optimizations are turned on with -O in ANSI or FullANSI modes, -OM is turned on automati-
cally. -OM means that the compiler may assume that memory locations only change under the control
of the compiler, (ie. not true for memory which is updated by interrupt routines, or for memory-
mapped io, for example). Since the compiler is allowed to make this assumption (which almost always
true), it may avoid and/or delay reads or writes to memory locations by maintaining a copy of the
memory location in register(s). The volatile qualifier specifically turns off the -OM optimization for
the indicated variables, allowing all non-volatile variables to benefit from the -OM improvements.

2.3.6.2. const

This qualifier provides the compiler with additional information for use in optimizations. Wherever
the value of a const variable is visible, the optimizer make full use of the fact that this ’variable’ is sim-
ply a named constant value, combining it with other constants at compile time, and performing other
simplifications. Even when the value of a const is not visible, the optimizer can make use of the fact
that the ’variable’ is invariant to resequence statements and instructions or to move them outside of
loops.

C-88000

CHAPTER 3

C Library

On UNIX systems, C-88000 can use the standard C library. For users wishing to use the new ANSI C
libraries, and for non-UNIX systems which do not already have a C library, Green Hills supplies the
Green Hills C library. This library is supplied as either object code or C source code, depending on the
environment.

To use the Green Hills C Library you need a standard C-88000 compiler license. Under this license,
unlimited distribution of programs which are linked with Green Hills C Library object code is permit-
ted without charge. However distribution of the Green Hills C Library source code or object code is
not permitted.

C Library 13

CHAPTER 4

Motorola 88000 Target

4.1. Introduction
This chapter describes the Motorola 88000 target environment for C-88000.
4.2. Motorola 88000 Characteristics

The Motorola 88000 memory is byte addressed with 32 bit addresses. Bits are numbered with bit zero
as the most significant bit.

By default, bytes are ordered with the most significant byte of a multiple byte value stored at the lowest
address, the Big-Endian byte order, as on the IBM/370 and MC68000 (opposite of the VAX and 8086).
The reverse byte-order, Little-Endian, can be achieved by using the -Z78 compile time option. For the
purposes of this document, Big-Endian byte ordering is assumed.

Floating point is IEEE format (32 and 64 bits), most significant byte at the lowest address.

Character encoding is ASCII.

The stack is always eight byte aligned.

Bit ficlds are allocated starting at the most significant bit. Every bit field is fully contained in four or

fewer bytes. Each struct, union, and array is aligned to the maximum alignment requirement of any of
its components.

Data Type Size Alignment
int 32 32
long 32 32
* 32 32
short 16 16
char 8 8
float 32 32
double 64 64
unsigned 32 32
unsigned char 8 8
unsigned short 16 16
enum (default) 32 32

Motorola 88000 Target 15

Motorola 88000 Target 17

Although arguments are evaluated from right to left, they are assigned stack offsets from left to right.
The first argument is always at offset 0. The size of the first argument is rounded up to a multiple of 4
bytes and added to its offset to determine the offset of the second argument. If the second argument
requires 8 byte alignment and its offset would not otherwise be a multiple of 8 bytes, its offset is
increased by 4 bytes. This is repeated until offsets have been assigned to all arguments. The size of
the entire argument area is then increased by 4 bytes if necessary so that it will also be a multiple of 8
bytes. A space of at least 32 bytes and large enough to hold this argument area is present on the stack
immediately before the call.

In general, the arguments are allocated to the stack according to their stack offset, unless it is possible
to place them in registers.

Arguments with offset O through 28 may be placed in registers r2 through r9, respectively, if they have
both 4 byte size and 4 byte alignment or if they have both 8 byte size and 8 byte alignment. Eight byte
arguments are placed in the two consecutive registers which correspond to their offset.

A call to a function uses a bsr or jsr instruction which saves the return address in r1. The return from a

function uses a *‘jmp r1’’ instruction.

Return values that are scalar, pointer, 32-bit floating point or 4 byte aligned 4 bytes sized structures or
unions are returned in 12, sign or zero extended to 32 bits for types smaller than 32 bits. 64-bit floating
point values are returned in the register pair r2/r3.

To call a function which returns a structure or union (unless it is 4 byte aligned and 4 byte sized), the
address of a temporary of the return type is passed in r12. The function returns the structure value by
copying the return value to the address pointed to by r12 before returning to the caller.

A function call is assumed to destroy rl to r13. No other registers are destroyed by a function.

Accesses to parameters or local stack storage are always made relative to the stack pointer. A frame
pointer is only set up if source level debugging is required.

C-88000

CHAPTER 5§

Optimization

5.1. Introduction

C-88000 does many optimizations which are not available in other C compilers. These optimizations
can reduce the size of a program by up to 30% and increase its speed by up to four times. C-88000
performs all of the optimizations performed by most other C compilers. It folds constant expressions,
converts multiplications into shifts and divides into multiplications when it is advantageous, and elim-
inates redundant jumps and unreachable code.

5.2. General Optimizations
General optimizations always make programs smaller and faster.

5.2.1. Register Allocation by Coloring

Register allocation by coloring is used to keep the most commonly used values in registers at all times.
The entire function is examined to determine which local variables and parameters are used most fre-
quently. The most commonly used variables and parameters are allocated to machine registers. No
memory is allocated for them. This optimization has a significant savings in exccution speed and it
saves a great deal of space. Referencing a variable in a register usually takes one-third of the space and
one-third of the time of referencing a variable in memory.

The register allocator uses data flow analysis to find the lifetime of each variable. Using this informa-
tion, it increases the number of variables which are stored in registers by using the same register for
several variables in the same function. Two variables may be allocated to the same register if there is
no place in the program in which both variables hold a value that will be used later on. Most of the
time, all local variables are kept in registers and none in memory.

By default, any integer, pointer, enum, float, or double automatic (or register) variable is a candidate
for allocation to a register, unless its address is taken with the *“&’’ operator.

By default, all register candidates will be allocated to the available registers so as to give either the
fastest or densest code possible (as controlled by the -OL compile time option). Most C compilers will
allocate one register variable to each available register and then allocate all other register variables and
all automatic variables in the stack frame. C-88000 will allocate as many of the register variables to
registers as it can. Then it will allocatc any automatic variables to registers if it can. C-88000 is much
better than most C compilers in its register allocation.

In the following example, C-88000 allocates i and j to the same register because their lifetimes do not
overlap.

Optimization 19

Optimization 21

5.2.3. Entry and Exit Code Optimization

Most compilers use a frame pointer register in each function. The frame pointer is used to access local
variables, to point up the call stack to allow stack traces to be printed during debugging, and to unwind
the stack for an exception mechanism. The frame pointer is valuable but it is usually not necessary.
By default, C-88000 does not set up a frame pointer in each function. C-88000 will generate a frame
pointer if the code is the same size or smaller with a frame pointer, but otherwise it will not create a
frame pointer and it will access all local variables by using the stack pointer instead.

If it is necessary to have a frame pointer in every function the ‘“-ga’’ compile time option can be
specified on the command line. This compile time option will guarantee that there will always be a
frame pointer, but it will increase the size of the program.

If a function is very short (a common occurrence in structured programming), the entry and exit code
may take a large fraction of the space and execution time of the function. If all of the parameters and
local variables of a function are allocated in registers (usually for a function of 20 lines or less), the
compiler can often eliminate the subroutine entry and exit code entirely. This optimization generates
code much like the best assembly language implementation.

See the example under Register Allocation by Coloring for improvements to the entry and exit code.

5.2.4. Static Address Elimination

A valuable optimization performed by C-88000 is to maintain frequently used static addresses in regis-
ters. Since static addresses are 4 bytes long, if a static address is used just twice in a function, it is fas-
ter and smaller to load the address into a register just once at the beginning of the function and always
use ‘‘register indirect’” addressing to access it. In this way, most static references are reduced to one-
third of the space and less execution time.

PO

{
f(1);
f(2);
f(3);
f(4);

_p:
subu r31r31.8
st r1,r314
bsr.n _f
or r2,10,1
bsr.n _f
or r2,10,2
bsr.n f
or r2,:0,3
bsr.n _f
or r2,10,4
1d r1314

C-88000

Optimization 23

5.2.7. Loop Rotation

In C, the ““for’’ and ‘‘while’” statements specify the loop termination conditions at the top of the loop.
Therefore, many C compilers generate a termination test at the top of the loop and an unconditional
branch from the bottom of the loop to the top of the loop. The loop will execute two branch instruc-
tions on each iteration of the loop.

A better way to generate code for loops is to place the test at the bottom of the loop. This is called
“‘Loop Rotation’’. If it can be determined at compile time that the loop will always execute at least
once then the loop is entered from the top. If it cannot be determined that the loop will be executed at
least once, then an unconditional branch to the termination test is placed before the loop entry. With
the test at the bottom only one branch is executed on each iteration of the loop.

5.2.8. Peephole Optimizations

Peephole optimizations are local improvements to the code which are certain to be correct without
further analysis of the surrounding code. An example would be two machine instructions where the
first moves the contents of register A to register B, and the second instruction moves the contents of
register B to register A. If the program code never branches to the second instruction (i.e. both instruc-
tions are always executed together), the second instruction can be safely eliminated.

All of the peephole optimizations which have been implemented are safe for device driver code.
Should there be any reason to suppress these optimizations, it can be done with the -X9 compile time
option.

5.3. Loop Optimizations

Programs which execute for long periods of time execute millions or billions of instructions. Since
most programs consist of tens or hundreds of thousands of instructions, some instructions must be exe-
cuted many times. To increase the speed of a program it is necessary to identify which instructions are
executed the most often and concentrate the optimizations in these areas. Computer languages have
two main constructs for repcating the execution of instructions: loops and subroutines. By making
specific optimizations for each of these constructs it is possible to significantly improve the perfor-
mance of most programs.

The loop optimizer is selected by the -OL compile time option. This compile time options informs C-
88000 that most computation is performed in inner loops. When this compile time option is specified,
C-88000 assigns most of the machines resources, registers in particular, to uses in the innermost loop.
This can result in significant performance increases in programs which do most of their computation in
loops.

The loop optimizer draws resources away from other useful optimizations. If -OL is specified for a
program in which very little computation is done in inner loops, most of the machine’s resources will
be misdirected in attempting to optimize infrequently executed loops. This can result in decreasing the
total performance of the program. The -OL compile time option should only be used on modules for
which the programmer is certain most processing occurs in loops.

5.3.1. Loop Invariant Analysis

“Loop Invariant Analysis’’ is used to speed up loops. Each loop is examined for expressions and
address calculations which do not change in the loop. These computations are moved out of the loop
and the value is stored into a register. This optimization is particularly valuable for removing array
subscripts from a loop when the subscript is a variable or expression which is not modified in the loop.
In a small loop, all invariant expressions will be accessed with ‘‘register mode’’ and all invariant
addresses will be accessed with ‘‘register indirect modes.”” This optimization usually eliminates all
computations of invariant expressions and addresses in loops.

C-88000

CHAPTER 6

Porting Programs to C-88000

Some programs which appear to compile and operate correctly when compiled with other C compilers,
may not operate correctly when compiled with C-88000. The C Language specifications define pro-
grams in such a way that portable programs will always work with all C compilers, including C-88000.
The problem is that many programmers make non-portable assumptions about the machine or compiler
that they are using. This chapter discusses many non-portable assumptions which can cause programs
to fail when compiled with C-88000.

6.1. Compatibility with other Green Hills Compilers

All Green Hills Languages use the same calling conventions for all subroutines, routines, procedures,
and functions. Therefore, code from other Green Hills Languages can be freely used within your C-
88000 program.

The implementation of each Green Hills C Compiler is the same for each Green Hills Target. There-
fore, legal programs written in C-88000 can be moved to any other Green Hills C Compiler.

C-88000 can be obtained on any Green Hills Host. It is exactly the same on every Host. Therefore,
program development can be done on more than one Host, and moving your development to a new
Host system is easy.

6.2. Word Size Problems

Some machines are byte addressable. That is, they have addresses which refer to 8 bit bytes. They
typically have operations which operate on 8, 16, 32, 64 and 128 bit quantitics. Other machines are
word addressable. That is, they have addresses which refer to words of a standard size varying from 16
to 64 bits. They typically have operations which operate on multiples of the word size.

If two different machines have different word sizes or if one is word addressable and the other is byte
addressable, a program which operates on one machine may not operate on the other machine for
several reasons. The word size affects the range of numbers implemented by the “‘int’’ data type. The
word size also affects the precision and range of the float and double data types.

The most common word size problems are (often undetected) integer overflows and floating point
underflows, overflows, and loss of precision. The layout of bit aligned data structures will vary with
the word size, so overlaying structures in memory (with union types or pointers) makes programs
difficult to port to another compile. Doing address arithmetic in integer variables is often not portable.
C provides portable pointer arithmetic if it is used correctly.

Porting Programs to C-88000 25

Porting Programs to C-88000 27

overlays. It will also lead to problems with programs which make implicit assumptions about the size
and offset of objects.

6.5. Character Set Dependencies

Not all computer systems use the same characters. All computer systems recognize letters, digits, and
the standard punctuation characters. But there is considerable variation among the less commonly used
characters. Therefore programs which use the less common characters may not be portable.

C-88000 uses the ASCII character set and the ASCII collating sequence. Some implementations of C
use a different collating sequence such as EBCDIC.

Programs which manipulate character data, especially string sorting algorithms may be dependent <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>