
¢, DataGeneral
Data General Corporation, Westboro, Massachusetts 01580

Customer Documentation

Using the DG/UX Kernel Debugger

093—701075-01

Using the DG/UXTM Kernel Debugger

093-701075-01

For the latest enhancements, cautions, documentation changes, and other information

on this product, please see the Release Notice (085—series) supplied with the software.

Ordering No. 093—701075

Copyright © Data General Corporation, 1992

All Rights Reserved

Unpublished — All rights reserved under the Copyright laws of the United States

Printed in the United States of America

Rev. 01, January 1992

Licensed Material — Property of Data General Corporation

Notice

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE BY DGC

PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION CONTAINED HEREIN IS THE

PROPERTY OF DGC; AND THE CONTENTS OF THIS MANUAL SHALL NOT BE REPRODUCED IN WHOLE
OR IN PART NOR USED OTHER THAN AS ALLOWED IN THE DGC LICENSE AGREEMENT.

DGC reserves the right to make changes in specifications and other information contained in this document without

prior notice, and the reader should in all cases consult DGC to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS AND THE
LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN
CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRESENTATION OR OTHER AFFIRMATION
OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED TO STATEMENTS |

REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE OR PERFORMANCE
OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY BY DGC FOR ANY

PURPOSE, OR GIVE RISE TO ANY LIABILITY OF DGC WHATSOEVER.

This software is made available solely pursuant to the terms of a DGC license agreement, which govems its use.

AViiON, CEO, DASHER, DATAPREP, DESKTOP GENERATION, ECLIPSE, ECLIPSE MV/4000,
ECLIPSE MV/6000, ECLIPSE MV/8000, GENAP, INFOS, microNOVA, NOVA, PRESENT, PROXI,
SWAT, and TRENDVIEW are U.S. registered trademarks of Data General Corporation; and
AOSMAGIC, AOS/VSMAGIC, AROSE/PC, ArrayPlus, BaseLink, BusiGEN, BusiPEN, BusiTEXT,

CEO Connection, CEO Connection/LAN, CEO Drawing Board, CEO DXA, CEO Light, CEO
MAILI, CEO Object Office, CEO PXA, CEO Wordview, CEOwrite, COBOL/SMART,
COMPUCALC, CSMAGIC, DASHER/One, DASHER/286, DASHER/286-12c, DASHER/286—12),
DASHER/386, DASHER/386-16c, DASHER/386-—25, DASHER/386—25k, DASHER/386sx,
DASHER/386SX—16, DASHER/486~-25, DASHER/LN, DATA GENERAL/One, DESKTOP/UX,
DG/500, DG/AROSE, DGConnect, DG/DBUS, DG/Fontstyles, DG/GATE, DG/GEO, DG/HEO,
DG/L, DG/LIBRARY, DG/UX, DG/XAP, ECLIPSE MV/1000, ECLIPSE MV/1400,
ECLIPSE MV/2000, ECLIPSE MV/2500, ECLIPSE MV/3500, ECLIPSE MV/5000,
ECLIPSE MV/5500, ECLIPSE MV/7800, ECLIPSE MV/9500, ECLIPSE MV/10000,
ECLIPSE MV/15000, ECLIPSE MV/18000, ECLIPSE MV/20000, ECLIPSE MV/30000,
ECLIPSE MV/40000, FORMA-TEXT, GATEKEEPER, GDC/1000, GDC/2400, Intellibook,

microECLIPSE, microMV, MV/UX, PC Liaison, RASS, REV-UP, SLATE, SPARE MAIL,

SUPPORT MANAGER, TEO, TEO/3D, TEO/Electronics, TURBO/4, UNITE, WALKABOUT,

WALKABOUT/SX, and XODIAC are trademarks of Data General Corporation.

Restricted Rights Legend: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set

forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at [DFARS]

252.227-7013 (October 1988). |

DATA GENERAL CORPORATION

4400 Computer Drive

Westboro, MA 01580

Using the DG/UXTM Kernel Debugger

093-701075-01

Revision History: Effective with:

Original Release — May 1990

First Revision — January 1992 DG/UX Release 5.4.1

A vertical bar in the margin of a page indicates substantive technical change from the previous revision.

Preface

This manual describes the DG/UXTM Kernel Debugger. The Kernel Debugger enables you to

examine and modify the state of a DG/UX operating system kemel that is running on an AViON®

station or server.

The debugger functions as an integral part of the DG/UX operating system kernel. You can use the

debugger to set breakpoints in the kernel, examine the state of processes, and examine and change a

machine’s memory and registers.

Who Should Read This Manual?

Users of this manual should be knowledgeable about operating system design topics such as virtual

memory. You should be familiar with the Motorola 88000 architecture—particularly the

architecture’s registers, instruction set, and stack management.

Manual Organization

This manual contains three chapters and two appendixes.

Chapter 1 Introduces the debugger, lists its features, and reviews the debugger

installation procedure.

Chapter 2 Explains how to enter the debugger, how to enter commands, and

describes the expression parser.

Chapter 3 Explains the purpose of each debugger command and how to interpret

the commands’ output.

Chapter A Provides a quick reference for the debugger commands.

Chapter B Describes context blocks.

083-701075 Licensed Material — Property of Data General Corporation il

Preface

Related Documents

The following manuals provide information that you may find useful. The manuals can be ordered

using the nine—digit ordering number shown in parentheses (see TIPS information in back of this

manual for ordering instructions).

Managing the DG/UXTM System (093-—701088).

Discusses the concepts and tasks related to DG/UX system management, providing

general orientation to the administrator’s job as well as instructions for managing disk

resources, user profiles, files systems, printers and tape drives, and other features of the

system. The manual approaches system administration through the sysadm facility.

Writing a Standard Device Driver for the DG/UXTM System (093-701053).

Describes how to write a device driver for a DG/UX system running on an AViiON

computer. Describes drivers written to address both specific devices and adapters that

manage secondary bus access to specific devices.

Programming in the DG/UXTM Kernel Environment (093-701083).

Describes the basics of kernel—level programming on the DG/UX system and provides

reference pages for kernel—supplied utility routines.

AViiON® 300D Series Stations: Programming System Control and I/O Registers (014-001823).

Describes the system board architecture and explains how to program the board,

including the monochrome and color graphics subsystems, keyboard interface, serial

and parallel interfaces, LAN interface, and SCSI.

AViiON® 100, 200, 300, and 400 Series Stations and AViiON® 3000 and 4000 Series Systems:

Programming System Conirol and I/O Registers (014—001800).

Describes the system board architecture and explains how to program the system

board, including the monochrome and color graphics subsystems, serial and parallel

interfaces, LAN interface, and SCSI.

AViiON® 4600 and 530 Series Stations: Programming System Control and I/O Registers

(014002076).

Describes the system board architecture and explains how to program the system

board, including the color graphics controller, keyboard, serial interface, VME

interface, LAN interface, and SCSI interface.

AViiON® 5000 and 6000 Series Systems: Programming System Control and I/O Registers

(014001805).

Describes the system board architecture and explains how to program the system

board, including the serial and parallel interfaces, the VMEbus, and the associated I/O.

iV Licensed Material — Property of Data Genera! Corporation 093-701075

Preface

MC88100 RISC Microprocessor User’s Manual (MC88100UM/AD).

Describes the Motorola 88100 Central Processing Unit (CPU), including the registers,

addressing modes, internal and bus timing, and assembly—language instruction set.

Obtain from Motorola Corporation, Phoenix, AZ.

MC88200 Cache/Memory Management Unit User’s Manual (MC88200UM/AD).

Describes the Motorola 88200 Cache/Memory Management Unit (CMMU), including

the CMMU registers, the cache and cache coherency, memory management and

user/supervisor space, the Processor bus (Pbus), and the Memory bus (Mbus). Obtain

from Motorola Corporation, Phoenix, AZ.

Reader, Please Note

Data General manuals use certain symbols and styles of type to indicate different meanings. The

Data General symbol and typeface conventions used in this manual are defined in the following list.

You should familiarize yourself with these conventions before reading the manual.

This manual also presumes the following meanings for the terms “command line,” “format line,”

and “syntax line.” A command line is an example of a command string that you should type

verbatim; it is preceded by a system prompt and is followed by a delimiter such as the curved arrow

symbol for the New Line key. A format line shows how to structure a command; it shows the

variables that must be supplied and the available options. A syntax line is a fragment of program

code that shows how to use a particular routine; some syntax lines contain variables.

093-701075 Licensed Material — Property of Data General Corporation V

Preface

Convention Meaning

boldface

constant

width/monospace

italic

[optional]

[]

$ and %

<>

<, >, >>

In command lines and format lines: Indicates text (including

punctuation) that you type verbatim from your keyboard.

All DG/UX commands, pathnames, and names of files, directories,

and manual pages also use this typeface.

Represents a system response on your screen. Syntax lines and

examples of code also use this font.

In format lines: Represents variables for which you supply values;

for example, the names of your directories and files, your username

and password, and possible arguments to commands.

In text: Indicates a term that is defined in the manual’s glossary.

In format lines: These brackets surround an optional argument.

Don’t type the brackets; they only set off what is optional. The

brackets are in regular type and should not be confused with the

boldface brackets shown below.

In format lines: Indicates literal brackets that you should type. These

brackets are in boldface type and should not be confused with the

regular type brackets shown above.

In format lines and syntax lines: Means you can repeat the

preceding argument as many times as desired.

In command lines and other examples: Represent the system

command prompt symbols used for the Bourne and C shells,

respectively. Note that your system might use different symbols for

the command prompts.

In command lines and other examples: Represents the New Line

key, which is the name of the key used to generate a new line. (Note

that on some keyboards this key might be called Enter or Return

instead of New Line.) Throughout this manual, a space precedes the

New Line symbol; this space is used only to improve readability —

you can ignore it.

In command lines and other examples: Angle brackets distinguish a

command sequence or a keystroke (such as <CtrlI-D>, <Esc>, and

<3dw>) from surrounding text. Note that these angle brackets are in

regular type and that you do not type them; there are, however,

boldface versions of these symbols (described below) that you do

type.

In text, command lines, and other examples: These boldface

symbols are redirection operators, used for redirecting input and

output. When they appear in boldface type, they are literal

characters that you should type.

In command lines and other examples: Represents the cursor, which

indicates your current typing position on the screen.

Licensed Material — Property of Data General Corporation 033—701075

Preface

Contacting Data General

Data General wants to assist you in any way it can to help you use its products. Please feel free

to contact the company as outlined below.

Manuals

If you require additional manuals, please use the enclosed TIPS order form (United States only)

or contact your local Data General sales representative.

Telephone Assistance

If you are unable to solve a problem using any manual you received with your system, free

telephone assistance is available with your hardware warranty and with most Data General

software service options. If you are within the United States or Canada, contact the Data General

Customer Support Center (CSC) by calling-1-800-DG-HELPS. Lines are open from 8:00 a.m.

to 5:00 p.m., your time, Monday through Friday. The center will put you in touch with a member

of Data General’s telephone assistance staff who can answer your questions.

For telephone assistance outside the United States or Canada, ask your Data General sales

representative for the appropriate telephone number.

Joining Our Users Group

Please consider joining the largest independent organization of Data General users, the North

American Data General Users Group (NADGUG). In addition to making valuable contacts,

members receive FOCUS monthly magazine, a conference discount, access to the Software

Library and Electronic Bulletin Board, an annual Member Directory, Regional and Special

Interest Groups, and much more. For more information about membership in the North

American Data General Users Group, call 1-800-932-6663 or 1-508-443-3330.

End of Preface

093-701075 Licensed Material — Property of Data General Corporation Vil

Contents

Chapter 1 Introduction to the Kernel Debugger

Basic Terms 2... 2. ccc ccc cc cc cc ee cee ee eee eee eee tees eee ates eeeees 1-2

Debugger Features 02... cece cece cee ce eee teen eee n tren eer eeces 1-2

Commands 0... cc ccc cc cc cece ce ce ee eee eee eee tere eee eee eeeeeees 1-2

Expression Parser 2... 2... cee cece cee cee cee cece tenet teen eee ee eee eee eees 1-3

Command Line Editor 2.2.0... cc ccc ce cee eee ee eee eee eee e eee eee 1-3

Command Names .. 2.0... ccc ccc cee eee cee ee eee eet e eee eeeeneeeee 1-3

Relationship to Other Debugging Tools 2... ccc cee eee eect tere eens 1-4

Installing the Kernel Debugger 2... cc cece cee cece cece eee teen e ee eees 1-4

Chapter 2 Using the Kernel Debugger

Debugger Display 2... cece ccc cece ce eee teen eee e eee e eee enone 2-2

Program Counter Information cece ccc eee cence eee ee ee cence 2-2

Virtual Processor Information cece ee ee cece cee cere eee cece ee teees 2-2

Prompt Line cece eee eceeeeeee eee tence eee e eee neees 2-2

Entering Commands cece ccc ce cee ce cee eee teen ee eee ee eens 2-3

Assigning Aliases to Debugger Commands 0c e cece eee e ee ee eee e eee neces 2-3

Accessing Memory 2... cece eee ccc cee re eee eee eee cee teen tenn eee e este ees enee 2-4

A Note About Debugger Modes 2. ccc cece cee eee cere nee e eens 24

The Expression Parser ... 2... 2... . cece cece cece eens eee e cece cee e ee ee eens 2-4

Expression Format cece cece cece cece eect eee eee eeeeeenee 2-5

Resolving Expressions- 2... cece ee ce cee cee teen eee e eee e eee eeeeeee 2-1

Getting Online Help .. 2.0... ccc cece cece ce cee cence eect eee ee ee eeees 2-8

Exiting from the Debugger 2. cece cee ccc ce cece eee eee e eee eeeeees 2-9

Chapter 3 Kernel Debugger Commands

Memory Examination and Modification Commands cc eee eee e eee eens 3-2

Memory Read (memread) 0... cece ccc cc ce ce ce teen e ete e ence eeees 3-4

Memory Write (MEMWTite) .. 2... cee eee eee ete e eens 3-7

Memory Search (memsearch) 22... ce eee ce cece eee e eee e teen eeees 3-8

Regular Expression Search (regsearch) 0... cc cee cece cece eee e eens 3-9

Pattern Dump (patdump) 2... cece ccc cee cece e eee eee eeeees 3-10

View (VIEW) 26. ccc ee ce ee eee eee ee eee eee eee eee teenies 3-11

View Down (own) . 2... 0c ccc ce cee ce cee eee cece cece eee ee ee ceeeees 3-12

View Up (up) 2... ccc eee ccc cece ce eee eee tee ee tee e ee ee nee cence teenies 3-13

Expression Evaluation Commands 0... cc cece cece cece eee e eee e re eneneee 3-14

Print Symbol Table Entry (name) 2... ccc cee ee cere eee ene 3-14

Translate an Expression Value to a Symbol (translate) 0... cece eee eee cee 3-15

Expression Evaluation (eval) 2... eee e cece cece cece nent n eee eeeees 3-15

Global (global) 2... 2... ec ee ccc ccc ce cece eee e eee e eee eeneeenee 3-16

Te 9 3-17

083-701075 Licensed Material ~ Property of Data General Corporation 1X

Contents

Execution Control Commands 0. c cece ewe ec cee teen eee eces sce c cece eee 3-17

Set Breakpoint (brk) 2. cece ee cee eee eee e eee tee eneeeeees 3-17

Delete Breakpoint (delete) ... 2.2... c ccc cece ere eee eee eeeeee 3-19

Proceed (proceed) 2.2... cece cc ccc cece cee cee tenet eee eee e ee eeeeeeeeees 3-19

Halt (halt) 0... cece eee ee eee cee cnet e ence renee eseenee 3-19

Machine State Commands 0... ccc ce ee eee eee eee tee eeeees 3-20

Display/Modify Register Contents (register and control)-.. 2 se eeeeeeeee 3-20

Display CMMUs (cmmu) 6... ccc ccc eee cece eee eee e eet e eee teeeeees 3-21

Kernel State Commands ccc cc ccc ce ccc ete eee een eee eee scene 3-22

Logical to Physical Address (1t0p) ... 2.0... cee eee cee cere eee reece eee eees 3-22

Traceback a Process’ Kernel Stack (trace) cece cee eee cence ee eeeeees 3-23

Display Status (Status) 2... cc cece ccc eee eee eee cece eee e eee eeeees 3-25

Display Virtual Processor (Vp) 0. cee cece eee eee eee eter e ence ee eenes 3-26

Focus on a Virtual Processor (fOCUS) .. 0... 2c cece ccc cece rere e ete een ee eees 3-27

General Commands 0. cc ccc cc ccc cc ce ccc et ence cece ence eee eeeenes 3-27

Help (help) 2.2.0... ccc ccc cece cee cece reece eee eee e cnet eee eseeeeeee 3-27

Mode (mode) 2.0... ccc ce cece cee ce eee ee reece cence eee e een eeeeees 3-28

Print (print and printf)... 0.2... cee ee ccc eee cette ence rece eeeeeees 3-29

Appendix A Quick Reference

Appendix B Context Blocks

Next Block Pointer . 0.0.0... ccc ccc cc ce cee eee eee eee eee e eee eeees B-3

1S) B-3

122 B-4

XIP, NIP, and FIP 2... ccc ce ee ce eee eee eres c een eeeeeeee B-4

St 0 os 6 ae B-4

DMT Registers 2... 0... cece eee cee ee eee e eee e eee e ence nese entenes B-5

Data Values and the Addresses of Data Values ... 2.0... cc ccc ce ccc eee B-6

Index

X Licensed Material — Property of Data General Corporation 093-701075

Contents

Tables

Table

2-1 Unary Operators .. 2.2... eee eee reer e teen ee ee een eeeenes 2-5

2-2 Binary Operators 2 eee cee eee eee e tence enna en eee cereees 2-5

2-3 Debugger Symbols 0.2 cece eee eee eee eee n eee eet eneeeeees 2-6

3-1 Formats . 0.0... ccc ccc cc ce cece eee eee ee cee eee eee e eee eeeseeeeeee 3-3

093-701075 Licensed Material — Property of Data Genera! Corporation xi

Contents

Figures

Figure

2-1 Debugger Display ec cece ccc cee cece e eee eee eenees 2-2

2-2 Sample Memory Read Display 0... cece cece cece eee eee nee eenes 2-3

2-3 Command Name Help cece eee ccc eect e eee eee ee eeeee 2-8

2-4 Help for a Specific Command 2 ccc cee nee e eee eee eees 2-9

B-1 Context Block Stack 12.0... 2c ccc ce ce cere ee cece eet e cece tees B-1

B-—2 Parts of a Context Block ... 0... ec ce cece ee cece ee eee eet e ee eeees B-3

B-3 XIP, NIP, and FIP Format ... 2.0.0... ccc ec ccc ec cee rete tee eeeeeeee B-4

B—4 Data Memory Transaction Registers ccc eee cc eee eee ence tenes B-5

xii Licensed Material — Property of Data Genera! Corporation 033~701075

Chapter 1

Introduction to the Kernel

Debugger

The DG/UXTM kemel debugger enables you to debug interactively the state of an AVIIONTM

computer and the DG/UXTM operating system kernel that is controlling the computer’s resources.

The debugger works with all AViiON series machines (both stations and servers) that are running the

DG/UX operating system.

You can use the debugger to examine an AViiON computer’s program counter, registers and

memory. The debugger enables you to set breakpoints, examine the state of virtual processors, and

halt the computer’s processors to examine their state.

The debugger is a tool for experienced software developers. You should be familiar with the AVON

computer’s 88000—based architecture and its instruction set.

You will find the debugger useful in these situations:

@ when you are installing and testing device drivers or STREAMS modules.

® when you want to examine the state of a system that is hung or has shut down with a panic.

CAUTION: Because you can change values in an AViiON computer’s registers and memory,

and because you can halt the computer’s processors, you should use the debugger

in non-production environments. Changing the kernel stack or data structures

could cause a system failure.

033—701075 Liesnsed Material — Property of Data General Corporation 1 —1

Introduction to the Kernel Debugger

Basic Terms

Here is a list of the basic terminology that is unique to the DG/UX operating system and the kernel

debugger.

Job processor (JP)

Virtual processor (VP)

Focus

Program counter (PC)

View PC

The DG/UX kernel is designed to support computer systems with

multiple CPUs (or processors). Each physical processor is called a

job processor.

Processes on an AViiON system or station run on software

abstractions called virtual processors (VPs). VPs use the resources

of the underlying JPs and hide the JP implementation from the

processes.

When you are using the debugger, you can stop the system and

examine the state of a VP. This is called “focusing” on that VP.

You can use debugger commands to focus on any VP.

The PC is the address of a program’s currently executing

instruction. When you take a breakpoint, the debugger displays the

PC’s value, which is the point at which you are entering the

debugger.

When the debugger is entered, the view program counter

(view _pc) is set to the value of the current PC. The view_pc is a

value kept by the debugger. The view_pc value is used as a

default memory address in some debugger commands.

Debugger Features

You interact with the debugger through its command—driven interface. Some of the features of the

interface, which uses a syntax that is the same as the interface used by the crash (1M) utility, are

summarized below.

Commands

From the debugger command line, you can invoke commands to perform the following kinds of

operations:

Examine and change memory memory read, memory write, memory search, regular

Evaluate expressions

expression search, pattern dump, view, view down, and view

up

print a symbol table entry, translate an expression, evaluate an

expression, and create and set a global symbol

Licensed Material — Property of Data General Corporation 093-701075

Introduction to the Kernel Debugger

Controlexecuton set a breakpoint, delete a breakpoint, proceed, and halt the
debugger

Examine and change machine _display/modify a general register, display/modify a control

State register, display the state of the Cache/Memory Management

Unit (CMMU) chips

Examine kernel state logical-to—physical address translation, traceback a VP stack,

display the status of a VP, display the status of all job

processors (JPs), and focus on a VP

General help, display and set modes, and print

Expression Parser

The debugger contains an expression parser that enables you to supply expressions instead of

addresses in debugger commands. The parser resolves the expression to an address. For example,

you might want to set a breakpoint on an address that is 16 locations past the beginning of the kernel

function named “read.” When the parser sees the expression “read+16,” it will resolve “read” to a

symbol in the kernel symbol table, add 16 to that value, and return the resulting address to the

command.

Command Line Editor

The debugger supports a version of the DG/UX operating system’s editread utility. This utility

enables you to retrieve and repeat commands, or retrieve commands and edit them. For example, you

can press the uparrow key to retrieve your previous command. Or, you can press Ctrl-R to display

your current editread configuration and key assignments. The editread utility is described in Using

the DG/UXTM System.

Command Names

Most debugger commands have a “short form” name; these names are listed with the commands’

descriptions in Chapter 3.

You can also create your own names for the debugger’s commands. For example, the debugger’s

short name for the memwrite command is mw. By writing a macro, you could assign another name

to the memwrite command, such as memw. See “Assigning Aliases to Debugger Commands” in

Chapter 2.

083-701075 Licensed Material — Property of Data General Corporation 1-3

introduction to the Kernel Debugger

Relationship to Other Debugging Tools

If you are developing system software for an AViiON computer, youll find that the kernel debugger

will be an important part of your development and testing tools. You may already be familiar with

some of the other DG/UX testing tools, such as the Multi-extensible debugger (Mxdb), the symbolic

debugger sdb, and the crash utility.

These tools operate at logically different levels, corresponding to user programs, the kernel, and the

hardware. At the highest level are Mxdb and sdb, which you use to debug high-level language

programs. You can put breakpoints at system calls, but you cannot put a breakpoint inside a system

call.

At the next lower level is the crash utility, which you can use to examine the state of an AViiON

computer and examine system dumps. However, crash cannot take control of the kernel or the

computer’s hardware. For example, you cannot set breakpoints from crash. The kernel continues to

run while the you use the crash utility. Therefore, the state that crash provides may be inaccurate,

because it can provide only snapshots of the kernel’s changing state. You can use crash without

affecting the machine’s users. See the crash (IM) manual page for details. .

At the lowest logical level is the kernel debugger. The kemel debugger is not a user program.

Because the debugger is linked into the kernel, it can take control of the kernel and the computer

hardware. Its main purpose is to allow you to debug the kernel, and secondarily, to idenufy problems

with the hardware. The kernel debugger enables you to freeze the state of the entire machine,

examine the state of the machine (and perhaps modify it) and restart the machine.

Installing the Kernel Debugger

The information provided in this section assumes that you have already loaded the kernel debugger

software onto your system from its release tape. Instructions for loading the software are provided in

the kernel debugger release notice.

The debugger will use approximately 1.5 Mbytes of your computer’s main memory. This “wired”

memory is available for use only by the debugger—it is not paged out or removed.

To link the debugger into the kernel, you must edit the kernel configuration file and rebuild the

kernel. You do this from the sysadm utility’s “System—>Kernel—>Build” menu. (The sysadm utility

is described in detail in Managing the DG/UXTM System.) In the configuration file’s ““Tuneable

Configuration Parameters” section, add the name DEBUGGER (in uppercase letters) after the

“Parameter Name” heading. No entry is required in the “Value” column.

Whether you install the new kernel automatically or at a later time, you must shutdown and reboot

the system for the changes that you made to the configuration file to take effect.

After you rebuild the kernel and boot the system, the debugger will announce to you that it 1s loaded

by displaying its header message.

1 —4 Licensed Material — Property of Data General Corporation 093~701075

Introduction to the Kernel Debugger

You cannot remove the debugger from the kernel dynamically. To “remove” the debugger, you must

edit the system configuration file and remove the DEBUGGER parameter name. (Or, you can place

a comment character (#) in front of the DEBUGGER parameter name.) Then, you must rebuild the

kernel and reboot the machine.

If you are concerned about always using 1.5 Mbytes of main memory for the debugger, you can build

two versions of your kernel—one with the debugger linked in, and the other without it linked in.

Then, you can copy the kernel that you want to use and reboot your system.

End of Chapter

093—701075 Licensed Material — Property of Data General Corporation 1 —5

Chapter 2

Using the Kernel Debugger

The Kermel Debugger will take control of a machine in the following circumstances:

@ when the machine is booted and the debugger is initialized

@ when the kernel panics

@ when the kernel hits a debugger breakpoint

@ when you press Crrl—P from the computer’s operator console.

You do not need to have Superuser privileges to use the debugger. The debugger will always be

available to you, regardless of the init level.

Note that you cannot see the debugger’s display from a window in a window management system.

For example, the X Window SystemTM intercepts the Ctrl-P, and does not pass it to the debugger.

If you want use the debugger in a window environment, you use the debugger from an asynchronous

terminal that is connected to the AViiON computer’s serial port. See the description of the

debugger’s mode command in Chapter 3 for information about making the debugger recognize an

asynchronous terminal.

083-—701075 Licensed Material — Property of Data General Corporation 2—1

Using the Kernel Debugger

Debugger Display

When you enter the debugger, it displays its header message, information about the program counter,

information about virtual processors (VPs), and a command-line prompt. Figure 2-1 shows an

example of the debugger’s initial display.

a —

DG/UX Kernel Debugger

deb debugger _requestt54: br deb debugger _ requestt+éC:

{ 1] [Eligible] [#system#]

[O:#system#:1]>

NL _Y

Figure 2—1 Debugger Display

Program Counter Information

The first line below the header message provides a routine name and program counter information.

In this example, the field “deb_debugger_request+54:” is the current value of the hardware program

counter (PC) and is the point at which you entered the debugger. In this case, the debugger was

entered 54 bytes into the “deb_debugger_request” routine. The second and third fields on this line

represent the disassembled instruction at the PC’s location.

Virtual Processor Information

The second line below the header message in Figure 2—1 provides virtual processor information. In

this example, we are looking at VP number 1, which is in an Eligible state (can be run). The third field

provides the name of the program that the VP is running. In this example, the VP is the kernel “idle

loop,” which is run when no other programs are being serviced—it has the default name of

“#svstem#” because it represents a system process. If you were running a program such as sh, you

would see the name “‘sh” in this field.

Prompt Line

The last line in a debugger display, which ends with a right angle bracket (>), is the prompt line. The

three values in the square brackets (separated by colons) provide job processor (JP) information. The

first value is the number of the JP on which the debugger was entered. For multi-processor machines,

the number will be in the range 0-to—(#processors—1). For example, a dual—processor machine’s JP

number will be 0 or 1. For a single—processor machine, the number will always be 0.

The second value is the name of the program that the VP is running. In this example, the value is

“#evstem#” because it represents a system process; no program is named in the virtual processor

line.

The third value is the number of the VP that is running. The number here and the number in the VP

line will match when you enter the debugger. When you are using the debugger, you can focus (look

at) different VPs. For example, if you focus on VP number 5, the third value will change to 5.

2-2 Licensed Material — Property of Data General Corporation 093~—701075

Using the Kernel Debugger

The VP that was running when the debugger takes control of the kernel is the VP that will restart

when you leave the debugger. In other words, you can focus on any of the VPs while you are in the

debugger, but the debugger always returns control to the VP that was interrupted when the debugger

was entered.

Entering Commands

You enter your commands after the prompt (the right angle bracket). Press the New Line key to

invoke the command. Figure 2~2 shows how your screen might look after you entered the following

command:

[0:#system#:1]>memread 1fff8 10.)

— —

[0:#system#:1]> memread 1fff£F8 10.

ts hp start_outputt+124: 00085920 0002C400 00092D2F 00525920

ts hp start_outputt134: 00082D3E 00082COF 0052618F 0050F560

ts_ hp start_outputt+144: 080C656B 0001F560

| [O:#system#:1]>

— _

Figure 2—2 Sample Memory Read Display

memory elements, starting at logical location 1fff8. The period following the “10” signifies a
The memread command in Figure 2-2 invokes the memory read command to display 10 (decimal)

decimal number.

The debugger will display an error message if you enter an invalid command. You can then enter a

valid command or use the command line editor to recall the command and edit it.

Assigning Aliases to Debugger Commands

By using macros, you can create aliases for debugger commands. The format for such a macro is:

macroname() macro_definition

There should be no whitespace between the macroname and the left parenthesis. In this example, r5

becomes an alias for the debugger command reg r5:

[O:#system#:1]>r5Qregr5)

If you type r5 at the prompt, the keel debugger returns the value of register 5.

Macros can be recursive and they exist until you end the debugging session or redefine them.

083-~701075 Licensed Material — Property of Data General Corporation 2-3

Using the Kernel Debugger

Accessing Memory

Using debugger commands, you can perform operations that enable you to examine and change

memory addresses and registers.

When you access memory using a debugger command (such as memwrite), you can supply an

address. Generally, you supply logical addresses in debugger commands. These logical addresses

map on a one-to-one basis with physical addresses in the range from 0 to the size of the physical

memory.

If you use a logical address when accessing (or modifying) memory, the system uses its page tables to

map the logical address to a physical address and to validate the address. If you supply a physical

address (using an option on the command line), you bypass the system table mapping and validation.

All commands that access memory allow a “—p” option, which denotes a physical address. In this

case, you must be sure that the address you supply is valid. Commands that access memory will fail

if the requested address is not valid or is not currently resident.

By default, addresses are assumed to be in kernel (supervisor) space instead of in user space.

However, when you access memory using a debugger command, you can supply an address in user

space. All commands that access memory allow a “—u” option, which denotes a user space address;

the user space address is then translated to a kernel space address. You can also translate a user space

address to a kernel space address by using the “:” operator before the user space address. (Operators

are described in “The Expression Parser” section later in this chapter.)

A Note About Debugger Modes

The debugger’s mode command enables you to examine and set global debugger configuration

options. For example, you can use the mode command to change the debugger’s default number

radix. The debugger is initialized to work with hexadecimal numbers. You can change to an octal or

decimal radix by typing the following commands:

[0:#system#:1]> mode oct)

[0 :#system#:1]> mode dec)

The debugger will display an “Illegal Expression” error message if you enter an address that is in the

wrong radix. Note that the debugger’s memory commands have a format option that enables you to

override the default number radix for one command.

You can examine the debugger’s current mode settings by typing the mode command with no

arguments. The mode command is described in detail in Chapter 3.

The Expression Parser

When you enter a debugger command with an expression as an argument, the debugger’s parser

resolves the expression to a value (an address) and then the debugger command is performed.

2—4 Licensed Material — Property of Data General Corporation 033—701075

Using the Kernel Debugger

Expression Format

A debugger expression can consist of integers, unary operators, binary operators, and symbols.

Integers are constants in hexadecimal, octal, or decimal. The operators and the symbols that you can

use in an expression are described in the sections below. You can use parentheses to group parts of

expressions. An expression may not contain any whitespace.

Operators

You can use both unary and binary operators in expressions. Unary operators perform an operation

on a single value, for example operator value. The valid unary operators are listed in Table 2-1

below.

Table 2—1. Unary Operators

Unary operator Operation

! This operator is the logical NOT operator. If value is non—zero, set

it to zero. If value is zero, set it to 1. This operator is a prefix

operator (the usage is !value).

Interpret value as a user space address, and translate it to the

underlying kernel address. This operator is a prefix operator (the

usage is :value). Note that you may receive unexpected results if

you use this operator in a command that extends over a page

boundary in memory.

H#number A 32-bit indirect addressing symbol through a location. This

operator is a prefix operator.

Example: #0 indirects through the 32-bit value at location zero.

@number A 16-bit indirect addressing symbol through a location. This

operator is a prefix operator.

Example: @0 indirects through the 16-bit value at location zero.

Binary operators perform an operation on two values, for example value] operator value2. The

valid binary operators are listed in Table 2-2.

Table 2—2. Binary Operators

Binary Operator Operation

+ Add valuel and value2.

~ Subtract value2 from valuel.

* Multiply valuel and value2.

/ Divide valuel by value2.

& Logical AND valuel and value2.

| Logical OR valuel and value2.

> 1 if valuel > value2 and 0 if valuel < value2.

< 1 if valuel < value2 and 0 if valuel 2 value2.

= 1 if valuel = value2 and 0 if valuel != valuez.

>= 1 if valuel = value2 and 0 if valuel < value2.

<= 1 if valuel < value2 and 0 if valuel > value2. |

083-701075 Licensed Material — Property of Data General Corporation 2-5

Using the Kernel Debugger

Symbols

You can use four kinds of symbols in expressions:

1. kernel symbols

2. debugger symbols

M3. user—defined aliases

4. user—defined global variables

Kernel symbols are located in the symbol table and are part of the kernel image. Debugger symbols

are specific to the debugger itself. User-defined aliases are macros that you create as described

I previously in the section “Assigning Aliases to Debugger Commands.” User-defined global
variables are values that you define using the debugger commands global and set, which are

described in detail in Chapter 3.

Kernel Symbols

Kernel symbols correspond to the names of C language routines, functions, and global variables in

the kernel code. For example, the following memread command uses a kernel symbol as an

expression:

a [0:#system#:1]>memread ldm_number_of registered_disks }

The expression parser has a shortcut to specify a kernel symbol—the caret (“). For example, a -

shortcut form of the above command is:

a [0:#system#:1]>memread Idm_number of r4)

When you use the caret at the end of a kernel symbol, the expression parser takes the element as a

regular expression and looks for a match in the symbol table. The match must be unique; if there is

more than one match in the symbol table, you will get an error message. If the expression parser finds

only one match, the expression is resolved to the symbol table value and the debugger command 1s

performed on that value.

Debugger Symbols

The debugger has a set of built-in symbols that you can use during a debugging session. The

debugger symbols are values that are generally useful to look at when debugging. Do not confuse

debugger symbols with the kernel program’s symbols. The debugger symbols you can use in an

expression are described in Table 2-3.

Table 2-3. Debugger Symbols

Symbol Evaluates to:

. (dot) The value of the program counter (view_pc)

when you entered the debugger. If you view

an address, the view command sets the

view_pc, and dot will evaluate to the new

view_pc. Similarly, viewing up and down re-

sets the view_pc and changes the evaluation

of dot.

pe The PC of the current virtual processor (VP).

2-6 Licensed Material — Property of Data General Corporation 083-701075

Using the Kernel Debugger

Symbol Evaluates to:

~ (ulde) The name of the current routine. The tilde

symbol takes the view_pc and truncates the

+nn. In other words, the tilde is the address of

the entry point to the current routine.

r0—r31 General register names.

cr2—cr20 Control register names.

sf0—sf20 The stack frame number after a trace.

For example, programmers often want to know the value of pe; they can find the value of pe by

evaluating that debugger symbol as follows:

[0:#system#:1]> eval pe) a

Suppose you are often interested in knowing the value of pc plus the contents of the third register.

Instead of always typing eval pc+r2, you can define an alias to show you that value, as shown in this

example:

a —~
[O:#system#:1]> mypc() eval pctr2

[O:#system#:1]> mypc

[octal] [decimal] [hex]

[000002534661] [702897 J [Ox000AB9B1]

[symbolic]: [deb debugger _requestt55]

[0:#system#:1]>

NN _-

User—defined Global Variables

Two debugger commands, global and set, enable you to create 32-bit variables that may be used in

expressions, which allows you to save values for later use. User-defined global variables contain

expressions, such as debugger symbols, kernel symbols, and operators. Once set, you use a global

variable as an expression in the debugger commands, much like you use a kernel symbol.

User-defined global variables look much like kernel symbols and, in effect, are a non-permanent

extension of the kernel symbols. The details of setting global variables are shown in Chapter 3.

Resolving Expressions

As described above, an expression can consist of a combination of elements: kernel symbols,

debugger symbols, operators, integers, and global variables. These elements are resolved, left to a

right in the command line, in the following order:

033-701075 Licensed Material — Property of Data General Corporation 2-1

Using the Kernel Debugger

1. Debugger symbol values.

2. User—defined global variable values.

3. Kernel symbol values.

4. Integer constants.

If the debugger parser doesn’t recognize any of the above elements in an expression, you will receive

an error message. Note that a hexadecimal value beginning with a through f (inclusive) can be an

ambiguous element; such a value could be resolved to either a variable name or a hexadecimal

constant. Given the resolution order above, such an element would be resolved to a variable of that

name, which takes precedence over the hexadecimal constant.

Getting Online Help

You can display a list of the debugger’s command names and short-form names by typing the

following commands at the debugger prompt:

i [0:#system#:1]>help)

or

a [0:#system#:1]>?)

Figure 2~3 shows this help display.

/oseepacenest}s help \
Memory examination and modification:

memread (mr), memwrite (mw), memsearch (ms), regsearch (rs),

patdump (pd), view (vi), down (do), up

Expression evaluaticn:

name (nm), translate (ts), eval (ev), global, set

Execution control:

brk (b), delete (d), proceed (p), halt

Machine state:

register (reg), control (ctl), cmmu

Kernel state:

ltop, trace (tr), status, vp, focus (fo)

General:

help, mode, print, printf

For help about a specific command, type “help <command_name>”,

then the New Line key. Example: “help reg” for the register command. i,

Figure 2—3 Command Name Help

2-8 Licensed Material — Property of Data General Corporation 033-701075

Using the Kernel Debugger

You can display information about a specific command by typing the command name or the

short-form name as an argument to help. Figure 2-4 shows the help information for the register (reg)

command.

[O:#system#:1]> help reg

reg [register number [register_value] |]

The register command displays or modifies the contents of a general

register.

If <register_value> is specified, then the register named by

<register name> will have <register_value> stored into it;

otherwise, the contents of <register_name> will be displayed.

The <register_ name> is specified as a number in the range 0

through 31 or as a name in the range r0 through r3l. If no

<register name> is specified, then the contents of all 32

cee registers are displayed in order. Ty

Figure 2—4 Help for a Specific Command

Exiting from the Debugger

The proceed (p) command enables you to exit from the debugger and return to the program that you

were executing. To exit from the debugger, type the following command:

[0:#system#:1]>p 2

NOTE: If you entered the debugger using Ctrl—P and you are using a workstation keyboard (for

example, on an AViiON 300 Series station), you must press the Cl key after you

invoke the proceed command to exit from the debugger (the complete sequence is

p-New Line-Ctri—-New Line). This sequence will reset the workstation’s keyboard

driver and return to the kernel. Using this key sequence applies only when you are using

a workstation keyboard and entered the debugger using Cirl—P. If you are using an

asynchronous terminal or if you are using a workstation keyboard but entered the

debugger from a breakpoint (or at initialization), you can use just the proceed

command.

End of Chapter

093701075 Licensed Material — Property of Data General Corporation 2-9

Chapter 3

Kernel Debugger Commands

This chapter is a command reference for the kernel debugger commands. If you are familiar with the

commands and simply need the command format, Appendix A is a quick reference for the

commands described in this chapter.

In this chapter, we explain the debugger commands in the following order:

Memory examination and modification commands

Expression evaluation commands

Execution control commands

Machine state commands

Kernel state commands

General commands

The first two sections describe generic debugger commands that provide memory accessing, access

to the symbol table, and expression evaluation commands for the kernel debugger. The next three

sections describe specific debugger commands that enable you to access an AViiON system’s CPU

state, set breakpoints, traceback the stack, and halt the debugger.

093~701075 Licansed Material — Property of Data General Corporation 3-1

Kernel Debugger Commands

Memory Examination and Modification

Commands

The memory examination and modification commands enable you to scan through memory

locations and modify them selectively. All of the memory commands have the same interface. The

defaults and meaning of some of the arguments may differ between individual commands. The

format for the memory commands is:

command_name [-options] [memory_address] [count] [format]

where:

command_name is the name of a command. Valid memory command names are:

memread, memwrite, memsearch, regsearch, patdump, view, down,

and up, as described later in this section.

If you enter an invalid command name, the debugger will display the

following error message:

Command Unknown [name]

options are given after the command name and are preceded with a dash. The

options for the memory commands are:

—p _ specifies that the memory address is a physical address, not a

logical address. This means the read or write physical routine

will be called directly to read or write data.

-—u _ specifies that the memory address is an address in user space,

not kernel space.

-v __ is the verify option for the memwrite command. See the

memory write command for more information.

-—n __ turns off converting labels to their symbolic form while printing

memory locations.

-In enables you to specify the number, n, of elements to be printed

across a line. The default is set by the format you choose.

You can group multiple options in a string that is preceded by a dash. For

example, the options are grouped in the command line:

[0:#system#:1]> memwrite -pv }

memory_address is an address, or an expression that evaluates to an address, to be used in

the command. This argument is optional. If a memory address is not

specified, the default is the current view_pc.

NOTE: For the patdump command, this argument is required and

is a regular expression.

3-2 Licensed Material ~ Property of Data General Corporation 083-701075

count

format

Kernel Debugger Commands

is a number that specifies how many elements are to be operated on. This

argument is optional. The number is assumed to be in the current output

base. To specify a decimal number, place a period after the number. You

can use the prefix “Ox” to specify a hexadecimal number, but that is

unnecessary if the mode is hex. To specify an octal number, the mode

must be octal.

This argument may also be an expression that evaluates to a number. The

expression elements may be specified as described above.

If the count argument is not specified, the default is determined by the

command.

specifies the format of the elements being examined. This argument is

optional. If a format is not specified, the default is determined by the

command.

The formats supported for the memory commands are listed in Table 3-1

below.

Table 3-1 Formats

Element Formats Description

character The memory location is an 8—bit character value.

char

Cc

instruction The memory location is the start of an instruction.
:

long The memory location is a 32-bit value printed in the current output

l base.

short The memory location is a 16-bit value printed in the current output

S base.

byte The memory location is an 8-bit value printed in the current output

b base.

decimal The memory location is a 16-bit decimal value.

dec

d

longdec The memory location is a 32-bit decimal value.

Id

D

octal The memory location is a 16-bit octal value.

oct

0

longoct The memory location is a 32-bit octal value.

lo

O

hexadecimal The memory location is a 16-bit hexadecimal value.

hex

h

x

083-701075 Licansed Material — Property of Data General Corporation 3-3

Kernel Debugger Commands

Element Formats Description

longhex The memory location is a 32—bit hexadecimal value.

Ihex

Ih

Ix

H

xX

ssym The memory location is a 16-bit value expressed as a symbolic

address.

sym The memory location is a 32-bit value expressed as a symbolic

address.

string The memory location is the start of a string, terminated by a null.

str

pte The memory location is a page table entry. The entry is displayed

with letters representing the bits that are on.

def This is equivalent to specifying no format; the default format is

used. Each memory command has its own default format.

Mi The memory commands are described below. All examples assume that the radix is hexadecimal.

Memory Read (memread)

The command name for a memory read is memread; the short name is mr. The command format for

memread is:

a memread [-47] [~n] [—p] [—u] [remory_address] [count] [format]

The memread command displays the values of memory locations, starting at the memory_address

and continuing for the number of elements specified in count. |

The current memory address is displayed at the beginning of the line. The values are displayed in the

given format, the number of elements displayed on each line depends on the format selected.

i If you use the format argument, you must also specify the memory_address and count arguments. For

the memread command, the default format is long and the default count is 1. You can change the

number of elements displayed on a line using the -1 option.

The following command specifies a memory read starting at address 100 for a count of 20 in long

format:

a [0:#system#:1]>memread 100 20.1)

3-4 Licensed Material - Property of Data General Corporation 083-701075

Kernel Debugger Commands

The following display shows how your screen might look after you enter this command.

a —

(O0:#system#:1]> memread 100 20. 1

___.init.end+EC 80018221 csg0004C7 80018221 C80004C5

__.init.endt+FC 80018221 Cc80004C3 80018221 Cc80004C1

__.init.end+10C 80018221 C80004BF 80018221 C80004BD

__.init.end+11¢c 80018221 cCc80004BB 80018221 C8&0004B9

__.init.end+12c 80018221 C80004B7 80018221 C80004B5

[0:#system#:1]>

SL _—

The following command also specifies a read starting at address 100 for a count of 20 in long format:

[0:#system#:1]> memread -11 100 20.1) a

The following display shows how your screen might look after you enter this command. This display

shows the same information as in the previous screen, except the addresses are printed one entry per

line as specified by -11. You can use this technique to save the work of calculating the addresses.

\

Eee

___.init.end+EC 80018221

__.init.endt+F0 C80004C7

__.init.endtF4 80018221

__.init.endt+F8 C80004C5

__.init.end+FC 80018221

__.init.end+100 C80004C3

__.init.end+104 80018221

__.init.end+108 c80004C1

__.init.end+10C 80018221

__.init.end+110 C80004BF

__.init.end+114 80018221

___.init.end+118 C80004BD

__.init.endt+11c 80018221

__.init.end+120 C80004BB

__.init.end+124 80018221

__.init.end+128 C80004B9

__.init.end+12c 80018221

__.init.end+130 C80004B7

__.init.end+134 80018221

__.init.end+138 C80004B5

/o-tevevent:21> memread -11 100 20. 1

SS
The memread command also accepts a pipe so that you can search for a string. The following

command specifies a read starting at address 100 for a count of 20 in long format with a search of C3:

[0:#system#:1]> memread 100 20.1} C3) a

3-5093-701075 Licensed Material — Property of Data General Corporation

Kernel Debugger Commands

The following display shows how your screen might look after you enter this command.

a —,

[O0:#system#:1]> memread 100 20. 1 | C3

__.init.endtFc : 80018221 c80004C3 80018221 C80004C1

[O:#system#:1]>

nee a

The sym and ssym formats are useful with the memread command to look at symbolic values in

tables. For example, the following command specifies the sym format to display symbolic values in

the system call table:

[0:#system#:1]>memread sc_bes system call table A sym }

The following display shows how your screen might look after you enter this command.

a TM
[0:#system#:1]> memread sc_bcs_system_call_table A sym

sc_bcs_system_call table: sc_invalid_system_call

sc_bes_system_call_ tablet4: access

sc_bes_ system_call tablets: brk

sc_bcs_system_call_ tabletc: chdir

sc_bes_system_call_tablet10: chmod

sc_bcs_system_call_ tablet14: chown

sc_bcs_system_call_tablet18: chroot

sc_becs_system_call_table+tic: close

sc_bcs_system_call_tablet20: execve

sc_bcs_system_call tablet24: exit

[O:#system#:1]>

NL 7

You can use the memread command to display the processor’s context block. For example, when the

debugger takes a breakpoint at sc_pamic, enter the command:

[0:#system#:1]> mr #sc_base’ 64.1)

This command will display a context block. The information in a context block is described in

Appendix B.

3-6 Licensed Material — Property of Data Genera! Corporation 0$3-701075

Kernel Debugger Commands

Memory Write (memwrite)

The command name for memory write is memwrite; the short name is mw. The command format for

memwrite is:

memwrite [—n] [—p] [-u] [-v] [memory_address] [count] [format] a

The memwrite command enables you to view and modify memory locations one at a ime. The

modification starts at memory_address and continues until either count elements have been
6699

displayed or you enter “q” as a value.

Memory elements must be modified in the format specified. If you use the format argument, you i

must also specify the memory_address and count arguments.

For the memwrite command, the default format is long and the default count is 1.

Memory write displays the element at the memory address, in the format specified, followed by a

prompt (a right angle bracket (>)). Lf you want to change the value of the element, enter the new value

at the prompt and press the New Line key. The valid responses are:

q Exit memory write.

NOTE: If you want to enter q as a character (rather than q to exit), you must

enter the value in a format other than character format.

A Leave this location unchanged, but display the previous element for modification.

NOTE: If you want to enter the caret as a character (rather than display the

previous element), you must enter the value in a format other than

character format.

New Line Leave this location unchanged, but display the next element for modification.

Expression Resolve the expression, expecting the format specified, and write the results into

the memory location. If the verify flag (—v) is set, redisplay this element.

Otherwise display the next element for modification.

The following command shows an example of a write starting at address 0 in instruction format:

[0:#system#:1]> memwvrite 0 li) a

The following display shows how your screen might look after you enter this command. Pressing the

New Line key at the right angle bracket prompt leaves the location unchanged.

— . a)

[O:#system#:1]> memwrite 011

sc_exc_vector 2: Or r0, x0, x0 >

[O:#system#:1]>

SC _

The following command specifies a write starting at address 0 in long format:

[0:#system#:1]>memwrite 091) a

093-701075 Licensed Material — Property of Data General Corporation 3-/

Kernel Debugger Commands

The following display shows how your screen might look after you enter this command. Pressing the

New Line key at the right angle bracket prompt leaves the location unchanged and displays the next

element; typing a caret (4) followed by the New Line key leaves the location unchanged and displays

the previous element; and typing q followed by the New Line key quits the memory write.

a ——
[O:#system#:1]> memwrite 0 9 1

sc_exc_ vector : F4005800 >

sc_exc_vectort+4 : C0000406 >

sc_exc vectort+8 : C400040D > *

sc_exc_ vector+4 : C0000406 >

sc_exc_vector+s8 : C400040D > q

[O:#system#:1]>

——_ _—

Memory Search (memsearch)

The command name for an memory search is memsearch; the short name is ms. The command

format for memsearch is:

memsearch [—I7] [-n] [—p] [—u] [memory_address] [count] [format]

The memsearch command searches through memory for a given value in a given format. The search

starts at memory_address and continues for a maximum of count elements.

If you use the format argument, you must also specify the memory_address and count arguments. For

the memsearch command, the default format is long and the default count is 1.

The debugger will prompt you for a search value. You must enter the search value in the format

specified. If a value matching the search value is found, a view (see the view command below) is

performed at the location where the match occurred.

The following command specifies a search starting at address 0 for a count of 20 in byte format:

[0:#system#:1]> memsearch 0 20. b)

AttheEnter Search Value prompt, enter the value that you want to find, for example c0, and

press the New Line key. The search value c0 is a hexadecimal value in byte format.

The following display shows how your screen might look after you enter the memsearch command

and search value above.

3-8 Licensed Material — Property of Data General Corporation 093-—701075

Kernel Debugger Commands

—~
[O0:#system#:1]> memsearch 0 20. b

Enter Search Value: c0

sc_exc_vector : F4

sc_exc vectort+l : 00

sc_exc_vectortz : 58

sc_exc_vectort+3 : 00

sc_exc_vectort4 : CO

sc_exc_vectorts : 00

SC_exc_vectort+é : 04

sc_exc vectort7 : 06

sc_exc_vector+8 : C4

sc_exc_vector+9 : 00

sc_exc_vectortaA : 04

sc_exc_vectort+B : OD

Ssc_exc_vectortc : 80

oe :1]> a,

Regular Expression Search (regsearch)

The command name for a regular expression search is regsearch; the short name is rs. The command

format for regsearch is:

regsearch [-In] [-n] [-p] [-w] [memory_address] [count] [format] a

The regsearch command works like the memread command, except that regsearch pipes the

output through a regular expression search. If a match is found, the view_pc is set to the location of

the match and a view is performed.

The debugger prompts you for the regular expression to use in the search. The search starts at

memory_address and continues for a maximum of count elements.

If you use the format argument, you must also specify the memory_address and count arguments. For a

the regsearch command, the default format is long and the default count is 1.

When prompted for the regular expression, you must enter the search value. If a value matching the

regular expression is found, a view (see the view command below) is performed at the location where

the match occurred.

The following command specifies a regular expression search starting at the view_pe (the dot

debugger symbol) for a count of 1000 in instruction format:

[0:#system#:1] > regsearch . 1000. i) a

When you enter this command, you will be prompted to enter a regular expression. For this example,

enter the search value sc_panic.* followed by the New Line key at the Regular Expression

to Search For prompt

033~701075 Licensed Material — Property of Data General Corporation 3-9

Kernel Debugger Commands

The following display shows how your screen might look after you enter the regsearch command

and the regular expression above.

A regsearch . 1000. 1 >
Regular Expression to Search For: sc_panic.*

sc_panict8 > 6st r30, r31, 20

sc _panictc >: addu r30, r31, 20

sc_panict10 >: Oor.u r3, r0, FFAO

sc_panictl4 > or r4, r0, x0

sc_panict+18 > Ox r5, x0, rO

sc_panictic > Or r6, x0, xO

sc_panict20 >: bsr.n sc_panic_with_message

sc_panict24 > or r7, x0, x0

sc_panict+28 >: subu r31, r30, 20

sc_panict2c > ld rl, r3l1, 24

sc_panict30 >: did r30, x31, 20

sc_panict34 >: jmp.n rl

sc_panict38 >: addu r31, r3l1, 28

oe)

Pattern Dump (patdump)

The command name for a pattern dump is patdump; the short name is pd. The command format for

patdump is:

a patdump [-I7] (-n] (—p] [-u] memory_address [format]

The pattern dump has a similar interface to the memread command. The patdump command takes

a regular expression rather than an expression for the memory_address. Note that the regular

expression is required. The patdump command then searches the symbol table for all matches to the

regular expression. If a match occurs, the memread command is called using the arguments to the

patdump command, with the symbol found in the search replacing the regular expression. The count

[argument is not used with the patdump command.
The pattern dump command enables you to look at a group of locations that can be described with a

regular expression. For example, this command is useful for dumping a set of meters or counts that

have a similar name.

For example, you could enter the following patdump command:

a [0:#system#:1]> pd vm.*count)

3—1 0 Licensed Material — Property of Data Genera! Corporation 0383~701075

Kernel Debugger Commands

The following display shows how your screen might look after entering this command.

>
[O0:#system#:1]> pd vm.*count

vm_get_accounting_memory usage : 67FF0038

vm_resource_accounting lock : 00000000

vme_available frame_resource_ counter : 000002185

vmc_low_on_available frames _eventcounter : 000053CA

vme mft_eventcounter table : 0O01CCE68

vmfs decrement _reference_count : 67FF002Z8

vmfs increment _reference_count : 67FF0028

Ogee :1)]> _

Note that the patdump output makes no distinction between code and data.

View (view)

The command name for view is view; the short name is vi. The command format for view is:

view [—In] [—n] [—p] [—u] [7emory_address] [count] [format] a

The view command is similar to the memread command, but view displays elements differently.

The view command is used to display the element at the memory_address surrounded by six

elements on either side of the memory address. This command is useful to see the neighboring

instructions when looking at code in instruction mode. The default format is instruction mode. The

count argument is not used and may be ignored. The default memory address is the view_pce. If you

provide a memory address to the view command, that memory address becomes the new view_pc.

The following command specifies a view on Sc_panic:

[0:#system#:1]> view sc_panic 2 a

The following display shows how your screen might look after you enter this command.

083~701075 Licensed Material ~ Property of Data General Corporation 31 1

Kernel Debugger Commands

sc_panic

sc_panic+4

sc_panict8

sc_panictC

sc_panic+10

sc_panict+l4

sc_panicti8

NN

sc_panic_with_messagetF0:

[O:#system#:1]>

[0:#system#:1]> view sc_panic

sc panic _with_message+DC: ld

sc_panic_with_messaget+tk0:

sc_panic_with_messagetE4:

sc panic with_messagetE8:

sc_panic_with_messagetkC:

ld.d

ld.d

ld.d

jJmp.n

addu

subu

> st

> «6st

addu

or.u

or

or

View Down (down)

The command name to view down is down; the short name is do. The command format for down is:

down

r3i1,

ri,

r30,

x30,

x3,

r4,

x5,

r30, x31,

r18, x31,

r16, xr3li1,

r14, x31,

rl

r31, r3l1,

r31, 28

r31, 24

r31, 20

r31, 20

r0, FFAO

r0, x0

r0, x0

38

30

28

20

40

TS

The down command increments the view_pc such that sequential executions of this command will

produce a continuous listing of elements.

To view down, type:

[0:#system#:1]> down)

The following screen shows a view down from the previous view screen.

3-12 Licensed Material — Property of Data General Corporation 093-—701075

Kernel Debugger Commands

sc_panict1c

sc_panict20

sc_panict24

sc_panict2z8

sc_panict2zc

sc_panic+30

sc_panict34

sc_panict38

[O0:#system#:1]> down

Ssc_operator_ shutdown:

sc_ operator shutdownt4:

sc_operator_shutdown+s8:

sc_operator shutdowntc:

sc_operator_shutdownt10: or

ec

View Up (up)

oxr

bsr.n

or

subu

ld

id

jmp .n

addu

subu

st

st

addu

-U

r6, r0, x0

sc_panic_with_message

x7, x0, 10

r31, r30, 20

rl, r3l1, 24

r30, xr31, 20

rl

r31, r3l1, 28

r3l1, r3l1, 28

rl, r3l1, 24

r30, xr31, 20

r30, x31, 20

r2, x0, 10

The command name to view up is up. The command format for up is:

up

_

TS

The up command decrements the view_pe such that sequential executions of this command will

produce a continuous listing of elements.

To view up, type:

[0:#system#:1]>up 2

The following screen shows a view up from the previous screen.

093-701075 Licensed Material — Property of Data General Corporation 3-13

Kernel Debugger Commands

a ~
[O0:#system#:1]> up

sc_panic_with_messagetDC: ld r30, r31, 38

sc panic _with_messagetE0: ld.d r18, xr31, 30

sc_panic_with_messagetE4: ld.d r16, r31, 28

sc panic with_messagetE8: Ild.d x14, x31, 20

sc_panic_with_message+tEC: jmp-.n rl

sc _panic_with_messagetF0: addu x31, xr31, 40

sc panic > subu r31, r3l1, 28

sc_panict4 >: st rl, r3l1, 24

sc_panict8 >: st r30, r31, 20

sc_panic+c > addu r30, r31, 20

sc_panictl0 >: Or.u r3, x0, FFAO

sc panict+i4 > Or r4, r0, x0

sc _panict+18 > Or r5, x0, r0

ee 1]> ,

Expression Evaluation Commands

The expression evaluation commands enable you to search symbol tables; display an expression’s

i value in octal, decimal, hexadecimal, or symbolic format; and set variables to use in expressions.

Print Symbol Table Entry (name)

The command format to print a symbol table entry is:

name [regular expression]

The name command searches the symbol table for a match to regular_expression. If a match 1s

found, the symbol is printed along with its value and symbol type. The default regular_expression 1s

.*, which matches all symbols. The short name for name is nm.

For example, if you know a routine name starts with vm and contains count, you can list all routines

with that combination by typing:

a [0:#system#:1]> name vm.*count }

The following display shows how your screen might look after you enter this command.

3-1 4 Licensed Material —- Property of Data General Corporation 033701075

Kernel Debugger Commands

— —
[O:#system#:1]> name vm.*count

[0] vm_get_accounting_memory_usage 0006406C external

[{ 0] vm_resource_accounting lock 00107124 external

[0] vme_available_ frame_resource_counter 00107124 external

[0] vme_low_on_available_frames_eventcounter 001071A4 external

[0] vmc_mft_eventcounter_table 00107188 external

[f Q} vmfs_ decrement_reference_count OOODS5E54 external

{ 0] vmfs_increment_reference_count COODS5E10 external

[O:#system#:1]>

NK _

Translate an Expression Value to a Symbol (translate)

The command format to translate an expression value to a symbol is:

translate [expression]

The translate command evaluates the expression given and converts it to a symbolic value, using the

current set of symbol tables. If a relevant symbol cannot be found, the value is converted, based on

the current radix, and the resulting string is printed. The default expression is the null expression. The

short name for translate is ts.

The following command translates sc_panic+50:

[0:#system#:1]> translate sc_panic+50)

The following display shows how your screen might look after you enter this command.

[O:#system#:1]> translate sc_panict50

sc_operator_ shutdown+14

[O0:#system#:1]>

This command is similar to the eval command below.

Expression Evaluation (eval)

The command format for evaluating an expression is:

eval expression

The eval command evaluates an expression and displays the result in octal, decimal, hex, and symbol

formats. The short name for eval is ev.

The following command evaluates sc_panic+50:

[0:#system#:1]> eval sc_panic+50)

The following display shows how your screen might look after you enter this command. This display

shows the eval output for the same expression as shown in the translate display above. Notice that

the eval command displays more information about the expression than the translate command.

083701075 Licensed Material — Property of Data General Corporation 3-1 5

Kernel Debugger Commands

a | oS
[O:#system#:1]> eval sc_panict50

[octal] [decimal] [hex]

[000001640214] [475276] [0x0007408C]

[symbolic]: [sc_operator_shutdownt14]

[O0:#system#:1]>

NL } —_

Symbols can be used in an expression with the eval command. These symbols are listed in “The

Expression Parser” section in Chapter 2. One of these symbols, pc, evaluates to the current VP's

program counter. The following command evaluates pc:

[0:#system#:1]> eval pc)

The following display shows how your screen might look after you enter this command.

i —~
[O:#system#:1]> eval pe

[octal] [decimal] [hex]

[000002534660] [| 702896] [Ox000AB9BO0]

[symbolic]: [deb debugger _requestt+54]

[0:#system#:1]>

NL _—

Global (global)

The global command enables you to create a 32-bit variable that may be used in expressions. This

allows you to save values and arguments for later use. A global variable will override the evaluation

of a symbol of the same name. The format for the global command 1s:

global [{name expr |—d name ...}]

You can initialize a global variable by specifying a name and an expression. If you do not provide a

name, the current list of global names with their respective values is printed. The —d option deletes a

global variable. |

For example, you can create a global variable named scl to save the value of sc_pamic using the

following command:

[0:#system#:1]> global scl #sc_panic }

The next display shows sc_panic and the value saved in the global variable scl.

a1 6 Licensed Material — Property of Data General Corporation 0383~701075

Kernel Debugger Commands

ss —,

[0:#system#:1]> memread sc panic |

sc_panic : 67FF0028

[O0:#system#:1]> global scl #sc_panic

[O:#system#:1]> global

scl: 67FF0028

[O0:#system#:1]>

Se _

Later you can use the saved value. For example, if you changed the value of sc_panic and want to

re-enter the old, saved value, you can use the saved global variable in the memwrite command, as

shown in the following display.

—- oo

[O:#system#:1]> memwrite sc_panic

sc panic : 67FF0020 > scl

[0:#system#:1]> memread sc_panic

sc_panic : 67FFO0028

[0:#system#:1]>

— | —

Set (set)

The format for the set command is:

set name expression

The set command enables you to set a global variable, nayne, to the evaluation of an expression.

Execution Control Commands

The execution control commands enable you to set and delete breakpoints, continue execution of the

system, and halt the processor.

Set Breakpoint (brk)

The brk command sets or modifies a breakpoint. By setting a breakpoint, you specify that the
debugger should take control of the kernel at a specified place in the code. The debugger will then

give you a prompt and wait for user input. You can set a breakpoint with conditions that must be met

for the breakpoint to be taken; the breakpoint is passed if the conditions are not met.

For example, you can set a breakpoint with a specified count of ten. This breakpoint will be passed

nine times before the breakpoint is actually taken. The debugger increments its counter each time

the breakpoint is passed. When the debugger hits the breakpoint the tenth time, the breakpoint 1s

taken (the debugger takes control of the kernel, gives you a prompt, and waits for input).

093~-701075 Licensed Material — Property of Data Genera! Corporation 3-1 7

Kernel Debugger Commands

The command format to set a breakpoint is:

brk [—t] [-I] [addr expression |-m bp_num] [-e [expression] [-c count]

The -t option sets a temporary breakpoint; the breakpoint is deleted as soon as it is taken.

The +1 option prints a notification when a breakpoint is passed. You can pass a breakpoint using the

—c count and ~e expression arguments as described below. By default, a notification is given when a

breakpoint 1s taken.

The address expression, addr expression, sets a new breakpoint, the -m option specifies the
breakpoint number, bp_num, to modify an existing breakpoint.

A ~e expression and/or a -¢ count can be associated with the breakpoint. The breakpoint will not be

taken unless the count is zero and the expression is TRUE, where TRUE means non-zero. The count

is decremented each time the breakpoint is executed (but never below zero). To clear the expression

on the breakpoint, use the -e option without an expression. The default count is 1 and the default

expression 1s always true.

If no arguments are given, then all of the current breakpoints are displayed. The short name for brk is

b.

For example, to set a breakpoint at the Iseek function with a count and a notification when the

breakpoint is passed, type the following command at the debugger prompt:

[0:#system#:1]> brk Iseek 4I-c3 }

The following screen shows an example of setting this breakpoint and displaying all of the

breakpoints that are set.

—— oS
[0:#system#:1]> brk lseek -1l -c 3

[1] lseek subu r31, r31, 40 ; [L] c[3]

[O:#system#:1]> brk

[0] sc_panic subu r31, r31, 28 ;

[1] lseek subu r31, r31, 40 ; [L] c[3]

[O:#system#:1]>

NN _ ee”

To take the above breakpoint, you can type ps at the system prompt. The following screen shows an

example of the notification messages:

—~
% ps

[1] lseek subu r31, r31, 40 ; [L] c[Z2]

[1] lseek subu r31, r31, 40 ; [L] c[1]

BREAKPOINT [1] TAKEN.

lseek >: subu r31, r31, 40

[14] [Eligible] [ps]

[O:#system#:1]>

3—1 8 Licansed Material ~ Property of Data General Corporation 093-—701075

Kernel Debugger Commands

As shown above, two notifications show that the breakpoint has been passed, then a notification

shows that the breakpoint has been taken. When the breakpoint is taken, you enter the debugger and

receive the debugger prompt.

Delete Breakpoint (delete)

The command format to delete a breakpoint is:

delete {bp num... |-a}

The delete command deletes the breakpoints specified by the breakpoint number(s), bp_num, from

the list of breakpoints. The -a option deletes all of the breakpoints. The short name for delete is d.

Proceed (proceed)

The proceed command enables you to exit from the debugger. The command format to proceed is:

proceed

The short name for proceed is p. The proceed command will cause the debugger to return and

continue execution of the system.

NOTE: If you entered the debugger using Ctrl—P and you are using a workstation keyboard (for

example, on an AViiON 300 Series station), you must press the Ctrl key after you

invoke the proceed command to exit from the debugger (the complete sequence is

p—New Line—Cul—New Line). This sequence will reset the workstation’s keyboard

driver and retum to the kernel. Using this key sequence applies only when you are

using a workstation keyboard and entered the debugger using Crri-P. If you are using

an asynchronous terminal or if you are using a workstation keyboard but entered the

debugger from a breakpoint (or at initialization), you can use just the proceed

command.

Halt (halt)

The halt command terminates the debugger, stops all of the machine’s job processors (JPs), and

returns control to the System Control Monitor (SCM). The command format to halt is:

hait

CAUTION: The halt command irrevocably kills the kernel. The halt command also prevents

any buffers from being flushed back to disk, which may require running fsck to

check file systems and correct inconsistencies. You should use the command only

when you are sure that you are finished debugging and want to boot a new kernel

from the SCM.

0$3—701075 Licensed Material — Property of Data General Corporation 3-1 9

Kernel Debugger Commands

Machine State Commands

The machine state commands allow you to access registers and display the state of the CMMU chips.

Display/Modify Register Contents (register and control)

The command format to display or modify a general register’s contents is:

register [general register name [register_value]]

The register command displays or modifies the contents of a general register. The

general register_name is specified as 0-31 or 10-131. If register_value is specified, the register

value is stored in the register. If no arguments are given, all of the registers are displayed. The short

name for register is reg.

To display the contents of register 30, type:

a [0:#system#:1]> reg r30)

To display the contents of all general registers, you type:

| [0:#system#:1]>reg 2)

The following display shows how your screen might look after you type these commands.

a

oS

[O:#system#:1]> reg r30

r30: FF801CD0

[O:#system#:1]> reg

r 0: 00000000 ri: 00000000 xr 2: 00000001 xr 3: 00000000

r 4: FF801DCC xr 5: 00000000 r 6: 00100030 xr 7: 00000000

r 8: 00000011 xr 9: 00000000 4r10: 00000668 rill: 00000000

r12: OQOOAB98C r13: 00100000 r14 00000010 x4r1i5: 00000000

r16: FFF82800 14r17: 00000002 r18 OO0O09F780 4+r19: 00000000

r20: 00000000 xr21: 90000000 r22 00000000 r23: FF802E38

r24: 00000001 r25: 00000002 r26 00000000 r27: 00000000

r28: 00000000 r29: 0O0000000 r30: FF801CD0 r31: FF801CA0

[O:#system#:1]>

NN _-7

The command format to display or modify a control register’s contents is:

control [control _register_name [register_value}]

The control command displays or modifies the contents of a control register. The

control_register_name is specified as cr2-cr20, or by its given name (for example, sxip or vbr). If

register_value is specified, the register value is stored in the register. If no arguments are given, all of

the registers are displayed. The short name for control is ctl.

3-20 Licensed Material — Property of Data General Corporation 093~—701075

Kernel Debugger Commands

To display the contents of the snip control register, type:

[0:#system#:1]> ctl snip) a

To display the contents of all control registers, you type:

[0:#system#:1]> ctl) a

The following display shows how your screen might look after you type these commands.

[oxo ctl snip >
cr 5 [snip]: 000CCCD2 [read+4 [v]]

[O:mount:10]> ctl

cr 2 [tpsr]: 900003F0 [SUP BIGI C MXM FLOAT INTEN]

cr 3 [ssbr]: 900003F0

cr 4 [sxip]: 000CCCCE [read [v]]

cr 5 [snip]: 000CCCD2 [readt+4 [v]]

cr 6 [sfip]: O00CCCD6 [readt+8 [v]]

cr 7 [vbr}: 00000000

cr 8 [tr0]: 00000000 [INVALID]

cr 9 [dr0j]: 00000000

crl10 [arQ]: 00415700 [415700]

crlli [trl]: 00000000 f INVALID]

crl2 [dri}: 00000000

crl3 [aril}: 00415700 [415700]

crl4 [trZ2]: 00000000 [INVALID]

cr15 [dr2]: 00000000

crl6 [ar2]: 0012C1B8 [vm_memory pool+278]

crl7 [sr0Q]: O0QO7BFA4

crl1s [srl]: 00416000

crl9 [sx2]: 00000000

er20 [sr3]: 900003F0

oe /

Display CMMUs (cmmu)

The format for the cmmu command 1s:

cmmu

The cmmu command displays the state of the virtual address—based management chips, the

CMMUs.

093-701075 Licensed Material — Property of Data General Corporation 3-21

Kernel Debugger Commands

To display the state of the CMMU chips, type:

[O:#system#:1]>cmmu)

The following display shows what information is displayed when you type this command.

—~
[0:#system#:1]> cmmu

Instruction Cmmu Data Cmmu|

[FFF01000] | [FFF00000]

id : 1A70000 | id : A70000

scr: 8000 | scr : C000

ssx: 9 | ssx: 9

|sadr : FF804000 sadr : FF804000

sctr : 8000 | sctr : C000

sapr : 1AB001 | sapr : 1ABO0O01

uapr : 0 | uapr : Q

ees :1]> yy

(For more information, see the @C88200 Cache/Memory Management Unit User’s Manual.)

Kernel State Commands

The kernel state commands enable you to translate a logical address to its physical address,

traceback a process’ kernel stack, display the status of JPs and VPs, and focus on a VP.

Logical to Physical Address (Itop)

The format for the ltop command is:

Itop logical_address

The ltop command translates the specified logical_address to its physical address. This command is

useful for determining if an address is valid.

For example, you can see the logical to physical mapping of vm_my_process_ptr by typing the

following command:

[0:#system#:1]> ltop vm_my_process_ptr)

The following display shows your screen might look after entering this command.

—] _——

[O:mount:10]> ltop vm_my_process ptr

Logical: [FF8026C8] Physical: [3FA6C8]

[O:mount:10]>

—_. ——

3-22 Licensed Material — Property of Data General Corporation 093-701075

Kernel Debugger Commands

Traceback a Process’ Kernel Stack (trace)

The command format to traceback a process’ kernel stack is:

trace [{vp num... | vp_numl—vp_num2 | vp_num-|—vp_num|-—}]

The trace command displays a traceback of a process’ kernel stack. If you specify a virtual process

number, vp_num, a focus is done on that virtual process before the traceback is performed. If you do

not provide an argument, the traceback is performed on the currently focused virtual process. You

can also trace a range of VPs using vp_numl—vp_num2, vp_num-—, or -vp_num. The hyphen (-)

traces all VPs. The short name for trace is fr.

The traceback displays the return PC and the Frame Pointer for each frame. Arguments are not

displayed, since their location is unknown.

The trace command lists the routines that a VP has called. The trace stack shows the current PC first,

which is the current routine, and traces back through the routines that were called. The first routine

can be a page fault, a data exception, or a System call. If you enter the debugger from user space, you

Start with an exception.

The following display shows an example of a trace of VP 1.

i

fp: [FF801CD0]

fp: [FF801CF8]

fp: [FF801D28]

fp: [FF801D50]

fp: [FF801D90]

fp: [FF801DC0]

fp: [FF801E08]

fp: [FF801E58]

fp: [FF801E80]

fp: (FF801EA8]

fp: [FF801ED0]

fp: [FF801ED8]

_
The first set of brackets in the trace output contains the VP number. The second set of brackets

contains the stack frame number. The third set of brackets shows the routine name. The last set of

brackets contains frame pointers for the different routines.

[O0:#system#:1]> trace

Stack Trace: [J] ID [1]

[l]{ 0] [deb debugger _requestt54

[1]{[1] [sc_enter_ debuggert20

[1][2] [ts_syscon_input_character+78

[1]{ 3] [ts_gde_con_get_character+54

[1][4] [ts_kdb_service_interrupt+80

[1}[5] [{a_io interrupt_handler+aA0

[1][6] [{sc_handle non_serial_exceptionst+8C

[1]{ 7] [se_common_exception_path+50

[1]{ 8] [vp_initialize_vp_mgr+2c4

[1]{ 9] [vp_initialize_subsystem+14

[1] [10] [init _initializet+z0

[1] [11] [init _start_system+s80

[0:#system#:1]>

After you have done a trace on a VP, you can use the stack frame number as an argument to the view

command. For example, the following display shows a view on stack frame number 11 of the

previous trace example.

093-701075 Licensed Material ~ Property of Data General Corporation 3-23

Kernel Debugger Commands

(sharpavemt 1 > vi sflil ~
init initializets8 >: st r30, x31, 20

init initialize+tc > addu r30, x31, 20

init _initialize+t10 : bsr sc_initialize subsystem

init _initializetl4 : bsr sc_enter debugger

init initializet18 : bsr uc_initialize subsystem

init initializetilC : bsr vm initialize subsystem

init initialize+20 : bsr vp_ initialize subsystem

init initializet+t24 : bsr io initialize subsystem

init initialize+t28 : bsr su_initialize subsystem

init initializet+t2C : bsr sfim_initialize_ subsystem

init initialize+30 : obsr vp_are_interrupts_disabled

| init initialize+34 : mask r2, x2, FF

init initialize+38 : bend ne0Q, r2, init_initializet48

eee 1]> Y

You can trace more than one VP or specify a range of VPs. The following command lines are

equivalent:

[0:#system#:1]> trace? 123)

[0:#system#:1]> trace 0-3)

[0:#system#:1]> trace-3)

You can also trace all VPs (by using just the hyphen) or trace all VPs starting with a particular VP.

The first command line below shows how to trace all VPs, and the second shows how to trace VP 4

and all VPs thereafter:

[O:#system#:1]> trace - }

[0:#system#:1]> trace 4)

You do not need to be focused on a VP to perform a trace of that VP. You can perform a trace on VP 2

when you are focused on VP 1. However, once a trace is performed, you are focused on the last VP

specified in the trace command. ,

The following display shows an example of a trace of two VPs.

3-24 Licensed Material — Property of Data General Corporation 033—701075

Kernel Debugger Commands

f—

[Ozsmount:10]> tr 7 10

Stack Trace: [] ID [7]

(7][0] [vp_suspend_me+40

(7]{ 1] [vp_await_ec+1E4

[7] { 2] [su_demon+B4

[7]{ 3] [init _initialize+1l4c

[7]{ 4] [init _start_system+80

Stack Trace: f{mount] ID [10]

fi0}[0] [read

[10][{ 1] [sc_common_exception_path+44

([Osmount:10]>

Ne

Display Status (status)

The format of the status command 1s:

Status

~

fp: [FF801DC0]

fp: (FF801E08])

fp: [FF801E80]

fp: [FF801ED0])

fp: [FF801ED8]RP le CUCL Cl
] fp: [FF801EB8]

] fp: (FF801EF8]}

TS

The status command displays the status of each job processor (JP). This command is used mainly to

determine if other processors entered the debugger and to show why the processors entered.

To display the status of the JP(s), type:

[0:#system#:1]> status)

The following display shows what information is displayed when you type this command.

ae

ee

—_

[O0:#system#:1]> status

JP#0 VP: 1 Context: [0013004C] ENTER

[O0:#system#:1]>

«4

093—701075 Licensed Material — Property of Data General Corporation 3-25

Kernel Debugger Commands

Display Virtual Processor (vp)

The format for the vp command is:

vp [~a] [vp_number ...]

The vp command displays the status of one or more VPs. The ~a option gives a more verbose

description. If no arguments are given, every virtual process that is bound is displayed.

To display the status of several VPs, you can use a command such as:

[O:#system#:1]> vp 89 11 19 20)

The following display shows how your screen might look after you type this command. The last two

columns show the elapsed time and the processor time.

a —s
[O0:#system#:1]> vp 8 9 11 19 20

[8] [Bound_Stopped] [init] [40.6] [20.9]

[9] [Eligible] [-csh] [1.3] [0.2]

[11] [Bound_Stopped] [update] [3.8] [0.2]

[19] [Bound_Stopped] [mountd] [0.7] [0.0]

[20] [Bound_Stopped] [nfsd] [2.2] [0.5]

[0:#system#:1]>

_

To see the verbose description of VP 8, use the command:

| [O0:#system#:1]> vp -a8 }

The following display shows how your screen might look after you enter this command.

—

[O:#system#:1]> vp -a 8

{ 8] [Bound_Stopped] [init] [40.6] [20.9]

Address : 0Qx7F001180 Suspend Count: 0

extension: 0Ox7F018000 next ptr: OxFFA00000

priority: 16584 Eff priority: 16584

VPID: 8 Allowed Set: OxFFFF

[O0:#system#:1]> oo

NL

3-26 Licensed Material — Property of Data General Corporation 083-—701075

Kernel Debugger Commands

Focus on a Virtual Processor (focus)

The format for the focus command Is:

focus [vp_number]

The focus command changes the address translation in the debugger to make it look as if the virtual

process specified by vp_number was running. You may trace, look at per—process variables, and look

at the machine state for that virtual process. If you do not provide an argument, the current virtual

process will be used. The short name for focus is fo. Note that the address translation (atu) mode on

the debugger must be turned on for focus to work.

To focus on VP 8, use the command:

[0:#system#:1]>fo8 } a

The following display shows how your screen might look after you enter this command.

, a amt

[O0:#system#:1]> fo 8

[8] [Bound_Stopped] [init] [40.6] [20.9]

[O:init:8]>

eee ee”

Notice that the prompt now indicates that you are focused on VP 8, the init program. As with the vp

command, the last two columns show the elapsed time and the processor time.

General Commands

Help (help)

The help command displays information about a command. The format for the help command is:

help [command_name]

If you invoke the help command without arguments, the complete list of supported commands is

printed, separated by subsystem. If a command_name is given, the help message for that command is

printed. The short name for help is ? (a question mark). Examples of the help command are shown in

Chapter 2.

- 093-701075 Licensed Material — Property of Data General Corporation 3—2/

Kernel Debugger Commands

Mode (mode)

The mode command enables you to change parameters for the debugger. The format for the mode

command is:

mode [oct | hex | dec] [er {onloff}] [atu {onloff}] [verbose n] [io {duart | prom }]

Using the mode command, you set the following options:

@ Set the radix to octal, hexadecimal, or decimal.

@ Turn editread (er) on or off.

@ Turn address translation (atu) on or off.

@ Set the verbose mode for the debugger. (The verbose mode is generally only used by Data

General systems engineers.)

@ Set the console (io) to either the machine’s PROM (prom) or an asynchronous terminal attached

to the machine’s serial port (duart).

If you invoke the mode command without arguments, the current settings for the parameters are

displayed. To see the current settings, type:

[0:#system#:1]> mode d

The following display shows what information is displayed when you type this command.

a oS

[O:#system#:1]> mode

base : hex

er : on

verbose : 0

atu 2: on

10 : prom

[O0:#system#:1]>

SS _—

The Prom notation indicates that you are communicating with the kemel through the machine’s

PROM. If you have an asynchronous terminal attached to your machine’s serial port, you can use the

mode command to tell the debugger to use that port by typing the following command line:

[0:#system#:1]> mode io duart)

If you change the console to the asynchronous terminal, you would then see Duart instead of Prom

when you typed the mode command with no arguments.

CAUTION: If you do not have an asynchronous terminal connected to your machine, do not

enter the mode io duart command—-you will not be able to communicate with the

debugger from your workstation keyboard, and you will have to reboot your

machine.

3-28 Licensed Material — Property of Data General Corporation 083--701075

Kernel Debugger Commands

Print (print and printf)

The print command provides simple printf capabilities. The format for the print command is:

print [expression ...]

You can use this command to print the evaluation of an expression. The expression is printed in the

current base. A new line is printed at the end of the print.

Also, using print is an easy way to print two or three registers, instead of all 32. (The reg command

will not enable you to do this). For example, you can print registers 12, 30, and 31 using the

following command:

[0:#system#:1]> print r12 r30 r31)

The following display shows an how your screen might look after entering the command above.

—— —

[O0:#system#:1]> print r12 r30 r3l

AB98C FF801CA0 FF801CA0

[O:#system#:1]>

—. ——

The printf command enables you to print strings in a particular format. This command converts,

formats, and prints its expressions under control of the format_string. The syntax for the printf

command is:

printf ’format string” [expression ...]

For example, this command will print each register name and its contents on a separate line:

[0:#system#:1]> printf "Reg 12: %x\nReg 30: %x\nReg 31: %x\n” r12 130 r31

The following display shows an how your screen might look after entering the command above.

ao os;

[O:#system#:1]> printf "Reg 12: %x\nReg 30: %x\nReg 31: %x\n” ri2 r30 r31

Reg 12: 0

Reg 30: 0

Reg 31: 0

(O:#system#:1]>

ae oe

See the printf(3S) man page for a complete description of this command’s capabilities.

End of Chapter

093~701075 Licensed Material — Property of Data General Corporation 3-29

Appendix A

Quick Reference

This appendix summarizes the DG/UXTM kemel debugger commands. For the full explanation of a

command, refer to Chapter 3, “Kernel Debugger Commands.”

brk [-t) [-1] [addr_expression | -m bp_num] {-e [expression]] [-¢ count]

cmmu

control [control _register_name [register_value]]}

delete {bp num... |-a}

down

eval expression

focus [vp number]

global [{name expr |-d name ...}]

halt

help [command_name]

Itop logical address

memread [17] [—n] [—p] [-u] [memory_address} [count] [format]

memsearch [—In] [-n] [=p] [—u] [memory_address] [count] [format]

memwrite [—n] [—p] [—u] [—v] [memory_address} [count] [format]

mode [oct | hex | dec] [er {onloff}] [atu {onloff}] [verbose 7] [io {duart | prom}] |

name [regular_expression]

patdump [-I7] [-n] [—p] [—u] 7egular_expression [format]

093~—701075 Licensed Material — Property of Data General Corporation A—1

Quick Reference

print [expression ...]

printf format_string [expression ...]

proceed

register [general register_name [regisier_value]]

regsearch [—In] [—n] [-p] [—u] [emory_address] [count] [format]

| set global_name expression |
status

trace [{vp num... |vp_numl—vp_num2 | vp_num-|-vp_num\-}]

translate [expression]

up

Mi view [-I7] [-n] [-p] [-u) [memory_address] [count] [format]

vp [-a] [vp_number ...]

End of Appendix

A-—2 Licensed Material — Property of Data General Corporation 093-701075

Appendix B

Context Blocks

In this appendix, we describe the kernel’s context block. A context block is a save area for a process’

registers and state. A context block represents the state of a process and VP at the tme that a

breakpoint is taken or when an interrupt, fault, or exception occurs.

The operating system maintains a stack of context blocks for each process. Context blocks are a

useful debugging tool, because you can see the state of the machine after a fault. Or, you can race

backwards through a series of context blocks to see the state of the machine at different times.

Depending on where you take a breakpoint, you may want to look at the second context block in the

stack. If a panic was caused by an exception, the second block will contain information about what

caused the exception—the first block contains information about the breakpoint (Figure B-1).

Context Block

Stack

Breakpoint block

Context block of ~«_— Display with the command:
process tha mr #(#sc_my_context_block_ptr) 30!
caused the panic

Other Context

Blocks

Kernel entry block,

pointed to by:

sc_base_context_block_ptr

Figure B—1 Context Block Stack

033-701075 Licensed Material — Property of Data General Corporation B—1

Context Blocks

To look at the second context block when a breakpoint at sc_panic is taken, use the memread

command as shown in the following example:

[0:#system#:1]> mr #¢sc_my_context_block_ptr) 301)

This command looks at the address pointed to by the address of the context block header pointer. In

other words, the command dereferences through two pointers to get the second context block for that

process. As you focus on different processes in the debugger, the header pointer is reset to point i to

the last context block for the process on which you are focused.

The screen image of an example context block that was taken after a breakpoint is shown below.

sc_my_ context_stack+704:

sc_my_ context_stack+714:

sc_my_context_stack+724:

s¢_my_ context_stack+734:

sc_my_context_stack+744:

¢ my _context_stack+/54:

sc _my_context_stack+7/64:

sc_my_ context_stack+774:

sc _my context _stack+784:

sc_my_ context_stack+794:

sc_my context _stack+/7A4:

sc_my_ context_stack+/B4:

The parts of the context block are shown in Figure B-2 and described after the figure.

B—2

FE802ECO

O003BDC2

00000010

00412530

00000668

00411D01

00411C60

00411D10

00000000

00000000

00406940

00000000

O00003F0

OO0O3BDC6é

EFFFF957

00412537

00000000

00411C60

QO0411CF8

00000100

00000000

EFFFE 928

00000000

00000C00

[O:-csh:13]> mr #(#sc_my_context_block_ptr) 30 1

00000000

00000000

00000001

00412530

FPREEEFEEFE

00000001

00000004

EFFFFA98

00000000

00000000

00000000

00412B64

Licensed Material — Property of Data General Corporation

OOO03BDBE

0002851iC

00000600

00000028

00410000

00000000

00414c64

00000001

00000000

00000000

00411CF0

00000000

_

093-701075

Context Blocks

DG/UX Kernel Context Block

Next Block PSR (Processor Pad XIP
Pointer Status Register) N/A (Executing Instruction)

NIP FIP ; ,

(Next Instruction) (Fetch Instruction) Register 0 Register 1

Register 2 Register 3 Register 4 Register 5

- Registers 6-29, 4/line —

Register 30 Register 31 DMTO Data Value 0

Address of

Data Value 0 DMT Data Value 1 Data Value 1

DMT2 Data Value 2 pases Oe N/A

Figure B—2 Parts of a Context Block

Next Block Pointer

The Next Block Pointer points to the next context block in a stack of context blocks. Typically you
can get to the next context block through the variables context_block_ptr or context_stack_ptr. |

These two variables have identical structures underneath them.

We suggest that you look first at the context block pointer; if the context block pointer doesn’t

contain relevant information, then look at the context stack pointer. (The context stack reflects the

state of the kernel. If a kernel exception occurs, you would want to look at the context stack.)

PSR

The Processor Status Register (PSR) is the state of machine at the time of the fault or exception that

this context block was saved. The most significant bit in the PSR is the high bit. If the high bit 1s set,

the process was running in supervisor space when the exception occurred; if the high bit is clear, the

process was running in user space.

033~701075 Licensed Material — Property of Data General Corporation B—3

Context Blocks

Pad

The contents of the padding space are not significant.

XIP, NIP, and FIP

XIP, NIP, and FIP are the pipelined instruction registers. XIP is the executing instruction, or the

current PC. NIP is the next instruction. FIP is the fetch instruction. These three instruction pointers

tell you the state of the pipeline and what was happening with the process. Typically, these three

pointers are even, with no exception taking place. Figure B-3 shows the context block formats for

XIP, NIP, and FIP.

31-2 1 0

Program Counter. Address Valid Exception

Figure B—3 XIP NIP, and FIP Format

Often, the current instruction (XIP) is the address that has caused a fault. If the process was running

in supervisor space and a fault occurred, you can mask off the two bits in XIP to look at that address

(using the view command). The debugger will place you at the exact instruction that caused the

fault. Typically, if the exception is a serial exception, the address that caused the fault will be the

XIP.

Registers

The state of the JP registers are captured in the context block at the time of the fault or exception. For

instance, the process was loading instructions that involved three registers and if it tried to load the

last register from a null pointer, an exception would occur because the machine tried to reference a

non—existent address. You would see that the third register argument had an invalid kernel address.

Note that register zero should always contain the value zero (00000000).

The addresses in the registers correspond to the setting of the PSR high bit. If the process was

running in supervisor space, the addresses represent kemel addresses; if the process was running user

space, the addresses represent user space addresses.

B—4 Licensed Material — Property of Data General Corporation 093-701075

Context Blocks

DMT Registers

Figure B—-4 shows the format of the Data Memory Transaction (DMT) registers. The fields in the

format are described in the list that follows the figure.

31-16 15 14 13 12 11-7 6 5-2 1 0

zero BO DAS | DOUB1} LOCK} DREG | SDj| ENABLEO-3 | WRITE | VALID

VALID

WRITE

ENABLEO-3

SD

DREG

LOCK

093-701075

Figure B—4 Data Memory Transaction Registers

If the Valid Transaction bit (VALID) is set, the address was valid. If it is clear,

the address was invalid.

If LOCK (field 12) is set, the Read/Write Transaction bit (WRITE) shows

whether the operation was a read (clear) or a write (set). If LOCK is clear, the

WRITE bit shows whether the operation is the read (clear) or write (set)

access of an xmem instruction.

The Byte Enable Bits field (ENABLEO-3) shows the kind of store (st, st.b,

st.h, or st.d). From these bits, you can decode what the instruction was, as

shown below:

0001=byte

0010=byte

0011=half word

0100=byte

1000=byte

1100=half word

1111=word .fi

The Sign—Extended bit (SD) shows part of the xmem instruction. If set, the

load operation should be sign—extended. If clear, the operation should be

zero—extended.

The Destination Register field (DREG) species the destination register for a

memory access.

The Bus Lock field bit (LOCK) is clear if the transaction is part of an xmem

instruction.

Licensed Material — Property of Data Genera! Corporation B-—5

Context Blocks

DOUBI1 The Double Word bit (DOUB1) will be set if the access is the first in a

double—word transaction.

DAS The Data Address Space bit (DAS) is set if the instruction is in supervisor

space; it is clear if the instruction is in user space.

BO The Byte Ordering bit (BO) is set if the instruction is little—endian; it is clear if

the instruction is big—endian.

The DMT registers often relate to store instruction faults. If a store instruction causes a fault, you can

look backwards from the XIP address to see the last store that occurred (ina DMT). The XIP, NIP,

and FIP don’t necessarily correlate to DMT0, DMT1, and DMT2. The XIP is the current PC and the

DMTO is where the store exception occurred.

For example, a process could be executing a series of instructions that include a store instruction,

instructions that don’t access memory, another store instruction, more instructions that don’t access

memory, and another store instruction. If one of the store instructions tries to store to an address that

doesn’t exist, the exception might not actually occur until the cache is filled and the system looks up

the page table entry. In this case, the XIP, NIP, and FIP would point to addresses far away from the

DMT addresses.

Data Values and the Addresses of Data Values

Data Value 0, Data Value 1, and Data Value 2 are the values you are trying to store at their respective

addresses. Typically, only the first data value will be valid.

For information about the contents of context blocks, you can also refer to the MC88100 RISC

Microprocessor User’s Manual.

End of Appendix

B—6 Licensed Material — Property of Data General Corporation 093—701075

Symbols

. (debugger symbol), 2-6

*, 3-14

' (unary operator), 2—5

: (unary operator), 2-5

& (binary operator), 2—5

(unary operator), 2-5

@ (unary operator), 2-5

+ (binary operator), 2—5

— (binary operator), 2—5

* (binary operator), 2—5

/ (binary operator), 2—5

| (binary operator), 2—5

= (binary operator), 2-5

< (binary operator), 2-5

> (binary operator), 2—5

~ (debugger symbol), 2-7

A

Accessing memory, 2-4

Address translation mode (atu)

setting, to use focus command, 3-27

turning on or off, 3-28

Aliases for commands, 1-3, 2-3

Asynchronous terminal as console

exiting, 2-9, 3-19

setting an, 3-28

window environment, 2-1

B

Binary operators in expressions, 2—5

&, 2-5

+, 2-5

—, 2-5

* 2-5

/,2-5

|, 2-5

=, 2-5

<,2-5

>, 2-5

Index

brk command, 3-17

Breakpoints

deleting, 3-19

notification of, 3-18

passing, 3-17

setting, 3-17

taking, 3-17

temporary, 3-18

Cc

Cache/Memory Management Unit (CMMU)

chips, 3-20

cmmu command, 3-21

Command line editor, 1-3

Commands

aliases, 1-3

assigning, 2—3

editing, 1-3

execution control, 1-3, 3-17

delete breakpoint (delete), 3—19

halt (halt), 3—19

proceed (proceed), 3-19

set breakpoint (brk), 3-17

expression evaluation, 1-2, 3-14

expression evaluation (eval), 3-15

global, 3—16

print symbol table entry (name), 3—14

set, 3-17

translate an expression value to a

symbol (translate), 3—15

general, 1-3, 3-27

help, 3-27

mode, 3—28

print, 3-29

help for, 2-8, 3-27

kemel state, 1-3, 3-22

display status (status), 3-25

display status of virtual processor (vp),

3—26

focus on a virtual process (focus), 3-27

logical to physical address (Itop), 3-22

traceback a process’ kernel stack

(trace), 3-23

093-701075 Licensed Material ~ Property of Data General Corporation index—1

Index

Commands (continued)

machine state, 1-3, 3-20

display CMMUs (cmmu), 3-21

display/modify control register contents

(control), 3—20

display/modify general register

contents (register), 3—20

memory, 1—2, 3-2

command format, 3—2

count argument, 3—3

format argument, 3—3

memory address argument, 3—2

memory read (memread), 3—4

memory search (memsearch), 3—8

memory write (memwrite), 3—7

options, 3—2

pattern dump (patdump), 3-10

regular expression search (regsearch),

view, 3-11

view down (down), 3—12

view up (up), 3-13

quick reference for, A—1

short names for, 1-3

Configuring the debugger, 14

Context block, 3-6, B—1

context_block_ptr, B-3

context_stack_ptr, B—3

Data Management Transaction (DMT)

registers, B—5

FIP, B4

Next Block Pointer, B—3

NIP, B-4

pad, B4

Processor Status Register (PSR), B-3

registers, B—4

XIP, B—4

control command, 3-20

Control registers, displaying or modifying,

2-7, 3-20

Count argument to memory commands, 3-3

crash utility, 1-2, 14

Current instruction pointer (XIP), B—4

Iindex—2 Licensed Material — Property of Data General Corporation

D
Data Memory Transaction (DMT) registers,

B-5

Debugger symbols in expressions, 2-6

Debugging tools, other, 1-4

Decimal numbers, specifying, 3-3

Delete breakpoint (delete), 3-19

delete command, 3-19

Device drivers, 1-1

Disassembled instruction

fields for, in initial display, 2-2

searching, with regsearch, 3~10

Display CMMUs (cmmu), 3-21

Display status (status), 3~25

Display status of virtual processor (vp), 3-26

Display/modify control register contents

(control), 3-20

Display/modify general register contents

(register), 3-20

down command, 3-12

duart, 3-28

E
editread, 1-3

setting mode, 3-28

Entering the kernel debugger, 2-1

eval command, 3-15

Exceptions

serial, B-4

supervisor mode, B—3

Execution control commands, 3—17

Exinng

kernel debugger, 2-9

memwrite, 3-7

Expression evaluation (eval), 3-15

Expression evaluation commands, 3-14

Expression format, 2—5

Expression parser, 1-3, 2-4

binary operators, 2—5

debugger symbols, 2-6

expression format, 2—5

integers, 2~5

kernel symbols, 2-6

resolving expressions, 2—7

unary operators, 2—5

user—defined global variables, 2-7

033-701075

F

Fetch instruction pointer (FIP), B—4

FIP, B4

Focus, 1-2

focus command, 3-27

Focus on a virtual process (focus), 3-27

Format argument to memory commands, 3-3

Functions, kernel code C, in expressions, 2-6

G

General commands, 3-27

General registers

displaying or modifying, 2-7, 3-20

save area, B—1

state of, in a context block, B—4

global command, 3-16

Global variables

kernel code, in expressions, 2-6

user—defined

creating, 3—16

in expressions, 2—7

setting, 3—17

H

Halt (halt), 3-19

halt command, 3-19

help command, 3-27

Help messages, 2-8

Hexadecimal numbers, specifying, 3-3

Indirect addressing, 2-5

Installation, 1-4

Integers in expressions, 2-5

J

Job Processor (JP)

definition of, 1-2

information on, in initial display, 2—2

status of, 3-25

stopping, 3-19

093-701075 Licensed Material — Property of Data General Corporation

index

K

Kernel debugger

display information, 2-2

entering, 2—1

exiting, 2-9

installing, 14

linking with kernel, 1-4

memory requirements, 1-4

other debuggers’ relationship to, 14

prompt in, 2-2

uses for, 1-1, 1-4

window environment and, 2-1

Kernel image, 2-6

Kernel space, 2-4

Kernel state commands, 3-22

Kernel symbols in expressions, 2-6

L

Linking the debugger with the kernel, 14

Logical address, 2-4

Logical to physical address (Itop), 3-22

ltop command, 3-22

Machine state commands, 3-20

Mapping addresses, logical to physical, 2-4

Memory

accessing, 2-4

requirements, 1-4

Memory address

argument to memory commands, 3-2

converting to a user space, 2-4, 2-5

logical, in memory commands, 2—4

physical, in memory commands, 2-4, 3-2

Memory commands, 3—2

Memory read (memread), 3-4

Memory search (memsearch), 3-8

Memory write (memwrite), 3-7

changing values with, 3—7

exiting from, 3-7

memread command, 3-4

memsearch command, 3-8

memwrite command, 3-7

changing values with, 3-7

exiting from, 3-7

mode command, 3-28

Index—3

index

Modes

address translation (atu), 3-28

editread (er), 3-28

io, 3-28

radix, 3-28

verbose, 3-28

Mxdb, 1-4

N

hame command, 3-14

Next Block Pointer, B—3

Next instruction pointer (NIP), B~4

NIP, B—4

O

Octal numbers, specifying, 3-3

Options to memory commands, 3~2

p

Page tables, 2-4

Parser facility, 2-4

patdump command, 3~10

Pattern dump (patdump), 3-10

PC, 1-2

pc (debugger symbol), 2-6

Physical address, 2-4, 3-2

print command, 3-29

Print symbol table entry (name), 3-14

Proceed (proceed), 3-19

proceed command, 3-19

Processor Status Register (PSR), B-3

Program counter (PC)

definition of, 1-2

during a trace, 3-23

information on, in initial display, 2-2

pc (debugger symbol), 2-6

PROM, 3-28

Prompt information, 2—2

R

Radix mode, setting, 3-28

register command, 3-20

Registers

control

displaying or modifying, 3—20

debugger symbol, 2—7

Data Management Transaction (DMT), B-5

general

displaying or modifying, 3—20

general, debugger symbol, 2—7

save area, B—1

state of, in a context block, B—4

regsearch command, 3-9

Regular expression search (regsearch), 3-9

Related documents, iv

Relationship among debuggers, 1-4

Resolving expressions, 2—7

S

sdb, 14

Searches (memread, memsearch, regsearch),

3-8

Serial exception, B—4

Set breakpoint (brk), 3-17

set command, 3-17

Short names for commands, 1-3

Stack frames, 2—7, 3—23

status command, 3-25

STREAMS modules, 1-1

Supervisor mode, B—3, B—4

Supervisor space, 2~4

Symbols in expressions

debugger symbols, 2-6

kernel symbols, 2-6

user—defined aliases, 2—3

user—defined global variables, 2—7

sysadm, editing configuration file, 14

System Control Monitor (SCM), 3-19

T

trace command, 3—23

Traceback a process’ kernel stack (trace),

3-23

Translate an expression value to a symbol

(translate), 3-15

translate command, 3-15

Iindex—4 Licensed Materia! — Property of Data General Corporation 033—701075

U

Unary operators in expressions, 2—5

125

#, 2-5

@,2-5

a)

up command, 3-13

User mode, B-4

User space

entering the debugger from, 3-23

generating, an address, 2-4

User—defined global variables

creating, 3-16

in expressions, 2—7

setting, 3-17

Uses for the kernel debugger, 1-1, 1-4

V

Verbose mode, setting, 3-28

View (view), 3-11

view command, 3-11

View down (down), 3-12

View program counter (view_pc), definition

of, 1-2

View up (up), 3-13

view_pc, 1-2

Virtual processor (VP)

definition of, 1-2

state of, in initial display, 2-2

vp command, 3~26

W

Window environment, 2—1

X

XIP, B-4

083~701075 Licensed Material — Property of Data General Corporation

Index

index—5

form.

Send your order form with payment to: Data General Corporation

ATTN: Educational Services/TIPS G155

4400 Computer Drive

Westboro, MA 01581-9973

b) TELEPHONE - Call TIPS at (508) 870-1600 for all orders that will be charged by credit card or paid for by purchase

orders over $50.00. Operators are available from 8:30 AM to 5:00 PM EST.

METHOD OF PAYMENT

2. Asacustomer, you have several payment options:

a) Purchase Order — Minimum of $50. If ordering by mail, a hard copy of the purchase order must accompany order.

b) Check or Money Order — Make payable to Data General Corporation.

c) Credit Card - A minimum order of $20 is required for Mastercard or Visa orders.

SHIPPING

3. To determine the charge for UPS shipping and handling, check the total quantity of units in your order and refer to the

following chart:

Total Quantity Shipping & Handling Charge

1-4 Units $5.00

5-10 Units $8.00

11-40 Units $10.00

41-200 Units $30.00

Over 200 Units $100.00

If overnight or second day shipment is desired, this information should be indicated on the order form. A separate charge

will be determined at time of shipment and added to your bill.

VOLUME DISCOUNTS

4. The TIPS discount schedule is based upon the total value of the order.

Order Amount Discount

$1-$149.99 0%

$150-3$499.99 10%

Over $500 20%

TERMS AND CONDITIONS

5. Read the TIPS terms and conditions on the reverse side of the order form carefully. These must be adhered to at all times.

DELIVERY

6. Allow at least two weeks for delivery.

RETURNS

7. Items ordered through the TIPS catalog may not be returned for credit.

8. Order discrepancies must be reported within 15 days of shipment date. Contact your TIPS Admumistrator at (508) 870-1600

to notify the TIPS department of any problems.

INTERNATIONAL ORDERS

9. Customers outside of the United States must obtain documentation from their local Data General Subsidiary or

Representative. Any TIPS orders received by Data General U.S. Headquarters will be forwarded to the appropriate DG

Subsidiary or Representative for processing.

TIPS ORDER FORM
Mail To:

: nate Teta: ats 3 ete : 2 ee RLS : rete ip vse : 1: Gio BO Sosac. Combine Onl if Different Acdress)).

COMPANY NAME COMPANY

ATTN: ATTN:

ADDRESS ADDRESS (NO PO BOXES)

CITY CITY

STATE ZIP STATE ZIP

Priority Code (See label on back of catalog)

Authorized Signature of Buyer Title Date Phone (Area Code) Ext.
(Agrees to terms & conditions on reverse side)

a 5Be os ar retenog aceee

ee eee ees peace,
RICae ee ea one’

'eenete .oro c at etet ete ce:Pptatat he ee)

ate!acer etets:
OOO

0D 0° Ea I Cn 0 anes”one e nt te teO ret te te teelees.ano aerate alee eet oem erence.

eee ate Mee tenet 8 Ne tk ae Bee Oe le eo tte 8 4 e oo a 8 we ma ewe estat et]

orevereuey®.

VOLUME DISCOUNTS ORDER TOTAL

[J ups ADD Order Amount Save Less Discount _
1-4 Items $ 5.00 $0 — $149.99 0% See B

5-10 Items $ 8.00 $150-$499.99 10% | laxExempt# SUB TOTAL
11-40 Items $ 10.00 Over $500.00 20% : Sales Tax

applicable) Your local’ +
41-200 Items $ 30.00 sales tax

200+ Items $100.00 Shipping and +
Check for faster delivery __handling — See A

sate ea eeweron TOTAL See C
(J UPS Blue Label (2 day shipping)

(J Red Label (overnight shipping)

SENT METS THANK YOU FOR YOUR ORDER

CJ Purchase Order Attach
P.O. number is

[J Visa [_}MasterCard

Account Number

LEi tii ti di ti

($20 minimum on credit cards)

Expiration Date

[TTT

PRICES SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.
PLEASE ALLOW 2 WEEKS FOR DELIVERY.

NO REFUNDS NO RETURNS.

* Data General is required by law to collect applicable sales or use tax on all
purchases shipped to states where DG maintains a place of business, which
covers all 50 states. Please include your local taxes when determining the total
value oi your order. if you are uncertain about the correct tax amount, piease call

Authorized Signature

(Credit card orders without signature and expiration date cannot be processed.)

Form 702

Rev. 8/87

DATA GENERAL CORPORATION

TECHNICAL INFORMATION AND PUBLICATIONS SERVICE

TERMS AND CONDITIONS

Data General Corporation (‘DGC’) provides its Technical Information and Publications Service (TIPS) solely in accordance with the following

terms and conditions and more specifically to the Customer signing the Educational Services TIPS Order Form. These terms and conditions

apply to all orders, telephone, telex, or mail. By accepting these products the Customer accepts and agrees to be bound by these terms and

conditions.

1. CUSTOMER CERTIFICATION

Customer hereby certifies that it is the owner or lessee of the DGC equipment and/or licensee/sub—licensee of the software which is the

subject matter of the publication(s) ordered hereunder.

2. TAXES

Customer shall be responsible for all taxes, including taxes paid or payable by DGC for products or services supplied under this Agreement,

exclusive of taxes based on DGC’s net income, unless Customer provides written proof of exemption.

3. DATA AND PROPRIETARY RIGHTS

Portions of the publications and materials supplied under this Agreement are proprietary and will be so marked. Customer shall abide by such

markings. DGC retains for itself exclusively all proprietary rights (including manufacturing rights) in and to all designs, engineering details and

other data pertaining to the products described in such publication. Licensed software materials are provided pursuant to the terms and

conditions of the Program License Agreement (PLA) between the Customer and DGC and such PLA is made a part of and incorporated into

this Agreement by reference. A copyright notice on any data by itself does not constitute or evidence a publication or public disclosure.

4. LIMITED MEDIA WARRANTY

DGC warrants the CLI Macros media, provided by DGC to the Customer under this Agreement, against physical defects for a period of ninety

(90) days from the date of shipment by DGC. DGC will replace defective media at no charge to you, provided it is returned postage prepaid to

DGC within the ninety (90) day warranty period. This shall be your exclusive remedy and DGC’s sole obligation and liability for defective media.

This limited media warranty does not apply if the media has been damaged by accident, abuse or misuse.

5. DISCLAIMER OF WARRANTY

EXCEPT FOR THE LIMITED MEDIA WARRANTY NOTED ABOVE, DGC MAKES NO WARRANTIES, EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE ON ANY OF

THE PUBLICATIONS, CLI MACROS OR MATERIALS SUPPLIED HEREUNDER.

6. LIMITATION OF LIABILITY

A. CUSTOMER AGREES THAT DGC’S LIABILITY, IF ANY, FOR DAMAGES, INCLUDING BUT NOT LIMITED TO LIABILITY ARISING

OUT OF CONTRACT, NEGLIGENCE, STRICT LIABILITY IN TORT OR WARRANTY SHALL NOT EXCEED THE CHARGES PAID BY

CUSTOMER FOR THE PARTICULAR PUBLICATION OR CLI MACRO INVOLVED. THIS LIMITATION OF LIABILITY SHALL NOT APPLY

TO CLAIMS FOR PERSONAL INJURY CAUSED SOLELY BY DGC’S NEGLIGENCE. OTHER THAN THE CHARGES REFERENCED

HEREIN, IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES

WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOST PROFITS AND DAMAGES RESULTING FROM LOSS OF USE, OR LOST

DATA, OR DELIVERY DELAYS, EVEN IF DGC HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY

THEREOF; OR FOR ANY CLAIM BY ANY THIRD PARTY.

B. ANY ACTION AGAINST DGC MUST BE COMMENCED WITHIN ONE (1) YEAR AFTER THE CAUSE OF ACTION ACCRUES.

7. GENERAL

A valid contract binding upon DGC will come into being only at the time of DGC’s acceptance of the referenced Educational Services Order

Form. Such contract is governed by the laws of the Commonwealth of Massachusetts, excluding its conflict of law rules. Such contract is not

assignable. These terms and conditions constitute the entire agreement between the parties with respect to the subject matter hereof and

supersedes all prior oral or written communications, agreements and understandings. These terms and conditions shall prevail notwithstanding

any different, conflicting or additional terms and conditions which may appear on any order submitted by Customer. DGC hereby rejects all

such different, conflicting, or additional terms.

8. IMPORTANT NOTICE REGARDING AOS/VS INTERNALS SERIES (ORDER #1865 & #1875)

Customer understands that information and material presented in the AOS/VS Internals Series documents may be specific to a particular

revision of the product. Consequently user programs or systems based on this information and material may be revisiontocked and may not

function properly with prior or future revisions of the product. Therefore, Data General makes no representations as to the utility of this

information and material beyond the current revision level which is the subject of the manual. Any use thereof by you or your company is at

your own risk. Data General disclaims any liability arising from any such use and | and my company (Customer) hold Data General completely

harmiess therefrom.

Using the DG/UXTM

Kernel Debugger

093-701075-01reeorrr—r—_——_—_—_—————=——— — ow *
Cut here and insert in binder spine pocket

