
¢» Data General

Customer Documentation

POSIX.1 Conformance Document

for the DG/UXTM System

A ViiO N®*®
PRODUCT LINE

POSIX.1 Conformance

Document for the DG/UXTM

System

069-701078-02

For the latest enhancements, cautions, documentation changes, and

other information on this product, please see the Release Notice

(085-series) supplied with the software.

Ordering No. 069-701078

Copyright © Data General Corporation 1989, 1991

All Rights Reserved

Printed in the United States of America

Revision 02, August 1991

NOTICE

Data General Corporation (DGC) has prepared this document for use by DGC personnel,

customers and prospective customers. The information contained herein shall not be

reproduced in whole or in part without DGC’s prior written approval.

DGC reserves the right to make changes in the specifications and other information contained

in this document without prior notice, and the reader should in all cases consult DGC to

determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE

PRODUCTS AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF

THOSE SET FORTH IN THE WRITTEN CONTRACT BETWEEN DGC AND ITS

CUSTOMERS. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT

CONTAINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED TO

STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE,

SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN

SHALL BE DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE

RISE TO ANY LIABILITY OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, INDIRECT,

SPECIAL OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT

LIMITED TO LOST PROFITS) ARISING OUT OF OR RELATED TO THIS

DOCUMENT OR THE INFORMATION CONTAINED IN IT, EVEN IF DGC HAS BEEN

ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH

DAMAGES.

AVIION, CEO, DASHER, DATAPREP, ECLIPSE, ECLIPSE MV/4000, ECLIPSE MV/6000,

ECLIPSE MV/8000, PRESENT, and TRENDVIEW are U.S. registered trademarks of Data

General Corporation. CEO Connection, CEO Connection/LAN, DASHER/One,

DASHER/286, DASHER/286-12c, DASHER/286-12j, DASHER/386, DASHER/386- 16c,

DASHER/386-25, DASHER/386-25k, DASHER/386SX, DASHER/386SX-16,

DASHER/386SX-20, DASHER/386SX-25, DASHER/LN, DATA GENERAL/One, DG/UX,

ECLIPSE MV/1000, ECLIPSE MV/1400, ECLIPSE MV/2000, ECLIPSE MV/2500,

ECLIPSE MV/3500, ECLIPSE MV/5000, ECLIPSE MV/5500, ECLIPSE MV/5600,

ECLIPSE MV/7800, ECLIPSE MV/9300, ECLIPSE MV/9500, ECLIPSE MV/9600,

ECLIPSE MV/10000, ECLIPSE MV/15000, ECLIPSE MV/18000, ECLIPSE MV/20000,

ECLIPSE MV/30000, ECLIPSE MV/40000, Intellibook, microECLIPSE, microMV, MV/UX,

PC Liaison, RASS, SPARE MAIL, TEO, TEO/3D, TEO/Electronics, TURBO/4, UNITE, and

XODIAC are trademarks of Data General Corporation.

POSIX.1 Conformance Document for the DG/UXTM System

069-701078-02

Revision History: Effective with:

Original Release - November 1989 DG/UX Release 4.20

Revision 1 — May 1991 DG/UX Release 4.32

Revision 2 — August 1991 DG/UX Release 5.4

Preface

This document describes how the DG/UXTM system meets the requirements necessary

for an operating system to conform to the standard defined in IEEE 1003.1-1988

(POSIX.1), approved on August 22, 1988.

This document fulfills the requirements for documentation on conformance indicated

in Section 2.2.1.2 of the standard.

Who Should Read This Manual?

This document is for people who are evaluating operating systems for POSIX.1

conformance. The reader should be familiar with the IEEE 1003.1-1988 (POSIX.1)

standard approved on August 22, 1988.

Document Organization

This document describes the behavior of the DG/UX implementation for all

implementation-defined features identified in the POSIX.1 standard. The document

specifies the behavior of the implementation in those sections of the standard where it

is stated that implementations may vary. Section numbers in this document

correspond to section numbers in the standard.

Related Documents

When using this document, you will need a DG/UX system documentation set for
specific information on the DG/UX system. For more information on the POSIX.1

standard, you should refer to the IEEE Portable Operating Systems Interface for

Computer Environments, Std 1003.1-1988. You can obtain this standard at the

following address:

Publication Sales

IEEE Service Center

P.O. Box 1331

445 Hoes Lane

Piscataway, NJ 08854 -1331

(201) 981-0060

069-701078 fll

Contacting Data General

Data General wants to assist you in any way it can to help you use its products.

Please feel free to contact the company as outlined below.

Manuals

If you require additional manuals, please use the enclosed TIPS order form

(United States only) or contact your local Data General sales representative. A list of

related documents appears at the end of this manual with the TIPS order form.

For a complete list of AViiON® and DG/UXTM manuals, see the Guide to AViiON®

and DG/UXTM System Documentation (069-701085). The on-line version of this

manual found in /usr/release/doc_guide contains the most current list.

Telephone Assistance

If you are unable to solve a problem using any manual you received with your system,

free telephone assistance is available with your hardware warranty and with most Data

General software service options. If you are within the United States or Canada,

contact the Data General Service Center by calling 1-800-DG-HELPS. Lines are

open from 8:00 a.m. to 5:00 p.m., your time, Monday through Friday. The center will

put you in touch with a member of Data General’s telephone assistance staff who can

answer your questions. |

For telephone assistance outside the United States or Canada, ask your Data General |
sales representative for the appropriate telephone number.

Joining Our Users Group

Please consider joining the largest independent organization of Data General users,

the North American Data General Users Group (NADGUG). In addition to making

valuable contacts, members receive FOCUS monthly magazine, a conference

discount, access to the Software Library and Electronic Bulletin Board, an annual

Member Directory, Regional and Special Interest Groups, and much more. For more

information about membership in the North American Data General Users Group,

call 1-800-877-4787 or 1-512-345-5316.

End of Preface

iv 069-701078

Contents
2. Definitions and General Requirementsccecececeeeceeecnescneenceseceoececesenes 1

2.2 Conformanceccccccececececececececeeceecesccencescesseessessesseeseeseseenseesensenees 1

2.2.1.3 Conforming Implementation Optionscceeecesseeeeeeeceeneceeseneaeees 1

2.2.1 Implementation Conformancecccscceceecsecseceececencceeeeceeceeeereeeees 1

2.2.3 Language-Dependent Services for the C Programming Language 2
2.3 General Termscccccsccccscscecececescesceceecsecsececesetececsesceesereceeeesenenease 2

2.4 General Conceptsccececceececescececececeececerecscenesseaereseececseeseeeeneeeeees 3

2.5 Error NuUMDEfSSccccceccecscececcncecccsceecsceoseesecessecsesecssseesenseseeseesensees 3

2.6 Primitive System Data Typescececsscscecccnecececsececesseseesseseessceseeeeeees 4

2.7 Environment DeSCTiptioncccececcscccceccceccsecececeneecececesssenenceaseneseens 4

2.8 C Language Definitionscccccececeeecsecerececseecececeeseeeoeceeseseeeeeeees 4

2.8.2 POSLTX Symbols:ccsececscececccscnscsccceccessccscecesessecsesesecessensnsees 4

2.9 Numerical Limitsceeeees se enccccacccncecscencscscsceasessscescseccesesecsenes 5

2.9.2 Mimimum Valuescccccconcescceccsccscccccecccscececceccesseceeccessecsesseness 5

2.9.3 Run-Time Increasable Valuesccccesecceseccscceccccceeceeceecescescesees 5

2.9.4 Run-Time Invariant Values (Possibly Indeterminate)eeceeeee: 5

2.9.5 Pathname Variable Values.cccsscccccccccsevcccccecsccsceccccecescescewens 6

2.10 Symbolic Constants:ccccsecscceceerecceccecceccecceccesceeseeceecescneeeeaeeees 6

2.10.1 Symbolic Constants for the access() Functioncceccecsecsensencceres 6

2.10.2 Symbolic Constants for the Iseek() Functioncccccescesceeceeceeees 6

2.10.3 Compile-Time Symbolic Constants for Portability Specifications 6

2.10.4 Execution-Time Symbolic Constants for Portability Specifications 7

3. Process Primitivescccececcscecscccsscecccccescsccccccsecsccscsecssssceccccescescsceeseeens 8

3.1 Process Creation and Executionccscccccececscecescceccscncccecsccsceccscenees 8

3.1.1 Process Creationcccsscscccscsccccecscacscscccsccccccsccccssecsseseseccesoceeeees 8

3.1.2 Execute a Filecccececsceconsccccccceccnccccececescccscescssececcesscescescesceess 8

3.2 Process Terminationccscecocescccccccccsccscccccnccccccscsteccssecseessecssscseceees 9

3.2.1 Wait for Process Terminationccccscesccsccceccccscsccccceccscesseccoeecs 9

3.2.2 Terminate a Processcccceccccccccsccscccccscccccccccscscscccccocsesseseecees 10

3.3 Sigmals 22.2.2... ceee cece cee eececeececceccececececececsscecececeececscnscscsececesecseneneeenens 10

3.3.1 Signal Conceptscssccecscceceeeescecesceeecescecscrsessesssesesceenoeseeees 10

3.3.2 Send a Signal to a Processcecscscsscecesescecnccecsccesecesseeececececeeees 11

3.3.4 Manipulate Signal Setscceeceseeceseeeeees sec eeceeceecsccsecescessesscees 12

3.3.6 Examine Pending Signalscecscscececcccscecececesceseesceecsscsoesenoes 12

4. Process Environmentc.cccscececeecccccccccsccceccccecseccccseescccsesseccessecssesecees 13

4.2 User Identification:ccececscsccscccceccscncssceccsceccccscsescesescensasesseceacecs 13

4.2.4 Get User Namecccccscscccncccccscnccsceccescescscencecscesceccececcescescees 13

4.3 Process GroupS:sccccceccsccsceesecccccecsccccececessecscecstescseceececsesseessoees 13

4.3.3 Set Process Group ID for Job Controlcsccscseeeeeeeeecereeseeees 13

4.4 System Identificationcccsceeceseecsecceccecsecesescenecsecsecceseeceaseeosenecs 13

4.4.1 System Nameccceccecesccececcescnscceccecceecesccecceeceescecenseeseesaeees 13

AS Time 0...... cc. cccccccccnsccecsececccnccscnccecscencececcsscscescecscscscecscsessaessesscssesensesess 14

4.5.1 Get System Time cece ccccececessccsceccececececceceeescssescnececsensoees 14

4.5.2 Process Timeccccceceeccscescccccecenceccsccsccccscssccccscececcessecssssesees 14

4.6 Environment Variablesccccsscsccccscscscccccccccccscccccscsceccccecessssccsenees 14

4.6.1 Environment ACCESScecesscccccccsscncsccscescscscccccscccccsccccscsssecsasecs 14

4.7 Terminal Identificationcceccecccsceccccecceccccccceaccceccccsecesceceencsoees 15

069-701078 V

Contents

4.7.1 Generate Terminal Pathnamescscececcececeseeeecsecececeenceeeroesenes 15

4.7.2 Determine Terminal Device Nameccceeeeereneeceneceneeeeeeeeeeeees 15

4.8 Configurable System Variablescsceeeeeeeececcneceeeeeseseeceeeeseeeneesseenes 15

4.8.1 Get Configurable System Variables:.ceseesceteceseeseeeeseeeeeeeseeees 15

5. Files and Directoriesccccccecnccoecceccnccenceeceseccsccascnneenesessscssessensesresees 17

5.1 Directoriesccccccce ese eccenccenceceeceeececceecceecenseescensseeeeseteeecesceeseeesneenes 17

5.1.1 Format of Directory Entriescccseceeeececeeseeeeeeeeeeesceneeeenseseeees 17

5.1.2 Directory Operationsceceeeseecneceecceensceececeseeeesseesseeeseeeereeees 17

5.2 Working Directory Pathnamec:ceeesecereeceenereeeeneescseteneneceeseceseenes 17

5.2.2.4 Errorsccccccceceeceeccecccenccccencscescsancsecseeseeeseentensececetensesererseeses ees 17

5.3 General File Creationccccceccceecesccccecccceecccceecesenensseessesensneeeseseeees 18

5.3.1 Open a File cc cecccesceceececeeneenecnseeeceeecececeecseseeesessceesceeseseneeees 18

5.3.3 Set File Creation Maskcce ccc eceecsccecsncceceecsceeeceseesencessceseeeeeees 18

5.3.4 Link to a File cece cece cence eee e nec ccceecceceecceccenseneeensncssesessceseeeneenes 18

5.4 Special File Creationccececnseeecsererceceeeeeeceeeeeseeesseeneseeeesseeeseaneees 18

5.4.1 Make a Directoryccecccceceee seer enccecenescnsccsesecssscesosasoceseeeseeees 18

5.4.2 Make a FIFO Special Fileccscesceseeecnccncccceseeeesesscescensseeesseees 19

5.5 File Removal ccc ccc cccccnnccenccceccccnsscctecceccccasseesesetenssenessensoosscness 19

5.5.1 Remove Directory Entries secacesceccecececcscrscccecscssscsseecscecsseesceses 19

5.5.2 Remove a@ Directorycccecececeececsccscscecscscscecssessescsccesoneseresseees 19

5.5.3 Rename a Filecceccencceccecccccccecceccescecseccencscesseesenesencnsecsssoses 19

5.6 File Characteristicscccccscecceccccccccccscccccsceccecsccssesscetessssecscssseseesooes 20

5.6.1 File Characteristics: Header and Data Structureccceceeeseeeeoees 20

5.6.2 Get File Statuscccecccsccccescecccececcceececcccecesescessenerssesnsesssososees 20

5.6.3 File Accessibilityc.csceceeeceececsceceeencscsceeceessccesesesoeseeecsesseees 20

5.6.4 Change File Modesccecessececscnecssceseeseccsececcsssesscoecssssssesseeees 20

5.6.5 Change Owner and Group of a Filesecceseeseeeecsseeceseeeeeeeeeenes 21

5.7 Configurable Pathname Variablesc:sceseceesscseceecesececssceeeceseceeesenees 21

5.7.1 Get Configurable Pathname Variabless-seeseeeeees aecnescscsceeee 21

6. Input and Output Primitivescseceecsecscrscsecessccsceseececseeessscsesereeesenees 22

6.4 Input and Outputceccceceececseeecsreeeeeecceneeecseesnssecsseseceeesesneeses 22

6.4.1 Read from a Fileccecccccccccccccccecccenccccecesecscssecescscecsossscnooens 22

6.4.2 Write to a Filecccccceecceecce nce e ccc ecencencccccccsncsetacessecessnceseeoesoees 22

6.5 Control Operations OM Filescecsccecsceecnececeessceescsecnceensseeseeseseess 23

6.5.2 File Controlccccnccscccccnccccecccncescscecensccsccscscecsssersesssceeneneeess 23

6.5.3 Reposition Read/Write File Offsetcsceececseeceeeesseressceseeeseeevees 23

7. Device and Class-Specific FUunctioms:.scscscececencncecsreesccsscesseeesvsceeeeeeees 25

7.1 General Terminal Interfaceccecceceseconceccceccenceccecseseecsscssoneeeenes 25

7.1.1 Interface Characteristicsc.sceeccecsecececccccecrscececscecsenseenceesceonees 25

7.1.2 Settable Parameterscccccscccccccccececcensccencescesesesenssceecosscsecees 26

7.2 General Terminal Interface Control FUnCtionsc.cecssencescsesescoerceees 28

7.2.2 Lime Control Functionscccceecesceccccecccccecsncececsesessseecseecoensnees 28

7.2.3 Get Foreground Process Group ID-.-cssecceecoeecsesenessceeceeeereeees 28

7.2.4 Set Foreground Process Group ID-.-.....secsececccessoereseeecncceeeseeseees 29

8. Language-Specific Services for the C Programming Language0-sseees 30

8.1 Referenced C Language Routimesc.scesccssocsscnscccsccessssreeeesseeensereeees 30

8.1.1 Extensions to Time Functionsccceccscccccsccccecceenscencecssscssosoes 30

8.1.2 Extensions to setlocale() Functioncccececeseereceeceesceeeseseseseoees 30

8.2 FILE-Type C Language Functionscscssccscsececcersscreseenssencsscesesseeees 30

8.2.1 Map a Stream Pointer to a File DeSCriptor--.ssessseeeeeserseeeeeees 30

8.2.2 Open a Stream on a File DeSCriptOr:..ceseceeeceesseseeneesererseeeeeces 31

8.3 Other C Language Functionsc.ceecessceesenececceeeeceeeseneneesseeeossooees 31

8.3.2 Set Time Zonecccccecccccssccsccsccccccccccsecccceccececcssssesesescnescsescnses 31

VI 069-701078

Contents

Q. System Databasescccceecsecenecensceeseceerseeeeeeeseeeesseesecesaeeesencaseeneeeeneeey 32

9.1 System Databasesccecccscceeceeecreeenceeeeeeceensessensenecesssessseneseneeeeees 32

9.2 Database ACCESSccscceccececceccesceceeceecteseccencenestesseeeseteneeneoneasenseueees 32

9.2.1 Group Database ACCESSccccsecceeseceseceteeeseeeseeeeecsseessnenceeeseesaanes 32

9.2.2 User Database ACCESS cee ceeeece eset eecencencecceneenccsasersaesceseeseseseses 32

10. Data Interchange Formatccecesceeeececerecseeecesnesccecseseeecesseaensrenennes 34

10.1 Archive/Interchange File Formatcecscececeecereceeeesceceseceesteeeeeees 34

10.1.1 Extended tar Format cc ccece cece cc eeeeeceeeeeeeeceeescesseeesonseeeerees 34

10.1.2 Extended cpio Formatccccecceeeececceeececeeceenosenseeenscecnesseseeeres 34

10.1.3 Multiple Volumes.cccccecneeeeceecereecneeececeseeeeeueceecessseneetaseeeees 35

069-701078 Vil

2. Definitions and General Requirements

2.2 Conformance

Release 5.4 of the DG/UX operating system conforms to IEEE Std. 1003.1-1988, also

known as the IEEE Standard Portable Operating System Interface for Computer

Environments (POSIX.1), with C Standard Language-Dependent System Support.

2.2.1.3 Conforming Implementation Options

2.2.1 Implementation Conformance

The following are the environment requirements for DG/UX 5.4 to conform to the

standard:

The application should be compiled with the switches —ansi and

-D_POSIX_SOURCE. (Other switches needed by the application may also be used.)

2.2.1.1 Requirements

Release 5.4 of the DG/UX operating system conforms to the POSIX.1 standard.

Nonstandard extensions to the standard are identified as such in the DG/UX system

documentation. No modifications to the default DG/UX system environment are

required in order to run conforming POSIX.1 applications.

2.2.1.2 Documentation

This document is the Conformance Document for DG/UX 5.4 and meets all the

requirements listed in section 2.2.1.2 of the POSIX.1 standard.

Release 5.4 of the DG/UX operating system conforms to IEEE Std. 1003.1-1988, also

known as the IEFE Standard Portable Operating System Interface for Computer

Environments, or simply as POSIX.1.

2.2.1.3 Conforming implementation Options

The value of the {NGROUPS_MAX} option on DG/UX systems is 0. Processes that

need to use supplementary groups must use the sysconf() function in order to

determine how many such groups are available.

The {_POSIX_JOB_CONTROL} option is supported by the DG/UX system, but

applications should use the sysconf() function to verify that it is available.

069-701078 1

2. Definitions and General Requirements

Processes needing to know whether or not the {_POSIX_CHOWN_RESTRICTED}

option is supported for a particular file on the DG/UX system must use the

pathconf() or fpathconf() system calls in order to find out.

2.2.3 Language-Dependent Services for the C Programming

Language

The DG/UX system provides all the facilities referenced in Chapter 8 of the POSIX.1

standard.

2.2.3.1 Types of Conformance

The default C language compiler on DG/UX Systems conforms to the IEEE Std.

1003.1-1988 C Language Binding (C Standard Language-Dependent System Support).

2.2.3.2 C Standard Language-Dependent System Support

The default C language compiler on DG/UX systems conforms to draft X3J11/88-002

(13 May 1988) of the proposed ANSI C Programming Language Standard.

2.3 General Terms

The following terms are those whose meanings are partly or fully implementation-

defined. This section completes their definitions for the DG/UX system

implementation.

appropriate privileges: The only additional way to associate DG/UX system

privileges with a process is for that process to have an effective user ID of 0 (the

superuser). There are no DG/UX system privileges that cannot be obtained by the

superuser.

character special file: A DG/UX system will include in its file system hierarchy some

character special files that are not terminal device files. For information about such

files, see chapter 7 of the Programmer’s Reference for the DG/UXTM System.

file: The following additional file types are defined: socket and symbolic link. See

the stat(2) manual page for details.

file group class: There are no additional ways for a DG/UX system process to

belong to a file group class other than those described in the standard.

parent process ID: The original parent process ID of a process on the DG/UX

system is the process ID of the process that created it via the fork() function. After

the lifetime of the original parent process has ended, the child process’s parent

process ID is set to 1, which is the process ID of the special system initialization

process.

2 069-701078

2. Definitions and General Requirements

pathname: A pathname that begins with two successive slashes is treated by the

DG/UX< system as if it began with a single slash.

read-only file system: Any file system that can be mounted by the DG/UX system

can be mounted read-only if desired. When a file system is mounted read-only, none

of the attributes of the file system may be altered, and none of the files on that file

system may be written, deleted, created, or have any of their attributes (including the

time of last access) altered. Operations that try to write or update any part of a read

only file system or any of its files will fail with the error [EROFS].

2.4 General Concepts

The following terms are those whose meanings are partly or fully implementation-

defined. This section completes their definitions for the DG/UX system

implementation.

extended security controls: The DG/UX system provides no extended security

control mechanisms beyond the access control mechanisms that are required by the

standard.

file access permissions: The DG/UX system provides no additional or alternate file

access control mechanisms beyond the file access control mechanism defined by the

standard.

file times update: When file access times are marked for update, they are updated

periodically, not necessarily immediately.

2.5 Error Numbers

In addition to the error numbers described in the standard, other error numbers are

defined by the DG/UX system. See the file <errno.h> for the actual values of the

error numbers.

On DG/UX systems, any attempt to use an invalid address as an argument to a

system call will fail with the error [EFAULT]. However, attempts by library routines

to access invalid addresses will result in segmentation violations.

On DG/UX systems, the maximum size of a file in bytes can be altered on a per-

process basis by using the ulimit() or setrlimit() system calls. The initial ceiling for a

process is 2147483647 bytes. Any process that tries to extend a file’s size beyond that

process’s file size limit will fail with the error [EFBIG].

069-701078 3

2. Definitions and General Requirements

2.6 Primitive System Data Types

On DG/UX systems, the following POSIX.1 system data types are defined in the

header <sys/types.h>:

typedef unsigned int size_t;

typedef int ssize_t;

typedef long time t;

typedef int dev _t;

typedef long off t;

typedef unsigned long ino_t;

typedef int uid _t;

typedef int gid t;

typedef unsigned long mode_t;

typedef unsigned long nlink_t;

typedef int pid t;

This file also contains other types that are not visible when only the

_POSIX_SOURCE symbol is defined; they require that various other feature-test

macros be defined in order to be visible. See <sys/types.h> for details.

2.7 Environment Description

Names of environment variables on DG/UX systems are not restricted to just the

portable filename character set. Any 8-bit characters may be used, with the following

exceptions: ASCII NUL (’\0’) and the equal sign (’=’).

2.8 C Language Definitions

2.8.2 POSIX Symbols

In addition to POSIX_SOURCE, the following additional feature-test macros are

supported on the DG/UX system:

e _SYSV3_SOURCE: If this symbol is defined, then features from AT&T’s

System V Release 3 become visible.

e _SYSV4_SOURCE: If this symbol is defined, then features from AT&T’s

System V Release 4 become visible.

® _BSD_SOURCE: If this symbol is defined, then features from the Berkeley

Software Distribution (BSD) become visible.

® _M&8KBCS_SOURCE: If this symbol is defined, then features from 880pen’s
M88000 Binary Compatibility Standard become visible.

® _DGUX_SOURCE: If this symbol is defined, then all features from the DG/UX

system become visible.

4 069-701078

2. Definitions and General Requirements

@ _XOPEN_SOURCE: If this symbol is defined, then features from X/OPEN’s

Portability Guide, version 3, become visible.

For information on additional members to structures or unions that are defined by the

standard, see the individual DG/UX system header files in and below the directory

/usr/include.

2.8.2.2 Common Usage-Dependent Support

If the feature test macro POSIX_SOURCE is not defined in a program using the

Common Usage C Language-Dependent environment, then only the symbols made

visible in the headers by use of one or more of the other feature test macros listed

above will be visible. If no such feature test macros at all are defined, the effect will

be equivalent to defining the symbol DGUX_SOURCE, and all symbols in the

header will become visible.

2.9 Numerical Limits

2.9.2 Minimum Values

The constants listed in Table 2-2 of the standard are defined in the file <limits.h>

with the same values as in the standard.

2.9.3 Run-Time Increasable Values

The constant {NGROUPS_MAX} is defined in <limits.h> with value 0.

Applications wishing to use supplemental groups must use the sysconf() function in
order to see if they are available.

2.9.4 Run-Time Invariant Values (Possibly Indeterminate)

The following symbols are not defined in <limits.h> if the feature test macro

_POSIX_SOURCE has been defined. The sysconf() function must be used to

determine the actual values of these parameters:

e@ {ARG_MAX}

e {CHILD_MAX}

© {OPEN_MAX}

069-701078 5

2. Definitions and General Requirements

2.9.5 Pathname Variable Values

The following symbols are not defined in <limits.h> if the feature test macro

_POSIX_SOURCE has been defined. The pathconf() or fpathconf() functions must

be used to determine the actual values of these parameters:

® {LINK_MAX}

e {MAX_CANON}

@ {MAX_INPUT}

@ {NAME_MAX}

@ {PATH MAX}

@ {PIPE_BUF}

2.10 Symbolic Constants

2.10.1 Symbolic Constants for the access() Function

The following access() function symbols are defined in <unistd.h>:

#define F_OK

#define X_OK

#define W_OK

#define R_OK & MOF ©
2.10.2 Symbolic Constants for the lseek() Function

The following IseekQ function symbols are defined in <unistd.h>:

#define SEEK_SET 0

#define SEEK_CUR 1

#define SEEK_END 2

2.10.3 Compile-Time Symbolic Constants for Portability

Specifications

The following portability symbols are defined in <unistd.h>:

#define POSIX_JOB_CONTROL 1

#define _POSIX_SAVED_IDS 1

#define POSIX VERSION 198808L

6 069-701078

2. Definitions and General Requirements

2.10.4 Execution-Time Symbolic Constants for Portability

Specifications

The following symbols are not defined in <unistd.h>. Applications that need to

determine DG/UX system behavior with respect to these options must use the

pathconf() or fpathconf() functions to query the system about a specific file.

e { POSIX_CHOWN_RESTRICTED}

@ {.POSIX_NO_TRUNC}

© { POSIX_VDISABLE}

069-701078

3. Process Primitives

3. Process Primitives

3.1 Process Creation and Execution

3.1.1 Process Creation

3.1.1.2 Description

The DG/UX system includes several process characteristics not defined in the

POSIX.1 standard. When a new process is created, all such extended characteristics

are inherited unchanged from the parent process, with the following exceptions:

e All semaphore adjustment values (see documentation for the semop() system

call) are cleared.

@ Process locks, text locks and data locks (see documentation for the plock()

system call) are not inherited.

@ The new process’s resource-consumption counts for both itself and for its

children (see documentation for the setrlimit() system call) are initialized to zero.

@ Any pending SIGALRM signals are discarded.

@ The new process is not traced, regardless of whether the parent process is traced,

unless explicitly set up for tracing by ptrace() (see documentation for the ptrace()

and dg_xtrace() system calls).

3.1.1.4 Errors

fork() will fail with the error [ENOMEM] and no child process will be created if the

process requires more memory than the system is able to supply.

3.1.2 Execute a File

3.1.2.2 Description

The number of bytes available for the process’s combined argument and environment

lists is {ARG_MAX}. Null terminators, pointers, and alignment bytes are included

in this total.

If the PATH variable is not present in the environment, then only the current working

directory is searched in order to locate the image specified by the file argument.

8 069-701078

3. Process Primitives

The DG/UX system includes several process characteristics not defined in the

POSIX.1 standard. When a process’s image is replaced with another, all such

extended characteristics are kept unchanged, with the following exceptions:

e If the calling process is a child created by vfork(), all shared memory segments

are returned to its parent. Otherwise, all shared memory segments attached to

the calling process will be detached.

@ Ifthe calling process is a child created by vfork(), any text or data segment locks

are returned to its parent (see documentation for the plock() system call).

Otherwise, all text and data segment locks will be released.

e Profiling is disabled for the new process; see documentation for the profil()

system call.

e If the process is being traced, it is sent a SIGTRAP signal just before the new

program image begins to execute (see documentation for the ptrace() and

dg_xtrace() system calls).

3.1.2.4 Errors

Only regular files may be executed; attempts to execute files of other types will fail

with the error [EACCES].

The exec() functions will fail with the error [ENOMEM] if the new process requires

more memory than is allowed by the system-imposed maximum MAXMEM.

3.2 Process Termination

3.2.1 Wait for Process Termination

3.2.1.2 Description

The wait() and waitpid() functions report status if a child process that is being traced

(by the ptrace() or dg_xtrace() system calls) stops. In this case, the 8 low order bits

of the wait status will contain the octal value 0177, and the 8 high order bits will

contain the value of the signal that stopped the child process.

If a parent process terminates without waiting for all of its child processes to

terminate, the remaining child processes will be assigned a new parent process ID of

1, which is the process ID of the special system initialization process.

069-701078 9

3. Process Primitives

3.2.2 terminate a Process

3.2.2.2 Description

Children of terminated process will be assigned a new parent process ID of 1, which

is the process ID of the special system initialization process.

The SIGCHLD signal is supported, so a SIGCHLD signal will be sent to the parent

process.

Job control is supported, so a SIGHUP signal followed by a SIGCONT signal will be

sent to every process in a newly orphaned process group.

3.3 Signals

3.3.1 Signal Concepts

3.3.1.1 Signal Names

The following additional signals are defined in the DG/UX system. See the system

documentation for the signal() system call for details.

e SIGTRAP - trace trap

e SIGBUS — bus error

e SIGSYS — bad argument to system call

e SIGPWR —- power-fail restart

@ SIGWINCH - window size changed

@ SIGPOLL - pollable event occurred

e SIGURG - urgent socket data has arrived

e SIGIO — I/O is now possible

@ SIGXCPU — exceeded CPU time limit

e@ SIGFXSZ — exceeded file size limit

e SIGVTALRM - virtual time alarm

e SIGPROF - profiling time alarm

@e SIGLOST - file record locks revoked

1 0 069-701078

3. Process Primitives

e SIGDGNOTIFY — notification message has been placed in the process’s message

queue

3.3.1.2 Signal Generation and Delivery

If a subsequent occurrence of a pending signal is generated, the signal is, in most

cases, not delivered more than once. The. exception to this rule is due to properties

of the MC88100 CPU: if concurrently executing instructions generate imprecise

exceptions which then generate different instantiations of the same signal, then the

signal handler for that signal will be entered once for each instantiation of the signal.

In addition to the conditions specified in the standard, the DG/UX system will

generate the following signals due to the conditions specified below:

e SIGTRAP - trace trap

@ SIGBUS -— bus error

e SIGSYS — bad argument to system call |

e SIGPWR — power-fail restart

e SIGWINCH -— window size changed

e SIGPOLL — pollable event occurred

e SIGURG -— urgent socket data has arrived

e SIGIO — I/O is now possible

e@ SIGXCPU — exceeded CPU time limit

e SIGFXSZ — exceeded file size limit

@ SIGVTALRM - virtual time alarm

¢ SIGPROF -— profiling time alarm _

e SIGLOST -— file record locks revoked

e SIGDGNOTIFY -— notification message has been placed in the process’s message

queue

3.3.2 Send a Signal to a Process

069-701078 11

3. Process Primitives

3.3.2.2 Description

If a receiving process’s effective user ID has been altered through the use of the

S_ISUID mode bit, the DG/UX system permits the application to receive a signal

sent by the parent process or by a process with the same real user ID.

The SIGCONT signal is supported, so the user ID tests described in the standard will

not be applied when sending SIGCONT to a process that is a member of the same

session as the sending process.

The following set of special system processes are unaffected by all calls of the form

kill(0, sig):

@ The system initialization process (PID 1).

The DG/UX system does not provide extended security controls, so no further

restrictions are placed on the sending of signals.

If the argument pid is negative, but not -1, sig shall be sent to all processes whose

process group ID is equal to the absolute value of pid, and for which the process has

permission to send a signal.

3.3.4 Manipulate Signal Sets

When the value of the signo argument is an invalid or unsupported signal number, the

sigaddset(), sigdelset(), and sigismember() functions return —1 and set errno to

[EINVAL].

3.3.6 Examine Pending Signals

3.3.6.4 Errors

The sigpending() function will generate the following errors under the conditions

noted:

e [(EFAULT]: The argument set specifies an invalid area of the calling process’s

address space or an address area which does not have write access.

1 2 069-701078

4. Process Environment

4. Process Environment

4.2 User Identification

4.2.4 Get User Name

4.2.4.3 Returns

The implementation of the cuserid() function does not use the getpwnam() function,
so the result of a user’s call to either routine will not be overwritten by a subsequent

call to the other routine. However, cuserid() and getpwuid() do use the same static

buffer, so the result of a user’s call to either of these routines will be overwritten by a

subsequent call to the other.

4.2.4.4 Errors

There are no implementation-defined conditions under which the getlogin() or

cuserid() functions will detect errors.

4.3 Process Groups

4.3.3 Set Process Group ID for Job Control

4.3.3.2 Description

The {_POSIX_JOB_CONTROL} option is supported by the DG/UX system, so the

setpgid() function is fully supported.

4.4 System Identification

4.4.1 System Name

4.4.1.2 Description

The members of the utsname structure are all character strings at most 255 characters

in length (not counting the terminating NUL character) with arbitrary contents that

have been configured into the system’s kernel. No particular semantics are attached

to the values of any of the members. The default values of the structure members are

069-701078 1 3

4. Process Environment

as follows:

char sysname [256] = "DG/UX";

char nodename [256] = “no_node";

char release [256] = "5.4";

char version [256] = "00";

char machine [256] = "“AViiON";

4.4.1.4 Errors

The uname() function will generate the following errors under the conditions noted:

e [EFAULT]: The argument name points to an invalid address.

4.5 Time

4.5.1 Get System Time

4.5.1.4 Errors

The time() function will generate the following errors under the conditions noted:

@ [EFAULT]: The argument floc points to an invalid address.

4.5.2 Process Times

4.5.2.4 Errors

The times() function will generate the following errors under the conditions noted:

@ [EFAULT]: The argument buffer points to an invalid address.

4.6 Environment Variables

4.6.1 Environment Access

4.6.1.4 Errors

There are no implementation-defined conditions under which the getenv() function

will detect errors.

1 4 069-701078

4. Process Environment

4.7 Terminal Identification

4.7.1 Generate Terminal Pathname

4.7.1.4 Errors

There are no implementation-defined conditions under which the ctermid() function

will detect errors.

4.7.2 Determine Terminal Device Name

4.7.2.4 Errors

There are no implementation-defined conditions under which the ttyname() or isatty()

functions will detect errors.

4.8 Configurable System Variables

4.8.1 Get Configurable System Variables

4.8.1.2 Description

In addition to the variables listed in the standard, the following configurable system

variables are supported by the DG/UX system:

@e _SC_BCS_VERSION: get version number of 880pen BCS to which the system

conforms

e _SC_BCS_VENDOR_STAMP: get BCS vendor stamp of the system

e _SC_BCS_SYS_ID: get system hardware’s unique system [D number

e _SC_MAXUMEMV: get maximum user process size, in Kbytes

@e _SC_MAXUPROC: get maximum number of simultaneous processes per real

user ID

e _SC_MAXMSGSZ: get maximum number of bytes in a message

e® _SC_NMSGHDRS: get maximum number of message headers in system

e _SC_SHMMAXSZ: get maximum size of a shared memory segment

069-701078 1 5

4. Process Environment

e _SC_SHMMINSZ: get minimum size of a shared memory segment

e _SC_SHMSEGS: get maximum number of attached shared memory segments

per process

e _SC_NMSYSSEM: get total number of semaphores in system

e _SC_MAXSEMVL: get maximum semaphore value

e _SC_NSEMMAP: get number of semaphore sets

@ _SC_NSEMMSL: get number of semaphores per set

@ _SC_NSHMMNI: get number of shared memory segments in the system

e _SC_ITIMER_VIRT: determine whether or not system supports a virtual timer

e _SC_ITIMER_PROF: determine whether or not system supports a profiling

timer

e _SC_TIMER_GRAN: get granularity (in microseconds) of system’s real-time

clock

e _SC_PHYSMEM: get system’s physical memory size, in Kbytes

@ _SC_AVAILMEM: get amount of physical memory available to user processes,

in Kbytes

® _SC_NICE: determine whether or not nice() process prioritization is supported

on system

@ _SC_MEMCTL_UNIT: get number of bytes in a memcti() memory unit

@ _SC_SHMLBA: get number of bytes used as rounding factor on memory

addresses by shmsys()

e _SC_SVSTREAMS: determine whether or not system supports System V style

STREAMS

e _SC_CPUID: get the value stored in the M88100 Processor Identification

Register

16 069-701078

5. Files and Directories

5. Files and Directories

5.1 Directories

5.1.1 Format of Directory Entries

Directories are implemented as a special type of file on the DG/UX system. Each

512-byte directory block has 8 bytes of self-identification information, followed by 504

bytes of information that are used to store variable-length directory entries. The first

4 bytes of a directory entry are used to store the file serial number of the referenced

file; the special serial number 0 indicates that the entry is unused. The next 2 bytes of

the directory entry are used to store the length in bytes of the entry. The seventh

byte of the directory entry is used to store a special sequence number for use in

generating invariant file offset values for directory entries (both local and remote).

The eighth byte of the directory entry is used to store the length in bytes of the

filename for the entry. The remainder of the entry is used to store that name as a

null-terminated C-style string, padded if necessary to a 4-byte alignment.

5.1.2 Directory Operations

5.1.2.4 Errors

opendir will fail with the error [EMFILE] when the maximum number of file

descriptors are currently open.

readdir will fail with the error [EBADF] when the file descriptor determined by the

DIR stream is no longer valid. This results if the DIR stream has been closed.

closedir will fail with the error [EBADF] when the file descriptor determined by the

DIR stream is no longer valid. This results if the DIR stream has been closed.

5.2 Working Directory Pathname

5.2.2.4 Errors

getewd() returns NULL with the error [EACCESS] if read or search permission was

denied for a component of the pathname.

069-701078 1 7

5. Files and Directories

5.3 General File Creation

5.3.1 Open a File

5.3.1.2 Description

Any bits in the mode argument other than the file permission bits are ignored,

regardless of whether they are set.

If the O_CREAT flag is not set, the OLEXCL flag is treated as if it were not set,

regardless of whether it was actually set.

Only regular files and FIFOs can be truncated with the O_TRUNC flag; the fiag is

ignored for all other types of files.

5.3.3 Set File Creation Mask

5.3.3.2 Description

Any bits in the cmask argument other than the file permission bits are ignored,

regardless of whether they are set.

5.3.4 Link to a File

5.3.4.2 Description

The DG/UX system’s implementation of the link() function does not support the

linking of files across file systems, or the linking of directories; only the symlink()

system call may be used for these operations.

The calling process is required to have permission to access the existing file.

5.4 Special File Creation

5.4.1 Make a Directory

5.4.1.2 Description

Any bits in the mode argument other than the file permission bits and the set UID

and set GID bits are ignored, regardless of whether they are set. (However, the set

UID bit has no meaning for directories.)

1 8 069-701078

5. Files and Directories

5.4.2 Make a FIFO Special File

5.4.2.2 Description

Any bits in the mode argument other than the file permission bits are ignored,

regardless of whether they are set.

5.5 File Removal

5.5.1 Remove Directory Entries

5.5.1.2 Description

The DG/UX system prohibits the use of the unlink() function on directories; any such

attempts will fail with the error [EPERM].

5.5.2 Remove a Directory

5.5.2.2 Description

The DG/UX system prohibits the removal of the current working directory of the

calling process; any such attempts will fail with the error [EINVAL].

If the directory to be removed is currently in use by the system as a mount point for a

file system (either local or remote), any attempts to remove it with rmdir() will fail

with the error [EBUSY]. Note that this includes the root directory, since it is the

mount point for the root file system.

5.5.3 Rename a File

5.5.3.4 Errors

The rename() function will fail with the error [EBUSY] if an attempt is made to

rename a directory that is the mount point of a file system.

The DG/UX system’s implementation of the rename() function does not support the

renaming of files across file systems; any such attempts will fail with the error

[EXDEV].

069-701078 1 9

5. Files and Directories

5.6 File Characteristics

5.6.1 File Characteristics: Header and Data Structure

5.6.1.2 <sys/stat.h> File Modes

The DG/UX system does not OR any other implementation-defined bits into the

S_IRWXU, S_IRWXG or S_IRWXO bitmasks.

5.6.1.3 <sys/stat.h> Time Entries

In addition to the functions defined by the standard, the implementation-defined

function utimes() can be used to directly change the st_atime, st_mtime, or st_ctime

fields of a file.

5.6.2 Get File Status

5.6.2.2 Description

The DG/UX system has no additional or alternate file access control mechanisms, so

there are no additional conditions under which the stat() or fstat() functions will fail.

5.6.3 File Accessibility

5.6.3.2 Description

If a process has a real user ID of 0 (the superuser), then the access() function will

indicate success for the X_OK test even if none of the file’s execute file permission

bits are set.

5.6.4 Change File Modes

5.6.4.2 Description

The S_ISUID and S_ISGID bits will be ignored if the chown() function is executed

on any file that resides on a file system that was mounted with the nosuid option.

Upon successful completion of the chmod() function, any other file descriptors in the

system that refer to the changed file will continue to provide the same access to the

file as they previously did.

2 ' 069-701078

5. Files and Directories

5.6.5 Change Owner and Group of a File

5.6.5.2 Description

If a process has appropriate privileges, the S_ISUID and S_ISGID bits will remain

undisturbed by the chown() function.

5.7 Configurable Pathname Variables

5.7.1 Get Configurable Pathname Variables

5.7.1.2 Description

In addition to the variables listed in the standard, the following configurable pathname

variables are supported by the DG/UX system:

@ _PC_BLKSIZE: get optimum buffer size (in bytes) for I/O to the file, or 0 if

such a size is not available

5.7.1.4 Errors

When the value of name is invalid, the pathconf() function returns —1 and sets errno

to [EINVAL].

When search permission is denied for a component of the path prefix, the pathconf()

and fpathconf() functions return —1 and set errno to [EACCES].

When the implementation does not support an association of the variable name with

the specified file, the pathconf() and fpathconf() functions return —1 and set errno to

[EINVAL].

When the length of the path argument exceeds {PATH_MAX}, or a pathname

component is longer than {NAME_MAX} while {_POSIX_NO_TRUNC} is in effect,

the pathconf() and fpathconf() functions return —1 and set errno to

[ENAMETOOLONG].

When the named file does not exist or the path argument points to an empty string,

the pathconf() and fpathconf() functions return —-1 and set errno to [ENOENT].

When a component of the path prefix is not a directory, the pathconf() and

fpathconf() functions return —1 and set errno to [ENOTDIR].

When the fildes argument is not a valid file descriptor, the fpathconf() function shall

return —1 and set errno to [EBADF].

069-701078 2 1

6. input and Output Primitives

6. Input and Output Primitives

6.4 Input and Output

6.4.1 Read from a File

6.4.1.2 Description

Calls to the read() function past end-of-file on device special files are treated the same

as for ordinary files; but the result of doing this on a device that is incapable of

seeking (such as a terminal) may vary from one type of device to another.

Attempting to read more than {INT_MAX} bytes will not by itself result in an error.

6.4.1.4 Errors

If a read() operation is interrupted by a signal and some of the data is transferred

successfully, the function will return the number of bytes actually read.

The [EIO] error will also occur if there is a physical I/O error when reading the

contents of the file from the file system.

If the value of nbytes is greater than {INT_.MAX}, up to {UINT_MAX} will be read.

If the value is greater than {UINT_MAX}, the high order bits of nbytes will be

truncated and that number of bytes will be read.

6.4.2 Write to a File

6.4.2.2 Description

If the number of bytes to be written is zero, and the file is a FIFO special file or a

block special file, the write() function shall return zero and have no other results. If

the number of bytes to be written is zero, and the file is a terminal device file, the

write() function shall return zero and have no other results, assuming that a write of

one or more bytes would also have been successful under the same conditions and

with enough space in the output buffer.

If the number of bytes to be written exceeds {INT_MAX}, the write() operation will

fail with the error [EFBIG], since the maximum valid file size is {INT_MAX}.

22 069-701078

6. Input and Output Primitives

6.4.2.4 Errors

If the number of bytes to be written exceeds {INT_MAX}, the write() operation will

fail with the error [EFBIG], since the maximum valid file size is {INT_MAX}.

If a write() operation is interrupted by a signal, and some of the data is transferred

successfully, the function will return the number of bytes actually written.

The [EIO] error will also occur if there is a physical I/O error when writing the

contents of the file to the file system.

6.5 Control Operations on Files

6.5.2 File Control

6.5.2.2 Description

In addition to the F_SETFL fiag bits defined in the standard, the DG/UX system
allows the following flag bits to be set via the fentl() function:

@ FASYNC: signal process group when data is ready

@ O_ASYNC: physically flush data on writes before returning

@ O_NDELAY: no delay

® FDGNRETRY: all I/O errors are treated as hard errors and are not retried

All other bits in the flag are ignored.

Advisory locking is supported for all files that can be opened for writing.

If the /_len field of an flock structure is negative, the fentl() operation will fail with the

error [EINVAL].

6.5.2.4 Errors

If the command is F.LSETLKW and a deadlock would exist if the lock were granted,

the fentl() operation will fail with the error [EDEADLK].

6.5.3 Reposition Read/Write File Offset

069-701078 23

6. Input and Output Primitives

6.5.3.2 Description

The Iseek() function has no effect on devices that are incapable of seeking (such as

terminal devices). |

24 oe 069-701078

7. Device and Class-Specific Functions

7. Device and Class-Specific Functions

7.1 General Terminal Interface

The DG/UX system supports asynchronous terminal connections and virtual terminal

connections, including network virtual terminals and local terminal emulators.

Synchronous terminal connections are not supported.

7.1.1 Interface Characteristics

7.1.1.3 The Controlling Terminal

In the DG/UX system, the controlling terminal for a session is allocated in the

following manner: If a session leader has no controlling terminal, and it opens a

terminal device that is not already associated with a session without using the

O_NOCTTY option to open(), then that terminal becomes the controlling terminal of

the session leader.

7.1.1.5 Input Processing and Reading Data

When the number of bytes stored in the input queue exceeds MAX_INPUT, the

entire contents of the input queue are flushed.

7.1.1.6 Canonical Mode Input Processing

When the number of bytes stored in the input line exceeds MAX_CANON, the entire

contents of the input line are flushed.

{MAX_CANON} is supported by all terminal interfaces supported by the system.

7.1.1.7. Non-Canonical Mode Input Processing

The value of the {MAX_INPUT} parameter on the DG/UX system will never be less

than 255, so it is impossible to set the value of MIN (which is stored in an &-bit

character) to anything greater than {MAX_INPUT}.

7.1.1.8 Writing Data and Output Processing

The DG/UX system provides a buffering mechanism for terminals, so the completion

of a write() call does not mean that all of the bytes scheduled for transmission to the

device have necessarily been completed yet.

069-701078 25

7. Device and Class-Specific Functions

7.1.1.9 Special Characters

The START and STOP characters can be changed via the tcsetattr() function.

There are no multibyte sequences that have a meaning different from the meaning of

the bytes when considered individually.

If IEXTEN is set, the following additional single-byte characters are recognized:

EOL2 (additional line input line delimiter) and SWITCH (shell layers switch

character).

7.1.2 Settable Parameters

7.1.2.1 termios Structure

The members of the termios structure are as follows:

struct termios

{

tcflag t c_iflag;

tcflag_t c_oflag;

tcflag_t c_cflag;

tcflag_t c_lflag;

char c_line;

cc _t cc [NCCS];

};

The c_line field indicates which line discipline is in use for the terminal. The total

size of the termios structure is 36 bytes.

7.1.2.2 Input Modes

Since the only terminal devices supported by the DG/UX system use asynchronous

serial data transmission, the break condition is always interpreted according to the

standard.

When the number of characters in the input queue rises above seven-eighths the value

of MAX_INPUT, a STOP character is sent. The terminal is prevented from sending

more data until the number of characters in the input queue falls below one-fourth the

value of MAX_INPUT, when a START character ts sent.

The initial input control value after open() is 0 (no mode bits set).

26 069-701078

7. Device and Class-Specific Functions

7.1.2.3 Output Modes

If OPOST is set, output data is processed according to the values of the rest of the

output control modes. See the tty(7) manual page for details about what modes are

available.

The initial output control value after open() is 0 (no mode bits set).

7.1.2.4 Control Modes

The initial hardware control value after open() is that the following attributes are set:

B300, CS8, CREAD, HUPCL. |

7.1.2.5 Local Modes

If ECHOE and ICANON are set, the ERASE character will cause the terminal to

echo the erase character, even if the display is currently at the beginning of the line.

If ECHOK and ICANON are set, the KILL character causes the terminal to echo the

0 (newline) character after the KILL character.

If IEXTEN is set, the DG/UX system extensions of VEOL2 (additional line input line

delimiter) and VSWTCH (shell layers switch character) will be recognized, providing

that ICANON is also set. TEXTEN has no interaction with ISIG, IXON, or IXOFF.

The initial local control value after open() is 0 (no mode bits set).

7.1.2.6 Special Control Characters

Since job control is supported, the SUSP character is not ignored.

The number of elements in the c_cc array is 19.

The START and the STOP characters can both be changed with the tesetattr()

function.

The initial octal values of all control characters are as follows:

VINTR: 0177

VQUIT: 0034

VERASE: 0043

VKILL: 0100

VEOF: 0004

VEOL: 0000

VMIN: 0004

VTIME: 0000

VSTART: 0021

069-701078 27

7. Device and Class-Specific Functions

VSTOP: 0023

VSUSP: 0377

VEOL2: 0000

VSWTCH: 0032

7.1.2.7 Baud Rate Function

7.1.2.7.2 Description

Attempts to set unsupported baud rates will be ignored and will not cause any error

to be returned by the functions efsetispeed(), cfsetospeed(), or tcsetattr().

7.1.2.7.4 Errors

There are no implementation-defined conditions under which the efgetispeed(),

cfgetospeed(), cfsetispeed(), or cfsetospeed() functions will detect additional errors.

7.2 General Terminal Interface Control Functions

There are no specific commands that allow the use of terminal interface control

functions from background processes.

7.2.2 Line Control Functions

7.2.2.2 Description

If the duration is not zero, the tesendbreak() function shall send zero-valued bits for

duration microseconds.

Except for certain pseudo-terminal device files, the tesendbreak() function will always

send some data (zero-valued bits) to generate a break condition. For details on the

behavior of pseudo-terminals, see the manual page for the pty(7) device.

7.2.3 Get Foreground Process Group ID

7.2.3.2 Description

The {_POSIX_JOB_CONTROL} option is supported by the DG/UX system, so the

tcgetperp() function is fully supported.

28 069-701078

7. Device and Class-Specific Functions

7.2.4 Set Foreground Process Group ID

7.2.4.2 Description

The {_POSIX_JOB_CONTROL} option is supported by the DG/UX system, so the

tcsetpegrp() function is fully supported.

069-701078
29

8. Language-Specific Services for the C Programming Language

8. Language-Specific Services for the C

Programming Language

8.1 Referenced C Language Routines

8.1.1 Extensions to Time Functions

If the first character of the TZ environment variable is a colon, then the characters

after the colon are interpreted as the name of a rule set describing how time zone

information is to be presented. See the localtime(3C) manual page for details.

8.1.2 Extensions to setlocale() Function

8.1.2.2 Description

The implementation-defined native environment for the setlocale() function on the

DG/UX system is the locale named "C", as specified in the C standard.

There are no implementation-defined additional categories for use by the setlocale()

function.

If the environment variable corresponding to the specified category is not set or is set

to the empty string and the LANG environment variable is not set or is set to the

empty string, the behavior of setlocale() is to return the value of the specified

category in the current locale, without changing anything in the locale. This holds

true even if the /ocale parameter to the function is the empty string.

8.2 FILE-Type C Language Functions

8.2.1 Map a Stream Pointer to a File Descriptor

8.2.1.4 Errors

There are no implementation-defined conditions under which the fileno() function will

detect additional errors.

30 069-701078

8. Language-Specific Services for the C Programming Language

8.2.2 Open a Stream on a File Descriptor

8.2.2.2 Description

The DG/UX system does not support any additional values for the type argument to

the fdopen() function.

8.2.2.4 Errors

There are no implementation-defined conditions under which the fdopen() function

will detect additional errors.

8.3 Other C Language Functions

8.3.2 Set Time Zone

8.3.2.2 Description

If TZ is absent from the environment, then calling the tzset() function will have no

effect on the time zone information used by the localtime(), ctime(), strftime(), and

mktime() functions; they will use Coordinated Universal Time (also known as GMT).

069-701078 31

9. System Databases

9. System Databases

9.1 System Databases

If the initial user program field is null, the program /bin/sh is used by default.

If the initial working directory field is null, the root directory (/) is used by default.

The following additional field is contained in the group database:

e An optional encrypted password

The following additional fields are contained in the user database:

e An optional encrypted password

e An optional string of arbitrary text used to hold additional information about the

user; the content of this string is not interpreted by any of the functions defined

in this standard

9.2 Database Access

9.2.1 Group Database Access

9.2.1.3 Returns

The return values of the getgrgid() and getgrnam() functions point to a static data

area that will be overwritten on each call to either function.

9.2.1.4 Errors

There are no implementation-defined conditions under which the getgrgid() and

getgrnam() functions will detect additional errors.

9.2.2 User Database Access

9.2.2.2 Description

The implementation of the cuserid() function does not use the getpwnam() function,

so the results of either routine will not be overwritten by a subsequent call to the

other routine. However, cuserid() and getpwuid() do use the same static buffer, so

the result of a user’s call to either of these routines will be overwritten by a

32 069-701078

9. System Databases

subsequent call to the other.

9.2.2.3 Returns

The return values of the getpwuid() and getpwnam() functions point to a static data

area that will be overwritten on each call to either function.

9.2.2.4 Errors

There are no implementation-defined conditions under which the getpwuid() and

getpwnam() functions will detect additional errors.

069-701078

10. Data Interchange Format

10. Data Interchange Format

10.1 Archive/Interchange File Format

Both the extended tar format and the extended cpio format are supported by the.

DG/UX system. For information on the format-creating utilities, see the manual

pages for the tar(1) and cpio(1) commands.

10.1.1 Extended tar Format

The blocks in a tar archive may or may not be grouped for physical I/O operations;

see the manual page for tar(1) for details on how many blocks can be written with a

single write() operation.

All possible eight-bit characters are valid in DG/UX system pathnames, so pathnames

are not restricted to the portable filename character set. Since there are no possible

file names in a tar archive that could create invalid file names or pathnames on the

DG/UX system, there are no files that are ignored by the format-reading tar utility.

All extracted files are thus stored in the file system hierarchy with their names

unchanged.

The set UID, set GID, and TSVTX bits are all supported by the DG/UX system.

If the typeflag field is set to CHARTYPE or BLKTYPE, the size field is ignored. If

the typeflag field is set to FIFOTYPE, the size field is set to zero.

The devmajor and devminor fields contain, respectively, the major and minor device

numbers of the device file. These numbers will be extracted unchanged from the

archive, but the resulting device node will not necessarily refer to the same device as

it did on the system on which the tar archive was created.

No high-performance attributes are available on the DG/UX system, so files whose

typeflag field have the value ’7’ are treated as regular files.

The reserved typeflag values ’A’ through ’Z’ are not used or recognized.

10.1.2 Extended cpio Format

The cpio archive format on the DG/UX system is always recorded as a series of

blocks, the size of which must be even multiples of 512 bytes.

34 069-701078

10. Data Interchange Format

10.1.2.1 Header

The c_dev field is used to store the octal representation of the device number of the

device on which the file system holding the file being archived resides. The c_ino

field is used to store the octal representation of the file serial number of the file being

archived.

The c_rdev field is used to store the octal representation of the device number of the

file being archived. This value has meaning only for character or block special files.

10.1.2.2 File Name

All possible eight-bit characters are valid in DG/UX system pathnames, so pathnames

are not restricted to the portable filename character set. Since there are no possible

filenames in a epio archive that could create invalid filenames or pathnames on the

DG/UxX system, there are no files that are ignored by the format-reading tar utility.

All extracted files are thus stored in the file system hierarchy with their names

unchanged. :

10.1.2.4 Special Entries

For character and block special files, c_filesize is defined as 0.

10.1.2.5 cpio Values

Some of the additional file types reserved by the standard are supported by the

DG/UX system’s cpio utility: C_LISBLK, C_LISCHR, C_LISLNK and C_ISSOCK.

All of the mode flags listed in this section are supported by the DG/UX system.

10.1.3 Multiple Volumes

When the cpio format-reading utility encounters an end-of-file condition in the

format’s logical byte stream, it will iscue a message to its standard output and then

read from its standard input the filename of the next volume in the archive.

When the tar format-writing utility encounters an end-of-file condition on the output

device, it will issue a message to its standard error, it will read a newline from its

standard input, and then continue writing the next volume of the archive.

When the tar format-reading utility encounters an end-of-file condition on the input

device, the program terminates. The utility may be invoked again to read the next

volume of the archive.

End of Document

069-701078 35

Cut here and insert in binder spine pocket

@» Data General
Data General Corporation, Westboro, Massachusetts 01580

