
dy DataGeneral

Customer Documentation

Green Hills Software

C-88000° User’s Guide

Green Hills Software

C-88000” User’s Guide

069-100230-01

For the latest enhancements, cautions, documentation changes, and other information

on this product, please see the Release Notice (O85-series) supplied with the software.

Ordering No. 069-100230

Copyright © 1983,1984,1985,1986,1987,1988,1989,1990 Green Hills Software, Inc.

All Rights Reserved

Printed in the United States of America

Rev. 01, May 1990

Copyright © 1983,1984,1985,1986,1987,1988,1989, 1990 by Green Hills Software, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or

transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or other-

wise, without the prior written permission of Green Hills Software, Inc.

DISCLAIMER

GREEN HILLS SOFTWARE, INC. MAKES NO REPRESENTATIONS OR WARRANTIES WITH

RESPECT TO THE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED

WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

Further, Green Hills Software, Inc. reserves the right to revise this publication and to make changes

from time to time in the content hereof without obligation of Green Hills Software, Inc. to notify any

person of such revision or changes.

Green Hills Software, Inc.

510 Castillo St. 230 Second Ave.

Santa Barbara, Ca. 93101 Waltham, Ma. 02154

(805) 965-6044 (617) 890-7889

Fax: 965-6343 Fax: 890-4644

Green Hills Software is a trademark of Green Hills Software, Inc.

C-88000 is a trademark of Green Hills Software, Inc.

UNIX is a trademark of Bell Laboratories.

DEC, VAX, and VMS are trademarks of Digital Equipment Corporation.

4.2BSD is a trademark of the Board of Regents of the University of California at Berkeley.

C-88000

Table of Contents

LD. OVCIVICW ou... ceesccccsssscccsssssecesssusecsessceceessucescesseseccsssueecessececeerssesessuacesseseescecsseeeecesaeseceeeesenenacaeeenes

1.1. The Green Hills C Documentation Setcccssssecsssececeessseceseeeceseeeecesssaeceseseeeecenaese

1.2. User’s Guide Structurecccccccssccssscccsssccssscssseccessesesessecessecessseeeeseaseseseecessesesseeeecssnes

2, The C Languagec.....cccesscccssseccesssececssccecessnsesessneceessseccossesesceeeaecessneececsuaseceesecesscseeeecsesensesenss

2.1. IMMOGUCLIONcccecssssssececessseececsesssecesesseaeececesseacaesenssueeseceseceessesesnseesescucssaesscesesenaeesees

2.1.1. PY@PLOCESSOLccessssscecessnseacecessnacceccsessuceececensnseessesenaeeceseseausececesesauseeseceaaeeesessees

2.1.2. Predefined Identifiers 0.0... eesssesssessscsscecsecesssecsesssscesaecseeecsseseacessececsecssesseeceneees

2.1.3. Structure and Union Assignment and Comparisonsc.cscsssssssssssessssesecesseseseevees

2.2. PCC Compatibility ccc ccsssccessssecsssecessserensuscessseessssececsescesstecesseecestscseseescesrscesseeecess

2.2.1. Old Fashioned Comstructscccccsscccccsssccsessscecessececsssscecessncesesssaeecesssseeseseeeeeeesenes

2.2.2. Enumerated Typecccccsssscsssesssecssecssecssscssaeceseeessessncesseseesecsaeesssecsesecaeseeseeseees

2.2.3. The VARARGS Facility oo... cccscccesssccesssnceecssseecsssececessecesessaeeeceeseeeeessaececeseees

2.2.4. Bit Fieldsccccccssssscscsssecsesseecessssseccessssescsaneesseseeeecseeeecessecesesseasecesseaceeseesesseeees

2.2.5. Extern and Commonccccceeeeeeeees sacaeeenceeenacaeecececesensanseaeceseesesesauaaececesseaeanseess

2.2.6. ASM SLALCMENLcccesscceesscccssssceessesenseecessseeeseeecesseeecsssscecsesecesessecssseceesscessesscess

2.3. New 1.8.5 Features 0... ccececesssesecesseeseseeeeneees seeensaccecesscceeeusaceeessessecseeeeecesesaeeesessesesseeaeeess

2.3.1. Compile Time OPtionscccccccssssessscessecceseceessceeseeseseceessscessesesaesensscssseessreesnees

QB. ASIN w.eccecccccsssccecssscceessscceessececsesssecessueesesseeescseceeecsesseeseessessusessueeseseseeececesecesasassensues

2.3.3. Preprocessing Directivecccssscesssssesssecssssecesssccessesecsssscesssesssssssscessscstsscusseseeees

2.3.4. Predefined Preprocessing MACTOSccccsescessecsssecsscssssesecssseecseusesescesssssscasceseees

2.3.5. Trigraph Sequencescccsccssscsscsssssssesssessecssessecestecssesssseesusaceeescesessssesucssseuscsesens

2.3.6. Type Qualiffersccecsssccsssecessecssscenseceseeeecsssecseseesseecssseenessenescesessscessssessucsesenses

2.3.6.1. VOlattle oe ececssssecesssscscsscessscesscaecessesessesecesseecsseescesseseessessessssenssaecessues

2.3.6.2. CONSEccccccssssccsssccssccccessscessnsesesseecscsessecsnsessssesesesssssessvssssscsesssssavsessesoeanes

3. CLADrary ooo. cececcssccessececsssecsscecsssecseessssseseesesscsuceusvscsssesssessusccseecessecesesceseecessasscsssssasessnasseseess

4. Motorola 88000 Target cc cccccceccececeseesssssesensecseeceaecsesesescececenesesssueuseeeeaeessssceseeceseeseeeeeecs

A.V. IMtrOdGuctiOn 00... .ccccccccccecsssssececesesseaeececsenseceuenseesececesseaeececesseuessecesesessscesesseesusuceesareuseess

4.2. Motorola 88000 Characteristicscsccccssssccsnsecessececssecessecececesesssasseueesessescesessenssussessnes

4.3. Compiler Output FOrMat ccc ccsesseecesseseceesesececsscecesccsecesesssccscsesseecessucsscsseesscessseeaese

A.A, Register USageccccecessecssessscessscsssecssseceseceseseecseeseseeceesecsasesssussssestscssecsseserscesssesueseeses

AS. Calling COMVentions .0........ccecscscssssecessceessssscecsssesessesesseseeesssesssaeecssssesenaeecsssseeeseuccssaeaecess

5. OPtiMiZatiOnccecessscssscessscsscecsssessessssseesseseecsssessscessestscssscssscessecedsessuesessesascscscaasessevenesees

S.1. TMtrOductiONn oo... cc ecesecesecsscecsssecsesessssesesaecsceecsseesssteceseecesssessssesecescestecsscscssssceescessaseaues

5.2. Gemeral Optimizations ooo... cece ecessesvesscecsseccesnscecsseecesuevessaseseesascesuecesssceceeaeceseaceseseaaese

5.2.1. Register Allocation by Coloringccccccescessecscesssesseceesscsseccssesseeecssesessesneseesss

5.2.2. Memory AllOCationcccccsscessscecsssscecsecccsssececsseecessssecsssecsesseecesesssessseceeaseesueueas

5.2.3. Entry and Exit Code Optimization ccc ccscecstsesscessesesseceseecseesessecssesesceeteeenss

5.2.4. Static Address E]IMimationcccccsscessssseeecssseccceesscesesecsesesesseesecsessesesseeeseeens

5.2.5. Register COaleSCIngcccccccsssecessscecsssccecececssneeecsesecesscecssesceesseecesesceesssesesseeseneees

C-88000

Ceo ON NANI NNDDDW ANH WW W

BO BRO RDN eS ISNoe KSB TO CO OOD DDN NAW — Fe KF KH CO CO CO CSC SO

CHAPTER 1

Overview

1.1. The Green Hills C Documentation Set

The Green Hills C standard compiler documentation set includes a User’s Guide and Language Refer-

ence Manual. Additional documentation on product installation and execution 1s provided separately.

You may need to refer to separate documentation describing the assembler, librarian and linker for

your target system, and also the operating system and hardware architecture.

1.2. User’s Guide Structure

The Green Hills C User’s Guide is system specific, and describes compile time options, porting and

optimization, and considerations for the target operating environment.

Overview

The Overview describes the structure of the documentation for the compiler.

Language Features

This section describes the main features of Green Hills C Version 1.8.5, language

enhancements/extensions and compatibility.

Target

The Target chapter describes the target processor and operating system environment in which

your program will operate. It describes calling conventions, register allocation and memory

allocation strategies. It describes restrictions imposed on the compiler by the target system. It

also tells how to modify the output of the compiler to be compatible with different target

environments.

Optimization

The Optimization chapter gives detailed information about the optimizations used by Green

Hills C to improve program performance. It also explains how to get the best performance out

of your program.

Porting Programs to C

This chapter tells you about difficulties that you may encounter in moving a program

developed with another compiler to Green Hills C. It gives specific examples of difficulties

that may be encountered and how to resolve them.

Overview 3

CHAPTER 2

The C Language

2.1. Introduction

C-88000 is a complete implementation of the C programming language, and supports three separate

modes; ANSI, FullANSI and PCC. These terms are used throughout this document whenever a partic-

ular construct is supported only in a specific mode. If no specific mode is mentioned, the construct is

supported in all three modes.

FullANSI mode (-ANSI or -X153) provides 100 percent compliance with the ANSI C X3J11 standard

and disallows any non-compliant constructs.

ANSI mode (-ansi or -X316) provides 90 percent compliance with the ANSI C X3J11 standard, allow-

ing certain useful, but non-compliant, constructs to be supported while providing an ANSI C frame-

work.

PCC mode (the default) is provided for compatibility with PCC, the Portable C Compiler. PCC is the

most widely used implementation of C. It is the compiler that is used to implement and maintain

UNIX, the largest and most important body of C code. Therefore, Green Hills has chosen to use PCC,

and in particular the Berkeley 4.2BSD VAX implementation of PCC, as the default definition of the C

language.

C-88000 in PCC mode contains everything in the basic C language, as well as all of the documented

Western Electric extensions, and all of the undocumented features of the Berkeley compiler used in

implementing UNIX. There are hundreds of extensions to the basic C language which are imple-

mented in all versions of PCC. Without these extensions it is impossible to compile UNIX and many

existing C applications programs. Several of the most important of these extensions are listed in the

section on PCC compatibility, but this is by no means a complete list.

Currently, the user documentation for C-88000 consists of this document, along with Kernighan and

Ritchie. When ANSI or FullANSI modes are used, the ANSI publication X3J11/88-083 should be used

as additional documentation. Unix implementations will also need the documentation provided with

UNIX (the Western Electric extensions).

A complete and concise C Reference Manual for the Green Hills family of C compilers is currently

under development and will be available in mid-1990. This document will replace the supplementary

documentation currently required in addition to the C-88000 User’s Guide.

The C Language 5

The C Language 7

unions that will be compared, it is important to either have no holes in the memory representation or

for each such variable to be explicitly initialized with a structure assignment from a global variable

known to have zeros in the holes.

A structure or a union may be passed as an argument to a function without restriction. The structure or

union is copied when it is passed, so passing a very large structure or union is not recommended.

2.2. PCC Compatibility

2.2.1. Old Fashioned Constructs

The default behavior of the compiler in PCC mode is to allow old fashioned initialization (such as int x

5) and old style reflexive operators (such as x =+ 5), but generate the messages:

waming: Old-fashioned initialization

-Or- warning: Old-fashioned assignment operator

The -X84 option causes the compiler to disallow these constructs in PCC mode (in ANSI and Ful-

IANSI modes these are always illegal).

The following table shows examples of the old and new style syntax which is affected by -X84.

Old New

Initializers int x 5,y 6; int x=5,y=6;

Operators x =+ 5 X += 5

X =- 6 X -= 6

X * 9 X * 9

X =/ 4 X i 4

X = y X = y

x =| 0 x |= 0

X =] X — l

X =% Z X = Z

X =<< 3 X <<= 3

X =>> 5 X >>= 5

2.2.2. Enumerated Types

Enum identifiers are signed integers by default for compatibility with PCC. The compile time option

-X6 allows them to be allocated to the smallest predefined type which allows representation of all listed

values, including unsigned integer types.

2.2.3. The VARARGS Facility

C-88000 supports the UNIX VARARGS facility. The VARARGS facility allows a function to access

its parameters in left to right order even if the number and/or types of the parameters are not known

until run time. To use the VARARGS facility:

C-88000

The C Language 9

2.2.5. Extern and Common

In PCC, the default storage class for a variable declared in the outer scope is ““common’’, That is, the

variable will be allocated separately from this module. It will be allocated with the same initial address

as all other variables of storage class ‘‘common’’ with the same name declared in the outer scope of

other modules. The size of the variable allocated will be the size of the largest of the “‘common’’ vari-

ables of that name. In PCC, the storage class ‘‘extern’’ defines a variable to be a reference to the

‘“common’’ variable of that name. If there is an “‘extern’’ declaration for a name there must be at least

one ‘‘common’’ declaration of that name in the program. There may be many ‘‘extern’’ and “‘com-

mon’’ declarations of the same name. The PCC model for ‘‘extern’’ and ‘‘common’”’ is supported by

all UNIX versions of C-88000.

In some target environments ‘‘common’’ is not implemented, or it is implemented very poorly. In

those cases a different interpretation is made for the default storage class. If a variable is declared

‘“‘extern’’ in one module there must be exactly one declaration of a variable of the same name and type

with the default storage class in exactly one module in the same program. There may be many

‘“‘extern’’ declarations for the variable. This interpretation for the default storage class seems to fit the

definition in Kernighan and Richie better than the PCC definition.

If the second method is followed, a program can be ported to any implementation of C. The first

method is more convenient when using include files. It is the only method used in UNIX. Most UNIX

programs cannot be ported unchanged to target environments that do not support “‘common’’.

2.2.6. asm Statement

The asm statement (for inline assembly code) in C-88000 is the same as in PCC. In C-88000 the asm

statement can be used anywhere a statement can appear. If -X436 is specified, the asm statement can

be used anywhere a declaration can appear, even between functions.

Since the code generated by C-88000 is substantially different than the code generated by other com-

pilers it is usually necessary to modify most asm statements.

The predefined identifier _ _asm is available in all modes, the predefined identifier asm is not available

in FullLANSI mode.

The asm statement is not supported in compilers which generate object code directly.

C-88000

The C Language 11

__STDC___ isa predefined preprocessor symbol available only in Full ANSI mode.

It is a decimal constant with the value of 1 indicating full conformance

to the ANSI XJ311 standard.

2.3.5. Trigraph Sequences

A set of nine alternate representations for graphic characters not supported on all terminals is provided

as part of the ANSI standard support in 1.8.5. These alternate representations all begin with the two

character prefix ‘*??’’ and are called trigraph sequences. They are recognized and replaced by their

ASCII counterparts during the initial translation phase of the compiler. Trigraph sequences are recog-

nized and converted only in ANSI and FullANSI modes.

2.3.6. Type Qualifiers

There are two new type qualifiers in ANSI and FullANSI modes, const and volatile, which may be

specified no more than once in a specifier or qualifier list.

2.3.6.1. volatile

When optimizations are turned on with -O in ANSI or FullANSI modes, -OM is turned on automati-

cally. -OM means that the compiler may assume that memory locations only change under the control

of the compiler, (ie. not true for memory which is updated by interrupt routines, or for memory-

mapped io, for example). Since the compiler is allowed to make this assumption (which almost always

true), it may avoid and/or delay reads or writes to memory locations by maintaining a copy of the

memory location in register(s). The volatile qualifier specifically turns off the -OM optimization for

the indicated variables, allowing all non-volatile variables to benefit from the -OM improvements.

2.3.6.2. const

This qualifier provides the compiler with additional information for use in optimizations. Wherever

the value of a const variable is visible, the optimizer make full use of the fact that this ’variable’ is sim-

ply a named constant value, combining it with other constants at compile time, and performing other

simplifications. Even when the value of a const is not visible, the optimizer can make use of the fact

that the ’variable’ is invariant to resequence statements and instructions or to move them outside of

loops.

C-88000

CHAPTER 3

C Library

On UNIX systems, C-88000 can use the standard C library. For users wishing to use the new ANSI C

libraries, and for non-UNIX systems which do not already have a C library, Green Hills supplies the

Green Hills C library. This library is supplied as either object code or C source code, depending on the

environment.

To use the Green Hills C Library you need a standard C-88000 compiler license. Under this license,

unlimited distribution of programs which are linked with Green Hills C Library object code is permit-

ted without charge. However distribution of the Green Hills C Library source code or object code is

not permitted.

C Library 13

CHAPTER 4

Motorola 88000 Target

4.1. Introduction

This chapter describes the Motorola 88000 target environment for C-88000.

4.2. Motorola 88000 Characteristics

The Motorola 88000 memory is byte addressed with 32 bit addresses. Bits are numbered with bit zero

as the most significant bit.

By default, bytes are ordered with the most significant byte of a multiple byte value stored at the lowest

address, the Big-Endian byte order, as on the IBM/370 and MC68000 (opposite of the VAX and 8086).

The reverse byte-order, Little-Endian, can be achieved by using the -Z78 compile time option. For the

purposes of this document, Big-Endian byte ordering is assumed.

Floating point is IEEE format (32 and 64 bits), most significant byte at the lowest address.

Character encoding is ASCII.

The stack 1s always eight byte aligned.

Bit fields are allocated starting at the most significant bit. Every bit field is fully contained in four or

fewer bytes. Each struct, union, and array is aligned to the maximum alignment requirement of any of

its components.

Data Type Size Alignment

int 32 32

long 32 32

* 32 32

short 16 16

char 8 8

float 32 32

double 64 64

unsigned 32 32

unsigned char 8&8 8

unsigned short 16 16

enum (default) 32 32

Motorola 88000 Target 15

Motorola 88000 Target 17

Although arguments are evaluated from right to left, they are assigned stack offsets from left to right.

The first argument is always at offset 0. The size of the first argument is rounded up to a multiple of 4

bytes and added to its offset to determine the offset of the second argument. If the second argument

requires 8 byte alignment and its offset would not otherwise be a multiple of 8 bytes, its offset is

increased by 4 bytes. This is repeated until offsets have been assigned to all arguments. The size of

the entire argument area is then increased by 4 bytes if necessary so that it will also be a multiple of 8

bytes. A space of at least 32 bytes and large enough to hold this argument area is present on the stack

immediately before the call.

In general, the arguments are allocated to the stack according to their stack offset, unless it is possible

to place them in registers.

Arguments with offset 0 through 28 may be placed in registers r2 through r9, respectively, if they have

both 4 byte size and 4 byte alignment or if they have both 8 byte size and 8 byte alignment. Eight byte

arguments are placed in the two consecutive registers which correspond to their offset.

A call to a function uses a bsr or jsr instruction which saves the return address inrl. The return from a

function uses a ““‘jmp r1’’ instruction.

Return values that are scalar, pointer, 32-bit floating point or 4 byte aligned 4 bytes sized structures or

unions are returned in r2, sign or zero extended to 32 bits for types smaller than 32 bits. 64-bit floating

point values are returned in the register pair r2/r3.

To call a function which returns a structure or union (unless it is 4 byte aligned and 4 byte sized), the

address of a temporary of the return type is passed in r12. The function returns the structure value by

copying the return value to the address pointed to by r12 before returning to the caller.

A function call is assumed to destroy rl tor13. No other registers are destroyed by a function.

Accesses to parameters or local stack storage are always made relative to the stack pointer. A frame

pointer is only set up if source level debugging is required.

C-88000

CHAPTER 5

Optimization

5.1. Introduction

C-88000 does many optimizations which are not available in other C compilers. These optimizations

can reduce the size of a program by up to 30% and increase its speed by up to four times. C-88000

performs all of the optimizations performed by most other C compilers. It folds constant expressions,

converts multiplications into shifts and divides into multiplications when it is advantageous, and elim-

inates redundant jumps and unreachable code.

5.2. General Optimizations

General optimizations always make programs smaller and faster.

5.2.1. Register Allocation by Coloring

Register allocation by coloring is used to keep the most commonly used values in registers at all times.

The entire function is examined to determine which local variables and parameters are used most fre-

quently. The most commonly used variables and parameters are allocated to machine registers. No

memory is allocated for them. This optimization has a significant savings in execution speed and it

saves a great deal of space. Referencing a variable in a register usually takes one-third of the space and

one-third of the time of referencing a variable in memory.

The register allocator uses data flow analysis to find the lifetime of each variable. Using this informa-

tion, it increases the number of variables which are stored in registers by using the same register for

several variables in the same function. Two variables may be allocated to the same register if there is

no place in the program in which both variables hold a value that will be used later on. Most of the

time, all local variables are kept in registers and none in memory.

By default, any integer, pointer, enum, float, or double automatic (or register) variable is a candidate

for allocation to a register, unless its address is taken with the **&’’ operator.

By default, all register candidates will be allocated to the available registers so as to give either the

fastest or densest code possible (as controlled by the -OL compile time option). Most C compilers will

allocate one register variable to each available register and then allocate all other register variables and

all automatic variables in the stack frame. C-88000 will allocate as many of the register variables to

registers as itcan. Then it will allocate any automatic variables to registers if itcan. C-88000 is much

better than most C compilers in its register allocation.

In the following example, C-88000 allocates 1 and j to the same register because their lifetimes do not

overlap.

Optimization 19

Optimization 21

5.2.3. Entry and Exit Code Optimization

Most compilers use a frame pointer register in each function. The frame pointer is used to access local

variables, to point up the call stack to allow stack traces to be printed during debugging, and to unwind

the stack for an exception mechanism. The frame pointer is valuable but it is usually not necessary.

By default, C-88000 does not set up a frame pointer in each function. C-88000 will generate a frame

pointer if the code is the same size or smaller with a frame pointer, but otherwise it will not create a

frame pointer and it will access all local variables by using the stack pointer instead.

If it is necessary to have a frame pointer in every function the ‘‘-ga’’ compile time option can be

specified on the command line. This compile time option will guarantee that there will always be a

frame pointer, but it will increase the size of the program.

If a function is very short (a common occurrence in structured programming), the entry and exit code

may take a large fraction of the space and execution time of the function. If all of the parameters and

local variables of a function are allocated in registers (usually for a function of 20 lines or less), the

compiler can often eliminate the subroutine entry and exit code entirely. This optimization generates

code much like the best assembly language implementation.

See the example under Register Allocation by Coloring for improvements to the entry and exit code.

5.2.4. Static Address Elimination

A valuable optimization performed by C-88000 is to maintain frequently used static addresses in regis-

ters. Since static addresses are 4 bytes long, if a static address is used just twice in a function, it is fas-

ter and smaller to load the address into a register just once at the beginning of the function and always

use “‘register indirect’’ addressing to access it. In this way, most static references are reduced to one-

third of the space and less execution time.

pd)

{

f(1);

f(2);

f(3);

f(4);

_Pp:

subu r31731,8

st r1r31,4

bsr.n _f

or r2,r0,1

bsr.n _f

or r2,r0,2

bsr.n _f

or r2,r0,3

bsr.n _f

or r2,10,4

Id r17r31,4

C-88000

Optimization 23

5.2.7. Loop Rotation

In C, the ‘*for’’ and “‘while’’ statements specify the loop termination conditions at the top of the loop.

Therefore, many C compilers generate a termination test at the top of the loop and an unconditional

branch from the bottom of the loop to the top of the loop. The loop will execute two branch instruc-

tions on each iteration of the loop.

A better way to generate code for loops is to place the test at the bottom of the loop. This is called

‘“‘Loop Rotation’’. If it can be determined at compile time that the loop will always execute at least

once then the loop is entered from the top. If it cannot be determined that the loop will be executed at

least once, then an unconditional branch to the termination test is placed before the loop entry. With

the test at the bottom only one branch is executed on each iteration of the loop.

5.2.8. Peephole Optimizations

Peephole optimizations are local improvements to the code which are certain to be correct without

further analysis of the surrounding code. An example would be two machine instructions where the

first moves the contents of register A to register B, and the second instruction moves the contents of

register B to register A. If the program code never branches to the second instruction (i.e. both instruc-

tions are always executed together), the second instruction can be safely eliminated.

All of the peephole optimizations which have been implemented are safe for device driver code.

Should there be any reason to suppress these optimizations, it can be done with the -X9 compile time

option.

5.3. Loop Optimizations

Programs which execute for long periods of time execute millions or billions of instructions. Since

most programs consist of tens or hundreds of thousands of instructions, some instructions must be exe-

cuted many times. To increase the speed of a program it is necessary to identify which instructions are

executed the most often and concentrate the optimizations in these areas. Computer languages have

two main constructs for repeating the execution of instructions: loops and subroutines. By making

specific optimizations for each of these constructs it is possible to significantly improve the perfor-

mance of most programs.

The loop optimizer is selected by the -OL compile time option. This compile time options informs C-

88000 that most computation is performed in inner loops. When this compile time option is specified,

C-88000 assigns most of the machines resources, registers in particular, to uses in the innermost loop.

This can result in significant performance increases in programs which do most of their computation in

loops.

The loop optimizer draws resources away from other useful optimizations. If -OL is specified for a

program in which very little computation is done in inner loops, most of the machine’s resources will

be misdirected in attempting to optimize infrequently executed loops. This can result in decreasing the

total performance of the program. The -OL compile time option should only be used on modules for

which the programmer is certain most processing occurs in loops.

5.3.1. Loop Invariant Analysis

‘“Loop Invariant Analysis’’ is used to speed up loops. Each loop is examined for expressions and

address calculations which do not change in the loop. These computations are moved out of the loop

and the value is stored into a register. This optimization is particularly valuable for removing array

subscripts from a loop when the subscript is a variable or expression which is not modified in the loop.

In a small loop, all invariant expressions will be accessed with “‘register mode’’ and all invariant

addresses will be accessed with ‘‘register indirect modes.’’ This optimization usually eliminates all

computations of invariant expressions and addresses in loops.

C-88000

CHAPTER 6

Porting Programs to C-88000

Some programs which appear to compile and operate correctly when compiled with other C compilers,

may not operate correctly when compiled with C-88000. The C Language specifications define pro-

grams in such a way that portable programs will always work with all C compilers, including C-88000.

The problem is that many programmers make non-portable assumptions about the machine or compiler

that they are using. This chapter discusses many non-portable assumptions which can cause programs

to fail when compiled with C-88000.

6.1. Compatibility with other Green Hills Compilers

All Green Hills Languages use the same calling conventions for all subroutines, routines, procedures,

and functions. Therefore, code from other Green Hills Languages can be freely used within your C-

88000 program.

The implementation of each Green Hills C Compiler is the same for each Green Hills Target. There-

fore, legal programs written in C-88000 can be moved to any other Green Hills C Compiler.

C-88000 can be obtained on any Green Hills Host. It is exactly the same on every Host. Therefore,

program development can be done on more than one Host, and moving your development to a new

Host system is easy.

6.2. Word Size Problems

Some machines are byte addressable. That is, they have addresses which refer to 8 bit bytes. They

typically have operations which operate on 8, 16, 32, 64 and 128 bit quantities. Other machines are

word addressable. That is, they have addresses which refer to words of a standard size varying from 16

to 64 bits. They typically have operations which operate on multiples of the word size.

If two different machines have different word sizes or if one is word addressable and the other is byte

addressable, a program which operates on one machine may not operate on the other machine for

several reasons. The word size affects the range of numbers implemented by the “‘int’’ data type. The

word size also affects the precision and range of the float and double data types.

The most common word size problems are (often undetected) integer overflows and floating point

underflows, overflows, and loss of precision. The layout of bit aligned data structures will vary with

the word size, so overlaying structures in memory (with union types or pointers) makes programs

difficult to port to another compile. Doing address arithmetic in integer variables is often not portable.

C provides portable pointer arithmetic if it is used correctly.

Porting Programs to C-88000 25

Porting Programs to C-88000 27

overlays. It will also lead to problems with programs which make implicit assumptions about the size

and offset of objects.

6.5. Character Set Dependencies

Not all computer systems use the same characters. All computer systems recognize letters, digits, and

the standard punctuation characters. But there is considerable variation among the less commonly used

characters. Therefore programs which use the less common characters may not be portable.

C-88000 uses the ASCII character set and the ASCII collating sequence. Some implementations of C

use a different collating sequence such as EBCDIC.

Programs which manipulate character data, especially string sorting algorithms may be dependent on a

particular character collating sequence. The collating sequence is the order in which characters are

defined by the implementation. If one character appears before a second character in the collating

sequence, then the first character will be ‘‘less than’’ the second character when they are compared. In

the ASCII collating sequence, the lower-case letters ‘‘a’’ to ‘*z’’ ear as the contiguous values 97 to

122. In other collating sequences the lower-case letters are not contiguous.

To make character and string sorting programs portable, care must be taken to avoid dependence on the

character collating sequence. If a program is designed to operate with a collating sequence other than

ASCII it may be necessary to modify string and character comparison code to operate with ASCII.

6.6. Floating Point Range and Accuracy

One of the most variable aspects of different machines is floating point. The range, precision, accuracy

and base vary widely. This can lead to many portability problems which can only be addressed numer-

ically.

6.7. Operating System Dependencies

Programs which access operating system resources, such as files, by their system names are often not

portable. The file and I/O device naming conventions vary greatly among computer systems. In order

to write portable programs it is necessary to minimize the use of explicit file names in the program. It

is best if these names can be input to the program when the program is run.

If a program contains explicit file names it may be necessary to change the names to names acceptable

to the target system in order to get them to operate with C-88000. Refer to your target operating sys-

tem documentation for a description of legal file names for your environment.

6.8. Assembly Language Interfaces

Programs which use embedded assembly code or interface to external assembly will require all of the

assembly code to be redone when the program is transported to a new machine.

6.9. Evaluation Order

The C Language specification does not fully specify the order in which the various components of an

expression or statement must be evaluated, but it disallows computations whose results depend on

which permitted evaluation order is used. Many illegal programs have gone undetected for years

because they have only been compiled with one compiler. Since the C-88000 evaluation order is not

C-88000

Porting Programs to C-88000 29

main()

{
va/**/O = 1;

}

Which becomes (in both PCC and C-88000)

main()

{
val = 1;

6.11. Illegal Assumptions about Compiler Optimizations

Some programs illegally depend on the exact code that some particular compiler generates. Such pro-

grams are particularly difficult to port to an advanced optimizing compiler, such as C-88000, because

the optimizer makes major changes in the code in order to make the program smaller and/or faster.

Described below are some of the most common illegal assumptions about code generation that some

programs depend on to work. Please familiarize yourself with the optimizations described in the

‘‘Optimization’’ chapter before reading this section.

6.11.1. Problems with Setjmp and Longjmp

Under the default configuration of C-88000, an occasional problem surrounds the undocumented

subtleties of the ‘‘setjmp’’ and “‘longjmp’’ functions in some UNIX programs. Setjmp is a function

which saves the contents of the registers, the stack context, and the program counter into a “‘label’’

variable. The longymp function restores the registers, stack content and program counter from the con-

tents of the “‘label’’ variable and continues executing after the call to setymp. Under PCC only vari-

ables specified “‘register’’ will be allocated to registers and, therefore, saved in the ‘‘label’’ variable,

the other variables will remain on the stack. If a ‘‘register’’ variable is modified after the call to

setyjmp, a longjmp will restore the ‘‘register’’ variable to the value saved in the “‘label’’ variable, so the

modification will be lost. However if a non-“‘register’’ variable is modified after the call to setjmp, a

longymp will not affect the value of the variable and the modification will be retained. Some versions

of some UNIX programs, as well as the Plum Hall Validation Suite, depend on whether a variable’s

value will be restored by longjmp. Since the Green Hills compiler may allocate automatic variables to

registers and may allocate “‘register’’ variables in memory, it is not predictable as to whether any

modifications to a variable which take place after a setymp will be retained or lost after a call to

longjmp on the same “‘label’’ variable.

The -X18 switch causes all programmer defined variables which are not declared ‘‘register’’ to be allo-

cated in memory as in the portable C compiler. The -X18 switch generates worse code than the default

configuration, but in the few cases in which the (undocumented) subtleties of setjmp and longjmp are

depended upon, it will operate consistently with the portable C compiler. The compile time option

-X125 allows the compiler to detect the presence of a call to setymp and only enables -X18 in those

routines.

C-88000

Porting Programs to C-88000 31

6.11.5. Problems with Source Level Debuggers

6.11.5.1. Variable Allocation

Once a variable is allocated to a register it will always reside in that register. However, since other

variables may share the register, the register may not always contain the value of that variable. This

may cause a source level debugger to give incorrect results. If you ask for the value of a variable at a

point at which that variable is about to be assigned into, the compiler may have temporarily allocated

that register for some other purpose. Always check results just after they are assigned, or when the

current value is going to be used later. Near the end of a function most of the local variables are no

longer going to be used, so the chance that the register has been reallocated is much higher.

6.11.5.2. Advanced Optimizations

In general, we recommend that all optimizations be turned off if source level debugging is to be per-

formed. Here are some examples of specific problems that can be caused when optimizations are used

in conjunction with source level debuggers.

CSE, or Common Subexpression Evaluation, causes the compiler to precalculate expressions and store

the result in a register. During debugging, the programmer will not find the expression itself, since it

was evaluated and substituted at an earlier time.

Various loop and branch optimizations rearrange entire statements or blocks of statements causing

difficulties with source level debugging since there will no longer be a direct correlation between

source lines and executable instructions.

On 88000 targets, the -X307 option should be used to turn off pipeline scheduling since this optimiza-

tion effects virtually all code, changing the order in which operations are performed. There is no accu-

rate way to map a source line to a sequence of instructions after this type of optimization is performed.

6.12. Problems with Compiler Memory Size

C-88000 is an advanced optimizing compiler. It is much better that the current generation of ‘‘optim-

izing’’ microprocessor C compilers. In accordance with its greater capability it requires more memory.

C-88000 requires 800 Kbytes just for the program. It is designed to work best when it has 2 Mbytes or

more of memory available. It will run in less memory but with some degradation of performance or

capability.

The compiler’s primary use of memory is for the program, static data structures, global declarations,

parse trees, and generated machine code. Global declarations consist of the global constant, type, vari-

able, and function declarations. This is a major use of memory when large numbers of declarations are

included in a compilation. Even unused global declarations must be stored throughout the compilation.

If memory size problems exist try to reduce the size of the include files by including just the declara-

tions that are needed. Another use of memory is for basic blocks. Every possible branch creates a new

block. Machine generated programs with very large switch statements or a very large number of small

if statements may use excessive memory.

C-88000

CHAPTER 7

Compile Time Options

7.1. Normal Compile Time Options

The following compile time options are available for general use and allow the user to select common

compilation options, such as ANSI mode, or to specify library directories and/or redirect output.

Most options are case sensilive and are recognized only as shown in the documentation. The Green

Hills driver passes on any invalid option specifications, therefore the -v and/or -X255 options are often

useful to verify which options were accepted and are in use by the compiler for the current compila-

tion. Note that your compiler has been configured so that it can be used in its intended environment

without needing to specify any special compile time options. These special options are discussed in a

later section. In some cases, the ‘‘english’’ version of an option, such as -ANSI, will be translated by

the driver into its -Xnnn equivalent (in this case, -X 153). In all cases where this is true, the equivalent

-Xnnn option will be documented as part of the option description. Familiarity with the -Xnnn

equivalent 1s necessary when using the -v or -X255 verification options since the compiler will echo

the -Xnnn form rather than the ‘‘english’’ equivalent that was specified on the command line.

More than one option may be specified. Options may appear anywhere on the compilation command

line, and except where noted below may be specified in any order.

-ansi_ This option places the compiler in ANSI mode. ANSI mode is 90% compliant with the ANSI

X3J11 standard, allowing certain useful, but non-compliant, constucts to be supported while

providing an ANSI C framework. -X316 is equivalent to -ansi.

-ANSI This option places the compiler in FullANSI mode. FullANSI mode is 100% compliant with

the ANSI X3J11 standard and disallows any non-standard constructs, generating error and/or

warning messages. -X153 1s equivalent to -ANSI.

-C (UNIX Host only) Do not produce executable files, produce only object files. For each source

language file specified, compile the source language file into object code output. Put the

object code output into a file whose name ends in *‘.o’’.

-C If this option is given, comments are output in the preprocessor output. The default is to strip

comments from the output.

-Dname Define ““name’’ to the preprocessor with the value 1. This is equivalent to putting “‘#define

name 1”’’ at the top of the source file.

-Dname=string

Define ‘‘name’’ to the preprocessor with the value “‘string’’. This is equivalent to putting

‘‘#define name string’’ at the top of the source file.

-E Do not compile the program, instead place the output of the preprocessor on the standard out-

put file. This is useful for debugging preprocessor macros. The integrated preprocessor

Compile Time Options 33

Compile Time Options 35

-Uname Undefine the predefined preprocessor symbol “‘name’’. This is equivalent to putting ‘‘#undef

name’’ at the top of the source file. This option can be used to remove any symbols which are

predefined in the compiler.

-V (UNIX Host only) Have the compiler driver print out the program name and command line

arguments as it runs each subprocess.

-W Suppress warning diagnostics.

C-88000

Compile Time Options 37

-X21

-X31

-X32

-X37

-X39

-X55

-X58

-X74

-X80

-X8 1

-X84

-X85

-X105

-X114

-X115

-X153

-X159

-X164

-X167

-X168

-X171

-X187

-X188

-X202

-X206

Map all identifiers to upper case, for assemblers which require this.

(Non-UNIX Host only) Allow arbitrary file names to be specified to the compiler.

Display the names of files as they are opened. Useful for finding out why the compiler cannot

find an include file.

Emit a warning when dead code is eliminated.

Do not move frequently used procedure and data addresses to registers.

Make bit fields of type int, short, and char be signed. The default is for all bit fields to be

unsigned.

Do not put an underscore in front of the names of global variables and procedures.

The target system 1s UNIX System V.

Turn off the branch tail merging opumization. This can speed up compilation in some cases.

Allow extern variables to be initialized (by turning off extern). This is an error in cc, and by

default in C-88000.

Do not recognize C anachronisms. This may cause various syntax errors if old style constructs

have been used. By default the old assignment operators (=+ =- ...), initialization (int i 1), and

references to members of other structures compile correctly but generate warning messages.

Generate ‘‘.lcomm’’ (BSD) or ‘‘.bss’’ (UNIX System V) for zero initialized statics, rather

than placing uninitialized local data in the initialized data section with initial value 0. This

can result in significant reduction in the size of binary files. The -X85 option is normally on

by default ina UNIX environment.

Allow redefinition of #define symbols to the preprocessor.

Target is UNIX BSD 4.2. This controls debug and binary output formats among other things.

Target is UNIX BSD 4.1. This controls debug and binary output formats among other things.

Place the compiler in FullANSI mode. This is set automatically when -ANSI is specified. If

this option is used in conjunction with -O, -OM is automatically selected too.

Do not allocate 2 named variables to the same register. This makes debugging easier but may

result in slower code.

Do not stop in the event of a code generator abort or ‘‘Internal Compiler Error’’ error mes-

sage. Place a message in the assembly language output indicating where the error occurred.

This option is occasionally useful for determining the cause of a compiler failure. If this

option is used, the compiler may crash or otherwise terminate abnormally.

Unsupported option. Evaluate expressions involving only float operands as float (not double).

Do not expand float arguments to double. Do not expand float return values to double.

Do not move invariant floating point expressions out of loops.

Do not create a Static base register.

Suppress output from #ident.

Use Fortran mixed mode expression evaluation rules. In particular, do float*float computation

in single precision, do not convert to double precision before performing operation.

Don’t output "." before assembler directives.

Suppress errors for illegal preprocessor directives that are skipped because they occur within

#if...#endif pairs that evaluate to false.

C-88000

Compile Time Options 39

-X352 Don’t extend float arguments to double in order to pass them to functions.

-X353 Perform common subexpression analysis twice. Rarely useful.

-X370 Output line numbers in the assembly file.

-X380 Parentheses behave as they are said to in (some versions of) the proposed ANSI C standard,

that is the compiler may not associate over them.

-X394 Do not recognize various tautologies like (x-x)==0 and (3+a)+(4+b)==7+a+b during common

subexpression evaluation and do not eliminate simple divides, such as those used by Dhry-

stone during common subexpression elimination.

-X401 Enable CEXTERNAL declaration.

-X403 Accept noalias keyword in C.

-X405 Type ‘char’ is unsigned type.

-X407 (Weitek only) Turn on IEEE machine independent software floating point.

-X414 Use 96-bit objects for long doubles.

-X415 Allow C++ style references.

-X416 Allow functional casts (ie. double(3)) and automatically typedef struct names as in C++.

-X421 Union of integer types allocated and passed in registers.

-X422 All types larger than 128 bits are forced to that alignment.

-X424 Replace unsigned division by constant with multiply by the pseudo-reciprocal and shift right.

-X428 Turn on CSE register caching.

-X429 Don’t try to propagate common subexpressions through loops.

-X434 Put in code to check for nil pointer dereferences.

-X442 Do not perform special optimizations for constant multiplies.

-X447 Produce code to generate a runtime error if a switch (case, computed goto) statement has no

default (otherwise) case and is entered with a valuc that is not one of the listed cases.

-X465 Mark errors in cpp listing file.

-X468 Suppress constant propagation optimization. See also -X230.

-X469 Don’t recognize sin, cos, etc. as pure functions.

-X470 Suppress tail recursion.

-X474 Suppress Common Subexpression Elimination (CSE). See also -X230.

-X482 Disable loop unrolling. This option is intended for use with -OL to allow various loop optim1-

zations to be performed without turning on loop unrolling.

-X483 Flush assembly output at end of each routine.

-X484 Pass small structs in registers.

-X485 Extra args for return values in rtmps.

-X490filename

Use specified filename string for .file directive. Normally the compiler takes the name of the

source file and uses it to generate a .file directive of the form ‘‘.file "filename.c" ’’. However,

when an external preprocessor is being used, the filename that the compiler sees is not the

name of the original file, but of an intermediate file. By using this option it is possible to tell

the compiler the name of the original source file. This option may be passed either to the

driver or directly to the compiler.

C-88000

CHAPTER 8

Runtime Error Messages

The following table lists error messages generated when the compiler inserts debugging checks into the

output program. The switches that can cause each of these messages to appear are listed to the left of

the resulting message.

-X57 Array index/variable assignment out of bounds

-X434 Nil pointer dereference

-X447 Case/switch index out of bounds

-X588 Unititialized variable/field referenced

Runtime Error Messages 41

CHAPTER 9

Compile Time Error Messages

The C compile time error messages are listed below in alphabetical order.

operator must be followed by a macro parameter

Operator may not begin or terminate a macro

#defines nested too deeply

#defines recursive or too complex

A braced initializer must contain a value

A cast is illegal in the expression of a #if/#elif

A constant may not be assigned a new value

A file (translation unit) must contain at least one declaration/definition

A function may not return an incomplete type

A function must be declared by specifying parens

A non-prototype parameter list may not be specified here

A type or a storage class must be specified in a declaration

A volatile in a register makes no sense (to me)

Array size exceeds implementation limit

Array size must be constant

Bit field not legal as operand of sizeof

Cannot take the address of this object

Case expression not constant

Case not in switch statement

Character constant too long

Const ignored

Constant expected

Could not disambiguate overloaded procedure name:

Declaration not legal here

Duplicate case

Empty character constant illegal

End of file found in #if, #ifdef, or #ifndef

End of file found in comment

End of line found in character constant

End of line found in string

Fatal error in reading library file:

File name too long

Function illegal in structure or union

Globalvalue initializer must be constant

Globalvalue must be int or unsigned

Illegal Type

Illegal character

Illegal floating constant

Illegal function

Iegal initial value

Compile Time Error Messages 43

Compile Time Error Messages

This object has no defined size

This use of an incomplete type is illegal

This warning message reserved for the inliner.

Too few arguments passed to function

Too many -I options

Too many arguments passed to function

Too many parameters for a macro

Two storage classes specified

Type mismatch

Type size exceeds implementation limit

Unexpected end of file

Unknown size for parameter

Unmatched #endif

Variable expected

Void type argument illegal

Void type for

warning:

warning:

warming:

warning:

warning:

warning:

warning:

warning:

warning:

warning:

warning:

warning:

warning:

warning:

warning:

warning:

warning:

warning:

warning:

warning:

warning:

warming:

#ident directive not allowed in ANSI C.

Ambiguous lvalue usage:

Arithmetic constant too large for type/array index

Cannot take the address of this object

Illegal combination of pointer and integer

Inline routine has complex inits of non-local variables, expansion suprressed.

Macro arguments extend beyond invoking macro

Name converted to string constant

Nameless parameter in function definition

Negative or zero array size

Old fashioned type declaration, double assumed

Old-fashioned initialization

Preprocessing directives found inside of macro argument

Shift amount too large or too small

This compiler does not have any inlining capability.

Undefined static function used-

Unrecognized lower case letter after backslash inside string

Variable read before written:

Wrong number of params in macro call

asm statement is not portable

illegal macro name

old-fashioned assignment operator

C-88000

45

TO ORDER

1. An order can be placed with the TIPS group in two ways:

a) MAIL ORDER - Use the order form on the opposite page and fill in all requested information. Be sure to

include shipping charges and local sales tax. If applicable, write in your tax exempt number in the space

provided on the order form.

Send your order form with payment to: Data General Corporation

ATTN: Educational Services/TIPS G155

4400 Computer Drive

Westboro, MA 01581-9973

b) TELEPHONE - Call TIPS at (508) 870-1600 for all orders that will be charged by credit card or paid for

by purchase orders over $50.00. Operators are available from 8:30 AM to 5:00 PM EST.

METHOD OF PAYMENT

2. As a customer, you have several payment options:

a) Purchase Order —- Minimum of $50. If ordering by mail, a hard copy of the purchase order must

accompany order.

b) Check or Money Order - Make payable to Data General Corporation.

c) Credit Card - A minimum order of $20 is required for Mastercard or Visa orders.

SHIPPING

3. ‘To determine the charge for UPS shipping and handling, check the total quantity of units in your order and

refer to the following chart:

Total Quantity Shipping & Handling Charge

1-4 Units $5.00

5-10 Units $8.00

11-40 Units $10.00

41-200 Units $30.00

Over 200 Units $100.00

If overnight or second day shipment is desired, this information should be indicated on the order form. A

separate charge will be determined at time of shipment and added to your bill.

VOLUME DISCOUNTS

4. The TIPS discount schedule is based upon the total value of the order.

Order Amount Discount

$1-$149.99 0%

$150-$499.99 10%

Over $500 20%

TERMS AND CONDITIONS

5. Read the TIPS terms and conditions on the reverse side of the order form carefully. These must be adhered

to at all times.

DELIVERY

6. Allow at least two weeks for delivery.

RETURNS

7. Items ordered through the TIPS catalog may not be returned for credit.

8. Order discrepancies must be reported within 15 days of shipment date. Contact your TIPS Administrator at

(508) 870-1600 to notify the TIPS department of any problems.

INTERNATIONAL ORDERS

9. Customers outside of the United States must obtain documentation from their local Data General Subsidiary

or Representative. Any TIPS orders received by Data General U.S. Headquarters will be forwarded to the

appropriate DG Subsidiary or Representative for processing.

TIPS ORDER FORM

Mail To: Data General Corporation

Attn: Educational Services/TIPS G155

4400 Computer Drive

Westboro, MA 01581 - 9973

COMPANY NAME COMPANY NAME
ATIN: ATTN:

ADDRESS ADDRESS (NO PO BOXES)

CITY CITY

STATE ZIP STATE ZIP

Priority Code (See label! on back of catalog)

Authorized Signature of Buyer Title Date Phone (Area Code) Ext.

ay ORDER TOTAL

© UPS | ADD Order Amount Save Less Discount _
1-4 Items $ 5.00 $0 - $149.99 0% See B

5-10 Items $ 8.00 $150 - $499.99 10% Tax ert # SUB TOTAL
11-40 Items $ 10.00 Over $500.00 20% or sales | ax

(if applicable) Your local* +
41-200 Items $ 30.00 sales tax

200+ Items $100.00 Shipping and +

Check for faster delivery

(J Purchase Order Attached 1 ($50 minimum)
P.O. number is . (Include hardcopy P.O.)

(1 Check or Money Order Enclosed

O Visa © MasterCard ($20 minimum on credit cards)

Account Number Expiration Date

FLEET TT ETT TET EET) 6 LETT

Authorized Signature

(Credit card orders without signature and expiration date cannot be processed.)

handling - See A

TOTAL - See C

THANK YOU FOR YOUR ORDER

PRICES SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.

PLEASE ALLOW 2 WEEKS FOR DELIVERY.

NO REFUNDS NO RETURNS.

* Data General is required by law to collect applicable sales or
use tax on all purchases shipped to states where DG maintains

a place of business, which covers all 50 states. Please include

fos local taxes when determining the total value of your order.
f you are uncertain about the correct tax amount, please call

508— 870-1600.

134-755-02

moisten & seal

a

CUSTOMER DOCUMENTATION COMMENT FORM

Your Name Your Title

Company Phone

Street

City State Zip ———___

We wrote this book for you, and we made certain assumptions about who you are and how you would

use it. Your comments will help us correct our assumptions and improve the manual. Please take a

few minutes to respond. Thank you.

Manual Title Manual No.

Who are you? OOEDP/MIS Manager OlAnalyst/Programmer (JOther

O)Senior Systems Analyst (1) Operator

C(]Engineer ClEnd User

How do you use this manual? (List in order: 1 = Primary Use)

— Introduction to the product —— Tutorial Text —— Other

—— Reference —— Operating Guide

About the manual: Is it easy to read?

Is it easy to understand?

Are the topics logically organized?

Is the technical information accurate?

Can you easily find what you want?

Does it teil you everything you need to know?

Do the illustrations help you? Oooooooos ooooooo02
If you wish to order manuals, use the enclosed TIPS Order Form (USA only) or contact your

sales representative or dealer.

Comments:

Cut here and insert in binder spine pocket

(»DataGeneral | ANEEN
Data General Corporation, Westboro, Massachusetts 01580 469-1 Abesb-b1

SALVLS Q3SLINN

AHL Ni

GS 1ivVW Al

AYVSSAOAN

ADVLSOd ON

L8SL0 VW OYOELSAM 92 °ON LINYAd SSV19 LSUuls

TIVIN Aldad SSANISNG

O686-18STO VN OC10q}seM

O0Vr XOd Od
SALIGQ] IoyNdWIOD YOOPF

Ilt-d SW

uo}D}USUINSOG IeUIO}sNy

[erauaTy eye] 4p

JASSIAYGOV AG GIVd 3G TIM 3DVLSOd

i

{

134-755-02

Form 702

Rev. 8/87

DATA GENERAL CORPORATION

TECHNICAL INFORMATION AND PUBLICATIONS SERVICE

TERMS AND CONDITIONS

Data General Corporation (“DGC”) provides its Technical Information and Publications Service (TIPS) solely in accordance

with the following terms and conditions and more specifically to the Customer signing the Educational Services TIPS Order

Form. These terms and conditions apply to all orders, telephone, telex, or mail. By accepting these products the Customer

accepts and agrees to be bound by these terms and conditions.

1. CUSTOMER CERTIFICATION

Customer hereby certifies that it is the owner or lessee of the DGC equipment and/or licensee/sub-licensee of the software

which is the subject matter of the publication(s) ordered hereunder.

2. TAXES .

Customer shall be responsible for all taxes, including taxes paid or payable by DGC for products or services supplied under

this Agreement, exclusive of taxes based on DGC’s net income, unless Customer provides written proof of exemption.

3. DATA AND PROPRIETARY RIGHTS

Portions of the publications and materials supplied under this Agreement are proprietary and will be so marked. Customer shall

abide by such markings. DGC retains for itself exclusively all proprietary rights (including manufacturing rights) in and to all

designs, engineering details and other data pertaining to the products described in such publication. Licensed software

materials are provided pursuant to the terms and conditions of the Program License Agreement (PLA) between the Customer

and DGC and such PLA is made a part of and incorporated into this Agreement by reference. A copyright notice on any data

by itself does not constitute or evidence a publication or public disclosure.

4. LIMITED MEDIA WARRANTY

DGC warrants the CLI Macros media, provided by DGC to the Customer under this Agreement, against physical defects for a

period of ninety (90) days from the date of shipment by DGC. DGC will replace defective media at no charge to you, provided

it is returned postage prepaid to DGC within the ninety (90) day warranty period. This shall be your exclusive remedy and

DGC’s sole obligation and liability for defective media. This limited media warranty does not apply if the media has been

damaged by accident, abuse or misuse.

5. DISCLAIMER OF WARRANTY

EXCEPT FOR THE LIMITED MEDIA WARRANTY NOTED ABOVE, DGC MAKES NO WARRANTIES, EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

PARTICULAR PURPOSE ON ANY OF THE PUBLICATIONS, CLI MACROS OR MATERIALS SUPPLIED HEREUNDER.

6. LIMITATION OF LIABILITY

A. CUSTOMER AGREES THAT DGC’S LIABILITY, IF ANY, FOR DAMAGES, INCLUDING BUT NOT LIMITED TO

LIABILITY ARISING OUT OF CONTRACT, NEGLIGENCE, STRICT LIABILITY IN TORT OR WARRANTY SHALL NOT

EXCEED THE CHARGES PAID BY CUSTOMER FOR THE PARTICULAR PUBLICATION OR CLI MACRO INVOLVED.

THIS LIMITATION OF LIABILITY SHALL NOT APPLY TO CLAIMS FOR PERSONAL INJURY CAUSED SOLELY BY

DGC’S NEGLIGENCE. OTHER THAN THE CHARGES REFERENCED HEREIN, IN NO EVENT SHALL DGC BE LIABLE’

FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES WHATSOEVER, INCLUDING BUT

NOT LIMITED TO LOST PROFITS AND DAMAGES RESULTING FROM LOSS OF USE, OR LOST DATA, OR

DELIVERY DELAYS, EVEN IF DGC HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY

THEREOF; OR FOR ANY CLAIM BY ANY THIRD PARTY.

B. ANY ACTION AGAINST DGC MUST BE COMMENCED WITHIN ONE (1) YEAR AFTER THE CAUSE OF ACTION

ACCRUES.

7. GENERAL

A valid contract binding upon DGC will come into being only at the time of DGC’s acceptance of the referenced Educational

services Order Form. Such contract is governed by the laws of the Commonwealth of Massachusetts, excluding its conflict of

law rules. Such contract is not assignable. These terms and conditions constitute the entire agreement between the parties

with respect to the subject matter hereof and supersedes all prior oral or written communications, agreements and

understandings. These terms and conditions shall prevail notwithstanding any different, conflicting or additional terrms and

conditions which may appear on any order submitted by Customer. DGC hereby rejects all such different, conflicting, or

additional terms.

8. IMPORTANT NOTICE REGARDING AOS/VS INTERNALS SERIES (ORDER #1865 & #1875)

Customer understands that information and material presented in the AOS/VS Internals Series documents may be specific to

a particular revision of the product. Consequently user programs or systems based on this information and material may be

revision-locked and may not function properly with prior or future revisions of the product. Therefore, Data General makes no

representations as to the utility of this information and material beyond the current revision level which is the subject of the

manual. Any use thereof by you or your company is at your own risk. Data General disclaims any liability arising from any such

use and | and my company (Customer) hold Data General completely harmless therefrom.

Illegal octal digit

IHegal operation

Illegal preprocessor command

Illegal size for field

Illegal storage class

[egal symbol

Illegal to initialize extern variable

Illegal to take the address of this object

Illegal type for field

Illegal type for function

Illegal type for member

Illegal use of typedef

Illegal variable or expression

Include nested too deeply

Incompatible type-specifiers

Indexing not allowed

Initializer too large

Inliner Fatal Error: Variable not on decllist.

Inliner: Cannot process ENTRY statements.

Integer expression required

Internal Compiler Error

Invalid type coercion

Label Expected

Label not defined:

Must be a structure

Must have at least one stack argument

No arguments may be specified after ...

No main or MAIN_ routine, reverting to context free inlining rules.

No name given for declaration

No name given for some parameter

No name given in declaration

Not enough arguments given

Not inside a loop

Not inside a loop or switch

Nothing declared in a declaration

Null dimension

Only one "default" case per switch statement allowed

Operand must be an lvalue

Pointer to procedure not legal here

Pointer to void not legal here

Preprocessor expression must be constant

REAL operand not allowed here

Ran out of string space

Redeclaration of prototype parameters

Redefinition of this builtin macro not permitted:

Storage class illegal here

Structure/union must have at least one member

The size of this variable is not defined

This compiler must be used on a licensed system.

This is a binary file

This is not an lvalue

C-88000

Compile Time Error Messages

42

C-88000

Runtime Error Messages

40

-X491

-X496

-X498

-X500

-X509

-X510

-X523

-X524

-X525

-X540

-X543

-X588

-X593

-X598

-X611

-X614

-X623

-X625

-X629

-X640

Compile Time Options

Kanji character support.

Check to make sure all args/vars are used.

In ANSI C make string literals be const char*.

Don’t delete .s file if errors encountered.

Complain about locals read before written.

(BSD only) Do not generate debug information for enum types.

Use same technique as -X424 except use for mod operator.

Equivalent to -X424 and X523, except for signed operands.

For machines without 33-bit shift capability for which you wish to activate -X424, -X523

and/or -X524. Replaces a divide or mod operation, which has a constant divisor, with two

multiplies and a right shift.

Output .ident assembly code for #ident in C (-X187 overrides -X540).

Suppress slow divide optimizations. Equivalent to -Z424, -Z523, -Z524 and -Z525.

Put in code to generate a runtime error when an uninitialized variable is accessed. This allo-

cates a shadow variable for each user variable, so it may require significant amounts of

memory at runtime.

Allocate all static variables in the outer scope, even if they are never used. Intended for use

with SCCS id strings.

Generate an extra instruction to trap on division by zero due to bug in 88000 chip.

Do not compile the program, but output a list of included files in a format convenient for use

in a makefile.

Put the input source lines into the assembler output file. Lines from include files are not

copied, macro substitution will not appear.

Unroll loops up to 8 times instead of the default of 4. Requires -OL.

Do not call memcpy to perform structure copies. Instead call GHS supplied assembly

language routines (_gh_mvw, __gh_mvh, or__gh_mvb). |

Output OCS compatible "tdesc" information for debugging if -g also specified.

Do not recognize __ inline class specifier.

C-88000

38

-X211

-X211

-X219

-X230

-X233

-X237

-X239

-X253

-X255

-X264

-X265

-X266

-X304

-X306

-X307

-X308

-X311

-X312

-X316

-X328

-X329

-X331

-X333

-X334

-X338

-X344

-X350

Compile Time Options

Suppress optimizations that generate inline code for strcpyQ and strcmp() with constant argu-

ments.

Suppress optimizations that generate inline code for external calls.

Suppress elimination of jumps to jumps.

Suppress common subexpression elimination and value propogation, except for trivial cases.

This turns off a large class of optimizations, some of which may be disabled separately using

-X468 and/or -X474.

Functions which return the type ““float’’ return a single precision value, not a double precision

value.

Apply associative rules in common subexpression elimination.

The host operating system of the compiler is MS-DOS. Change include file conventions etc.

appropriately.

Do not remove code which will never execute because it is within an if statement with a con-

Stant expression equal to zero.

Print a brief description of enabled -X switches on the terminal.

Suppress phase that removes useless sign and zero extend instructions.

Suppress register database phase of peephole.

Repeat the peephole phase until the code doesn’t get any better.

Truncate names to eight characters on input.

C ‘‘asm’’ inline directive not recognized. Note that the _ _asm directive is still recognized,

only the asm directive without leading underscores is affected by this option.

Turn off instruction reordering (don’t attempt to fill gaps between instructions). This makes

output easier to read, but much slower.

Perform tail recursion optimizations.

Don’t make multiple copies of blocks in merge blocks phase.

Suppress recognition of ?: operators as absolute value and min/max.

Enable all ANSI C extensions which are sensible in a UNIX environment. This is equivalent

to -ansi. This is a subset of -X153. When this option is used in conjunction with -O, -OM is

implied.

Disable register caching.

(BSD only) Generate ‘‘stabd’’ pseudo-ops for line numbers instead of stabn line numbers.

Allocate unused variables if symbolic debugging enabled (-g).

Suppress passing of front end information to the peephole optimizer and instruction scheduler.

The usual arithmetic rules will apply to operator assignments, as ANSI requires, rather than

the Berkeley “‘left side prevails’’ rule. E.g., ‘“charvar *= 0.5’’ will be performed using float-

ing arithmetic.

Do not delete unused instructions during fixup phase.

Suppress adrconst optimizations. Do not try to undo ineffective allocation of constants to

temporaries.

In ANSI C, allow /**/ to be a concatenation operator in a macro, as it is in the portable C

compiler.

C-88000

36 Compile Time Options

7.2. Special Compile Time Options

Each C-88000 compiler is configured to enable some of the compile time options described in this

chapter and to disable the rest. Your compiler should have been configured so that it can be used in its

intended environment without needing to specify any special compile time options. All normal com-

pile time options are documented in the previous user option section.

However, if you need to use the compiler in an environment other than the one for which it was

intended, or if you have unusual requirements, you may find that your other documentation may not

give you enough information. Over the years, Green Hills has implemented many minor variations in

the compiler for different customers. It is quite possible that you may find just the option you need in

the list below. However, you should be warned that using option combinations that have not been

recommended may produce strange or incorrect results.

There are a number of options which are intentionally left undocumented. The undocumented options

are disabled, obsolete, or are for compiler debugging only. Using undocumented options may generate

poor or incorrect code. Before the description of each option, enclosed in parentheses, there may be a

restriction on the use of the option. It may specify a particular manufacturer or operating system. The

option is only to be used when that restriction applies. Using an option when it is not allowed may

cause all sorts of errors.

Most options are case sensitive and are only recognized as shown in the documentation. The compiler

accepts but ignores any invalid option specifications, therefore the -v and/or -X255 options are often

useful to verify which options were accepted and are in use by the compiler for the current compila-

tion.

The -X prefix options are used to tum on a specific function. To negate the effect of the -X prefixed

option, the -Z prefix is used instead. For example, -X308 tums on tail recursion optimizations. If this

option is set by default for your compiler, using -Z308 will turn off tail recursion optimizations.

GREEN HILLS DOES NOT GUARANTEE THAT THE COMPILER WILL ACT AS YOU EXPECT

WHEN YOU USE THESE OPTIONS. GREEN HILLS RETAINS THE RIGHT TO ABOLISH,

CHANGE, OR WITHDRAW SUPPORT FOR ANY OPTION OR COMBINATION WITHOUT

NOTICE.

-Xnnn Turn on option number nnn, where nnn is an unsigned integer constant. The available compile

time options are listed below.

-Znnn Turn off option number nnn, where nnn is an unsigned integer constant. This is the reverse of

the X option. This option is useful if a version of the compiler has some option turned on by

default, and you want to turn it off.

-X6 Allocate each enum type as the smallest size predefined type which allows representation of

all listed values (that is, from the list: “‘char’’, ‘‘unsigned char’’, ““short’’, ‘‘unsigned short’’,

““int’’ or “‘unsigned’’). The default is to allocate as an “‘int’’.

-X9 Disable local (peephole) optimizer.

-X13 Suppress code generation. An empty output file will be created.

-X18 Do not allocate programmer-defined local variables to a register unless they are declared

register.

C-88000

34

-Istring

-k+r

“P

“P&

Compile Time Options

cannot generate output as fast as the UNIX “‘cpp’’ program, so use ““cpp’’ for big jobs.

(UNIX Target only) Generate source level symbolic debug information (if such a capability

exists for the target system) and a frame pointer for stack traces. The amount and form of

debug information varies with the capabilities of the target system. This option does not

imply -ga.

Generate a frame pointer for stack traces. The default compiler setting is to optimize the pro-

gram to the point that stack traces become impossible on some machines. This makes pro-

gram debugging difficult. When debugging a program this option should be used. This

option does not imply *‘-g’’.

Include file names which are not absolute (do not start with “*/’’ in UNIX) are searched for in

the directory “‘string’’ before a standard list of directories. Multiple -I options can be

specified. They will be searched in the order encountered.

The -k+r option is recognized as either -k+r or -K+R. It is equivalent to -noansi and causes the

C compiler to interpret the source code as standard (Kernighan & Ritchie) C. This is the

default PCC compatible mode.

(UNIX Host and Target only) Generate calls for execution profiling. The UNIX profiler must

be available; a profiler is not part of the library provided by Green Hills.

(BSD UNIX Host and Target only) Generate more profiling information, and force all rou-

tines to have frames.

-o filename

Place the executable file output into the file named “‘filename’’. If this option is not specified

the executable file will be named ‘‘a.out’’. This option is ignored if ‘‘-c’’ or ‘‘-S’’ is present.

The -O option activates the Green Hills optimizers which are safe for use on all programs,

except for the loop optimizer. If used in conjunction with -ansi (-X316) or -ANSI (-X153),

-OM is assumed.

The -OA option provides algorithmic optimizations.

This option is eqivalent to -O except that it also allows the optimizer to assume that memory

‘ocations do not change except by explicit stores. That is, the optimizer is guaranteed that no

memory locations are I/O device registers that can be changed by external hardware and no

memory locations are being shared with other processes which can change them asynchro-

nously with respect to the current process. This compile time option must be used with

extreme caution (or not at all) in device drivers, operating systems, shared memory environ-

ments, and when interrupts (or UNIX signals) are present.

Optimize the program to be as fast as possible even if it is necessary to make the program

bigger. In particular, most of the available resources are allocated to optimizations of the

innermost loops. The -OL compile time option will perform optimizations which may make

the program faster but larger. It is counter-productive to specify -OL on code which contains

no loops or that is rarely executed as it will make the whole program larger but no faster.

After experimenting with a program it is possible to discover which modules benefit from -OL

and which ones do not. The -X482 option may be used in conjunction with -OL to allow vari-

ous loop optimizations to be performed without turning on loop unrolling.

This option is equivalent to -OL and -OM.

This option is equivalent to -OLM.

Do not produce object files or executable files, produce only assembly language files. For

each source language file specified, compile the source language file into assembly language
66 79

output. Put the assembly language output into a file whose name ends in *‘.s’’.

C-88000

32 Porting Programs to C-88000

C-88000 is a one pass compiler. That is, it reads the source program only once. Each function is con-

verted into a parse tree as it is read. When the end of the function is reached the optimizer is called

with the parse tree as input. The optimizer modifies the parse tree and then passes it on to the M88000

code generator. The code generator produces an internal representation of the M88000 machine code

to be output for the function. Another optimization phase is then called to modify this machine code.

Finally the optimized machine code for the function is output. After the machine code is output, the

memory being used for the parse tree and machine code is reclaimed for use in compiling the next

function.

The maximum memory usage for parse trees and machine code is determined by the size of the largest

function in the program. If memory size problems exist, turn off the optimizer and reduce the size of

the largest function. A simple function of less than 100 lines should not cause memory size problems.

Procedures which are more than 1000 lines or contain very complex statements can require several

megabytes of memory to compile.

6.13. Detection of Portability Problems

Many of the problems associated with porting programs to C-88000 from other compilers can be

detected with the UNIX utility program “‘lint’’. You should look for variables used before definition,

routines using return and return(x), nonportable character operations, evaluation order undefined, and

routines whose value is used but not set. Lint is not able to detect programs that rely on the allocation

order of memory variables, or that rely upon the arithmetic characteristics of short data types. Further-

more, since lint does not do actual data flow analysis, the absence of a message does not imply the

absence of a problem.

C-88000

30 Porting Programs to C-88000

6.11.2. Implied register usage

Some programs rely on the exact register allocation scheme used by the compiler. Such programs are

completely illegal, and will never transport without modification.

For instance, programs relying on “‘register’’ variables being allocated sequentially to pass hidden

parameters will not work. Hidden returns (using “‘return;’’ and expecting to return the value of the last

evaluated expression) will not work either.

6.11.3. Memory Allocation Assumptions

Memory is allocated by C-88000 in a different way than by PCC and other C compilers. Therefore,

there can be problems in porting programs which illegally depend on the memory allocation peculiari-

ties of other compilers. Some programs depend on the compiler allocating variables in memory in the

order that they are declared. C-88000 will not necessarily allocate variables in the order of declaration.

Some programs depend on knowing that the compiler will allocate all variables even if they are not

used. C-88000 may not allocate unused variables. The -X331 (dbdebugallocateall) compile time

option can be used to force all variables to be allocated even if they are never used. Some programs

depend on knowing that certain variables will be allocated in memory. C-88000 will allocate certain

variables to registers that PCC and other compilers would always allocate to memory. Programs com-

piled with C-88000 must not make assumptions regarding the order of allocation of variables in

memory (except where the C language standard specifies it).

6.11.4. -OM Restrictions

The -OM and -OLM compile time options should only be used programs in which memory cannot

change except under control of the compiler. The -OM and -OLM compile time options tell the com-

puler that memory locations do not change asynchronously with respect to the running program. In

particular, if the compiler reads or writes some memory location, three instructions later it can assume

that the same value is still in the memory location.

This simple assumption is not true for many parts of operating systems, device drivers, memory med

I/O locations, shared memory environments, multiple process environments, interrupt driven routines,

and when UNIX style signals are enabled. The -OM and -OLM compile time options MUST NOT be

used in these cases. Use -O or -OL instead.

For example, many UNIX device drivers use memory locations which are I/O registers that can change

at any time. In particular, a typical loop waiting for a device register to change is:

while (!10_register);

If -OM is specified when compiling this loop, the compiler will read the value of io_register only once.

If 10_register 1s zero when the loop is entered, zero will be loaded into a register and on each iteration

of the loop the register value will be tested instead of the memory location. Whether or not the

memory location is changed by an external device, under -OM the loop will never stop.

In ANSI and FullANSI modes, this problem can be avoided by declaring io_register with the volatile

specifier. The compiler will then never assume it knows the value of that volatile object without read-

ing it. Because the volatile specifier is available in ANSI and FullANSI modes, -OM is implied by -O.

C-88000

28 Porting Programs to C-88000

identical to the evaluation order of other C compilers, some of these illegal programs which operate as

expected with another C compiler may not operate the same way when compiled with C-88000.

Some implementations of the C Language evaluate the arguments to a function from right to left, oth-

ers from left to right. See the M88000 Target chapter for details of the C-88000 calling conventions.

Expressions with side effects, such as function calls, and the operators “*++’’, ‘*--’’, ““+="’, etc., may

be executed in a different order by C-88000 and other C compilers. When a variable is modified as a

side effect of an expression and its value is also used at another point in the expression, it is not defined

whether the value used at either point in the expression is the value before or after modification.

Different values for the same variable could potentially be used at different places in the expression

depending on the order the compiler chose for evaluation.

C-88000 may allocate some pointer variables not declared ‘‘register’’ to registers. This may allow C-

88000 to generate more efficient sequences for post increment operators than other C compilers. These

sequences may involve incrementing at a different position in the statement than with other compilers.

In particular, statements of the form ‘‘*p++ = <expression involving p>’’ often evaluate differently

under PCC than they do under C-88000.

A particular case of evaluation order dependency is the use of the ‘*?:’’ operator in an expression

which is an argument to a function call. C-88000 evaluates all question-mark operators before any

other arguments, and keeps the result in a temporary. PCC evaluates the ‘*?:’’ operator at its position

in the argument list. The call*‘foo(b?i:it+i, 1++)’’ will usually evaluate differently under PCC than

under C-88000.

6.10. PCC Mode Incompatibilities

The C Preprocessor that is provided with PCC has many undocumented features. Most of these undo-

cumented features are implemented in C-88000 in PCC mode.

One little known feature of the C Preprocessor allows the results of two macro expansions to be con-

catenated into a single token. For instance:

#define x /

#define y *

x/**/y A comment */

int val;

The program above is preprocessed by PCC into the following legal program before being compiled:

/* A comment */

int val;

Due to the one pass nature of C-88000 it is not possible for its builtin preprocessor to manufacture a

token such as ‘‘/*’’. In order to compile a program with such constructs it is necessary to run C-88000

in two passes. First compile the program with the -E compile time option to produce the preprocessed

source. Then compile the preprocessed source as you would normally.

However as a special case (-X350 in PCC mode) the compiler can construct an identifier as:

#define O 1

int val;

C-88000

26 Porting Programs to C-88000

6.3. Byte Order Problems

Since the success of the IBM/360, byte machines have been more popular than word machines. The

advantage of byte machines is their efficient processing of character data. The general acceptance of

byte machines has led to easier program portability between machines.

There is, however, one major portability problem between byte machines. The first successful byte

machine, the IBM/360, placed the most significant byte of a multiple byte integer value at the lowest

address. Many byte machines such as the MC68000 and Z8000 have followed the IBM convention.

The second successful byte machine, the PDP-11, placed the least significant byte of a multiple byte

integer value at the lowest address. Intellectual descendants of the PDP-11, such as the VAX,

8086/88/286/386, NS32000, and Cler have followed the DEC convention. These two groups seem to

be so well entrenched that no agreement on byte ordering is possible. A further complication of this is

that some processors such as the Weitek-XL, M88000 and MIPS R2000 support both byte orders,

although a given system is normally built to use only one byte order.

Between machines with different byte ordering, programs which overlay characters and integers in

memory or which use character pointers to integer variables and vice versa are often not portable. Pro-

grams that declare a variable as type ‘‘int’’ in one module and as type ‘‘char’’ in another, may not

work,

6.4. Alignment Requirements

C-88000 always aligns multiple byte data items on appropriate address multiples so that all accesses

will be legal and efficient. The alignment conventions for C-88000 are defined in the M88000 Target

chapter. It is possible for the compiler to guarantee that there will be no illegal or inefficient references

if the programmer follows simple rules.

The size of all compound data types are rounded up to a multiple of the largest optimal and legal align-

ment of any component data type. The compiler always aligns parameters and local variables within

the stack at an optimal and legal offset from the beginning of the frame. The compiler always rounds

up the size of the frame to a boundary of the largest optimal and legal alignment of any data type. If

the stack pointer is initially aligned to this boundary, and the program involves no explicit manipula-

tion of the stack pointer, all stack references will be optimal and legal.

All variables within the global frame are allocated at an optimal and legal offset from the base of the

global frame. If the assembler and/or linker allocates the global frame with the maximum optimal and

legal alignment of the M88000, all global data references will be optimal and legal.

C-88000 will always ensure that components of a data structure requiring alignment will appear only at

an optimal and legal offset from the beginning of the data structure. If all allocation routines always

return pointers which are aligned to the maximum optimal and legal alignment of the M88000 and the

program does not use (or correctly uses) integer arithmetic for pointer computations, all references to

dynamically allocated memory will be optimal and legal.

Variables within a frame or components within a larger data type are optimally packed together in

memory. When a data type has an alignment requirement, the least possible unused space ts left

between the end of the previous item and the next item so that the next item can be optimally aligned.

In satisfying different alignment requirements, complex data types may be allocated differently on

different machines. This will lead to the usual problems with programs which rely on memory

C-88000

74 Optimization

5.3.2. Strength Reduction

Strength reduction is found only in the most advanced compilers. It applies to loops which have an

index variable which is incremented by a constant on each iteration of the loop. When a loop index

variable is used as the subscript for an array, most compilers will multiply the loop index by the size of

the array elements and add this offset to the base of the array. Each such reference will typically

require at least three instructions. After the application of strength reduction, outside of the loop, a

register is loaded with the address of the array element to be accessed on the first iteration of the loop.

The array access is replaced by an indirect register addressing mode. On each iteration, the element

size is added to the register so that it contains the address of the element to be accessed on the next

iteration of the loop. This optimization results in a four to twenty times speed improvement.

Strength reduction also reduces multiplication of the loop index by a loop invariant value to addition of

a constant to a register.

5.4. Pipeline Instruction Scheduler

Sometimes the time it takes to execute an instruction depends on the instructions that precede it. When

an instruction is executing and a second instruction is encountered which attempts to access the result

register or the same functional unit before the first instruction has completed execution, the execution

of the second instruction encounters a pipeline delay until the first instruction has completed execution.

Another instruction which operates on different registers and functional units may be executed at no

cost in the pipeline delay between the two instructions.

C-88000 simulates the timing of M88000 instruction sequences. When C-88000 detects that an

instruction sequence will result in a pipeline delay, C-88000 attempts to reorder the instruction

sequence so that the execution results remain the same, but the total execution time is reduced. Pipe-

line delays tend to happen frequently, since the result of an expression is often used immediately after

it is computed. The instruction scheduler can often greatly reduce the total me that a sequence of

instructions will take.

C-88000

22 Optimization

jmp.n ri

addu r31,731,8

The improvement by the C-88000 optimizer can be summarized as:

Static Address Elimination 6 instructions

No frame pointer 3 instructions

5.2.5. Register Coalescing

Register Coalescing organizes the computation of expressions to ensure that values end up in the regis-

ters where they will be needed. This eliminates shuffling the values in registers to get them set up as

needed. Most microprocessor compilers will copy the arguments of a computation into scratch regis-

ters; do the computation in the scratch registers; then copy the result to the destination. C-88000 will

use the destination register in the computation in order to avoid unnecessary register to register copies.

For example the C-88000 compiler will compile the statement ‘i = 1*100+);’’ as follows (i is in r2, J is

in r3):

mul 19,172,100

addu-~—s_ r2,79,r3

The improvement by the C-88000 optimizer is: 4 bytes and 2 instructions.

5.2.6. Passing Parameters in Registers

In C-88000, most parameters are passed to a function in registers rather than by pushing them on the

stack. This avoids the memory accesses involved in pushing parameters onto the stack and in access-

ing the parameters from within the function. Further improvement comes from organizing the compu-

tation of parameter values so that the value ends up in the register in which the value is to be passed to

the function. Finally, the necessity of removing the parameters from the stack after the call returns is

eliminated with register parameters. This optimization reduces the code size of most programs by

twenty percent.

For example, the expression “‘g(f(x+y))’’ will compile as follows:

(x is in r8 and y is in 19)

Register Parameters Parameters on the Stack

subu r31,131,16

addu r9.18,19

bsr.n _f bsr.n _f

addu r2.,18,19 st r9,r31,0

addu r31,r31,8

bsr _£ bsr.n _g

st r2,r31,0

addu r31,1r31,8

C-88000

20 Optimization

pred

int 1, j;

for G = 1;1< 10; 1++)

fQ);
for (Gj = 1; j < 10; j++)

BQ;

_proc:

subu r31,r31,16

st r1r31,12

st r25,131,0

or r25,r0,1

L%7:

bsr _f

addu 125,125, 1

cmp r10,1r25,10

bb1 lt,r10,L%7

or r25,r0,1

L%4:

bsr _g

addu 125,125, 1

cmp r10,r25,10

bb1 It,r10,L%4

Id r1731,12

Id r25,r31,0

jmp.n_ ri

addu r31,r31,16

; r25 local> mon

5 J 125 local

The improvement by the C-88000 optimizer can be summarized as:

Putiandjinr25 2 memory references per iteration

Rotate Loop 1 instruction per iteration

5.2.2. Memory Allocation

C-88000 allocates variables based on their size, frequency of usc, and other factors. Variables which

are never used are usually not allocated. Variables are usually sorted to allocate the smaller and more

frequently used variables first, and the larger and less frequently used variables later. This allows the

use of small address offsets to access commonly used variables. If the compiler allocated some very

large variable first, small address offsets might not be able to access variables allocated after it. By

putting the smallest and most frequently used variables first, the compiler makes the greatest possible

use of small address offsets. Some variables which other compilers would allocate in memory are allo-

cated in registers as explained in the section ‘‘Register Allocation by Coloring’’.

C-88000

18

C-88000

Motorola 88000 Target

16 Motorola 88000 Target

enum (-X6) 8,16,32 8,16,32

4.3. Compiler Output Format

The output of the compiler is UNIX System V M88000 Assembler Language.

The -g option generates Common Object File Format (COFF) ‘“‘sdef’’ symbolic debug pseudo-ops in

the assembler language output. The assembler and linker understand and process the symbolic debug

entries in the object files. The “‘sdb’’ symbolic debugger can be used with C-88000 output.

4.4, Register Usage

There are 32 general purpose registers used for both integer and floating point values. Double preci-

sion 64-bit floating point values are contained in two adjacent 32-bit registers. The high word is stored

in an even numbered register, the low word is stored in the adjacent register, for example r14 and r15.

Register Use

r0 Always contains a zero value

rl Retum address to calling function

12.19 Register arguments to called function

r10..r13 Temporary registers not saved across calls

r12 Structure return address (upon entry as required)

r14..1r25 Permanent registers saved across calls

r26..129 Unused, reserved for system software use

r30 Frame pointer

r31 Stack pointer

4.5. Calling Conventions

In order for a function to be able to access double precision arguments and local variables on the stack,

a convention has been adopted that the stack must always be located at an 8 byte boundary at the entry

to a function. If the first function (called by the operating system or system library) is called correctly

then every other function will be called correctly.

Arguments are evaluated from right to left.

Each scalar argument is extended to a 32 bit value after it is evaluated unless an ANSI prototype is

visible and the corresponding formal parameter is floating point. In this case, the argument is con-

verted into either a 32 bit or 64 bit floating point value according to the formal parameter.

Each floating point argument is extended to a 64 bit value after it is evaluated, unless the corresponding

formal parameter is either single precision or scalar. If the formal parameter is single precision, the

argument is truncated to a 32 bit floating point value. If the formal parameter is scalar, the argument is

truncated to a 32 bit scalar value.

Any further type conversion is performed upon entry to the called procedure.

C-88000

14

C-88000

C Library

12

C-88000

The C Language

10 The C Language

2.3.

New 1.8.5 Features

2.3.1.

Compile Time Options

A number of new compile time options are introduced in C Version 1.8.5.

These new options are summarized in the table below. Additional details

on each option can be found in the Compile Time Options chapter.

Option Description and -X equivalents (if any)

-fullinline Turn on inlining optimizations (-X249)

-QI name Inline specified routine

-ansi Select ANSI mode (-X316)

-ansi -S Select FullLANSI mode (-X153)

-k+r Select PCC mode (default)

-OA Algorithmic optimizations

2.3.2. asm

The asm statement may now be placed outside of a function, when the -X436 option is used.

2.3.3. Preprocessing Directives

The following new preprocessing directives are introduced in 1.8.5 to conform to the new ANSI stan-

dard: #error, #pragma, and the # and ## operators.

#pragma ident version-string allows programmer-supplied version information to be stored in the exe-

cutable image.

#ident version-String is an alternate form of the #pragma ident directive and is intended for program-

mers wishing to develop more portable C code. A warming message will be generated if code contain-

ing an #ident directive is compiled in FullANSI mode.

2.3.4. Predefined Preprocessing Macros

__DATE___ is a predefined preprocessor symbol available in ANSI and FullANSI modes. Its value is

a character string literal in the form "Mmm dd yyyy" containing the system date that the source was

compiled.

_ _TIME_ _ 1s a predefined preprocessor symbol available only in ANSI and FullANSI modes. Its

value is a character string literal in the form "hh:mm:ss" containing the system time that the source was

compiled.

C-88000

8 The C Language

(1) The line ‘‘#include <varargs.h>’’ must appear before the first function definition.

(2) The last parameter to a variable argument list function must be named “‘va_alist’’.

(3) The last parameter declaration of a variable argument list function must be ‘“‘va_dcl’’. There

must not be a semicolon between ‘‘va_dcl’’ and the initial left brace(‘‘{’’) of the function.

(4) There must be a variable declared in the function of type “‘va_list’’.

(5) The VARARGS facility must be initialized at the top of the function by passing the variable

of type ‘‘va_list’’ to a call of the macro “‘va_start’’.

(6) To obtain the variable arguments to the function, in left to right order, the macro ‘*va_arg’’ is

invoked once for each argument. The first argument to the macro “‘va_arg’’ is the variable of

type ‘‘va_list’’. The second argument is the type of the current argument of the function. The

‘‘va_arg’’ macro returns the value of the current argument of the function.

(7) The VARARGS facility must be terminated by passing the variable of type ‘‘va_list’’ to a call

of the macro “‘va_end’’ at the end of the function.

Example:

#include <varargs.h>

Sum(x, va_alist) /* Sum returns the sum of a variable number */

int x; /* of ‘‘int’’ arguments */

va_dcl

{ va_list params;

int ret = 0;

va_start(params);

while (x !=0) {

ret += xX;

X = va_arg(params, int);

}
va_end(params);

return(ret);

2.2.4. Bit Fields

C-88000 supports signed and unsigned bit fields. Unsigned bit fields are recommended for most appli-

cations since they are more efficient to fetch on most machines. For compatibility with the VAX

4.2BSD implementation of C, a compile time option (-X55), is provided which specifies that a field

whose type is signed is to be interpreted as a signed quantity. The consequences of having signed

fields can be seen in the following example.

{
struct {int x:2;} y;

y.x = 3;

1=y.Xx;

}

In this example, if ‘‘x’’ is an unsigned field, ‘‘1’’ will have the value of 3 at the end of the block. How-

ever, if signed fields are accepted, “‘i’’ will have the value -1 at the end of the block.

C-88000

6 The C Language

2.1.1. Preprocessor

C-88000 includes a preprocessor which is functionally identical to the UNIX C preprocessor. The

basics of the preprocessor are explained in Kernighan and Ritchie, but as with the compiler, the actual

preprocessor is far more complex. Unlike PCC which depends on an initial text processing pass by a

preprocessor program, C-88000 preprocesses the input program in the compiler itself. This makes the

compilation process faster because the source program is read only once and one less process is run.

Preprocessed output may be saved to standard output by using the -E compile time option on the com-

mand line. Normally, preprocessing is performed concurrently with compilation and no temporary out-

put is generated.

2.1.2. Predefined Identifiers

__LINE_ _ is a predefined preprocessor symbol whose value is a character string which consists of the

ASCII representation of the current line number within the current file. It is available in all three com-

piler modes.

__FILE__ is a predefined preprocessor symbol whose value is a character string which consists of the

ASCII representation of the current file name. It is available in all three compiler modes.

The following predefined identifiers have two different representations. The identifiers with two lead-

ing underscores (_ _) are available in all three compiler modes (PCC, ANSI and FullANSI). The same

identifiers without the underscore prefixes are also available in ANSI and PCC modes.

___ghs is a predefined preprocessor symbol always defined by all Green Hills C compilers.

__unix is a predefined preprocessor symbol on Unix targets.

___vms is a predefined preprocessor symbol on DEC VMS target systems.

_ _BigEndian or _ _LittleEndian is a predefined preprocessor symbol that reflects the machine byte

order on the target processor.

_ _leeeFloat and _ _ VaxFloat are predefined preprocessor symbols that reflect the type of floating point

utilized by the target machine.

___m88k is a predefined preprocessor symbol on Motorola 88000 targets.

2.1.3. Structure and Union Assignment and Comparisons

Two structures or unions with the same type may be assigned or compared for equality or inequality.

Assignment of two structures or unions is done with a memory copy of the data. Comparison is done

on a bit by bit basis of the total size of the structure or union.

If there are holes between fields or members of a structure or union due to memory alignment require-

ments, those holes cannot be accessed. Global variables will always be initialized to zero so the holes

will always be zero, but local variables may have random data in the holes. Therefore, two structures

or unions with the same values for every field may not be equal when compared! For structures or

C-88000

4 Overview

C Runtime Library

This section describes the C-88000 runtime library.

Compile Time Options

This chapter describes how to adjust the output of Green Hills C to accommodate your needs

by using the many variations that have been implemented.

Runtime Errors

This table lists the C runtime errors.

Compile Time Errors

This table lists the C compile-time errors.

C-88000

5.2.6. Passing Parameters 1n ReQisSters:sccssscccssecsscsssssecssseceeceserscecssseesssceseeesesseces

5.2.7. LOOP ROtationcccccsssssssscsscecssessnsssecenscesvecssnasseesecescesesaseeseesesseee devaeeeeeceseces cece

5.2.8. Peephole Optimizations.cccsscccesssccessssccesssseccessseecscseececeseesesses seseeeeesnceeceeeses

5.3. LOOp OptimizatiONnscccesccssssceseesccsseceesccssessesesscesecseeesessesscseceeceseeeens seeeseseececeeseeees

5.3.1. Loop Invariant Analysiscsscccsssssecsssecssscecsseecsssscsesseecessecessseeces seeseneeeseeneceeses

5.3.2. Strength Reductioncccsssccecsseccecscscesscsscssssececsseescessscecsssneeeees seseeessnscaceeeeece

5.4. Pipeline Instruction Schedulerccccccccssssscccessssnecsessssssececsesseesecessnees seseencessnesacenes

6. Porting Programs to C-88000ccssccssccesscceseecscneceseescsseecsseecssseesenecssseessesenees seegenceeenseeeeeees

6.1. Compatibility with other Green Hills Compilersccccccssscssssscesenseees sesescessececeasecs

6.2. Word Size Problemscccccssssccessececsececesecessssecsssseseseeecessecessececsecseseencecsucecseeeecesensess

6.3. Byte Order Problemsccsssccssssceesscccsseececsecesesnecessseecessecsssesecessecessnens saesesseeaeeesenancs

6.4. Alignment REQUIFEMENScccccssssrececesssscccessssecsesessssnececessnsceescesseanescescseesececesenes

6.5. Character Set Dependenciesccccsssecesscesssceseceseecesecscsecscseesessecssercenees seseuacessneecessees

6.6. Floating Point Range and AcCCUracys:scccsssscecsssssccenssccescsscesqnssececsseesscessesesessceesenes

6.7. Operating System Dependencies:ssccssserscessseccscsseccecessccesessnecsessecees bececeesseceeceeseas

6.8. Assembly Language Interfaces ...0........cssssscecssersccesssnccessssesescnsecegenseesesenses seseeeceseeceseneees

6.9. Evaluation Order .0.........cccccsssccecesssccessccecessrececssencecscsneecessssesesesacecsesseecesenaes seesenaeecsenaceenes

6.10. PCC Mode Incompatibilitiescccccsssscsssccecsssscessecscsseecsccecessorecessececseeseseeeeseeseesees

6.11. Illegal Assumptions about Compiler Optimizationsccccccesceseecerees sasuaseuesseeeesaees

6.11.1. Problems with Setjmp and Longjmpcssssscccssssereccessseeeeees veceeneenacceceseees

6.11.2. Implied register USAGE:.cccssscsccessscsscscesscsesessscssceesssesssesaccseses veseeveessacecceees

6.11.3. Memory Allocation ASSUMPTIONS:sccccccsssssececesssseccscessseeesees eceessaeaeeeseasees

6.11.4. -OM RESIricCtlONscecesecsssecsnecenccensecesescessecscnsesseeeseneecsnsecsssscssesensesenseceneees

6.11.5. Problems with Source Level Debuggerccscccsssesseecsssreeeees seseessaceeeeceesees

6.11.5.1. Variable AlOCationcccsscccssseceseccessrsccesercessececeeeeesees eeseseneceessaseess

6.11.5.2. Advanced Optimizationsccssssscessseccesscescesssseesssstececsseeeucesacceeseeess

6.12. Problems with Compiler Memory Si1Ze¢ccccssessssscsserscesseeveensceseevees seseteceeeesecessees

6.13. Detection of Portability Problems .0............cc.cccsssssssesecsssssecnesseeseceseseseasens seceessessenseecees

7. Compile Time Options ccc cccsssseccecsesececeeessceeeceeseseeeseescesseceecesssaneesceceeees etecesseaececeesees

7.1. Normal Compile Time Optionsccsscccesssseesssscevsescecscecssceassscesssseceescsensnsesceeecessneess

7.2. Special Compile Time Optionscccsssesesececssesectecccecevecesecspecseeceseesesneeeescscessenseseecs

8. Runtime Error MeSSagesccsscsscsssesssssecessssesesceccecececessnecesesaneusesevacsauncessens peceesceseesenseeecs

9. Compile Time Error Messages:sssscsccossssssssecceseeesessonececscessssssccnscesencecesees sasesecesseessnceecs

C-88000

22

23

23

23

23

24

24

25

25

25

26

26

27

27

27

27

27

28

29

29

30

30

30

31

31

31

31

32

33

33

36

4]

43

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED AND/OR HAS DISTRIBUTED

THIS DOCUMENT FOR USE BY DGC PERSONNEL, LICENSEES, CUSTOMERS, AND

PROSPECTIVE CUSTOMERS. THE INFORMATION CONTAINED HEREIN IS THE

PROPERTY OF THE COPYRIGHT HOLDER(S); AND THE CONTENTS OF THIS MAN-

UAL SHALL NOT BE REPRODUCED IN WHOLE OR IN PART NOR USED OTHER

THAN AS ALLOWED IN THE APPLICABLE LICENSE AGREEMENT.

The copyright holders reserve the right to make changes in specifications and other informa-

tion contained in this document without prior notice, and the reader should in all cases deter-

mine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PROD-

UCTS AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET

FORTH IN THE WRITTEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS, AND

THE TERMS AND CONDITIONS GOVERNING THE LICENSING OF THIRD PARTY

SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE APPLICABLE LICENSE

AGREEMENT. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CON-

TAINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED TO STATEMENTS RE-

GARDING CAPACITY, RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE OR

PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A

WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY OF

DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL

OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO

LOST PROFITS) ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE IN-

FORMATION CONTAINED IN IT, EVEN IF DGC HAS BEEN ADVISED, KNEW OR

SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH DAMAGES.

All software is made available solely pursuant to the terms and conditions of the applicable

license agreement which governs its use.

AVION is a trademark of Data General Corporation.

Restricted Rights Legend: Use, duplication, or disclosure by the U. S. Government is subject to restrictions as

set forth in subparagraph (c)(1) (ii) of the Rights in Technical Data and Computer Software clause at [FAR]

52.227-7013 (May 1987).

Data General Corporation

4400 Computer Drive

Westboro, MA 01580

Green Hills Software C-88000TM User’s Manual

069-100230-01

Effective with C Compiler for the M88000, Version 1.8.5

