Data General Corporation

Technical Manual

Components Guide

015-000028-01

DATA GENERAL TECHNICAL MANUAL

COMPONENTS GUIDE

Ordering No. 015-000028 Rev. 00, February 1974

	DGC NO. SERIES
INTEGRATED CIRCUITS	100'S 🗨
SEMICONDUCTORS	101'S 🗨
RESISTORS	102'5 🗨
CAPACITORS	103'S 🗨
TRANSFORMERS AND COILS	104'S 🗨
SWITCHES AND RELAYS	110'S 🗨
CONNECTORS	111'S 🗨
FUSES AND CIRCUIT BREAKERS	113'S 🗨
INDICATORS AND BULBS	114'S 🗨
MOTORS, BLOWERS AND FANS	5 115'S 🗨
CIRCUIT MODULES	116'S 🗨
CRYSTALS	121'S

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS MANUAL FOR INFORMATION PURPOSES ONLY. DGC RESERVES THE RIGHT TO MAKE CHANGES WITHOUT NOTICE IN THE SPECIFICATIONS AND MATERIALS CONTAINED HEREIN AND SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES CAUSED BY RELIANCE ON THE MATERIALS PRESENTED, INCLUDING BUT NOT LIMITED TO TYPOGRAPHICAL OR ARITHMETIC ERRORS, COMPANY POLICY AND PRICING IN-FORMATION.

The purpose of this manual is to provide part number identification of components used in Data General equipment. Pin connections, logic diagrams, truth tables and functional descriptions are included in the Integrated Circuits section. In the Circuit Modules section, pin connections and block diagrams are furnished.

It is not the purpose of this manual to provide manufacturers' specifications or circuit parameters.

TABLE OF CONTENTS

Page

•	
INTEGRATED CIRCUITS	100-1
Numerical Index	100-1
Functional Index	100-8
SEMICONDUCTORS - TRANSISTORS/DIODES/RECTIFIERS	101-1
RESISTORS	102-1
CAPACITORS	103-1
TRANSFORMERS AND COILS	104-1
SWITCHES AND RELAYS	110-1
CONNECTORS	111-1
FUSES AND CIRCUIT BREAKERS	113-1
INDICATORS AND BULBS	114-1
MOTORS, BLOWERS AND FANS	115-1
CIRCUIT MODULES	116-1
Numerical Index	116-1
CRYSTALS	121-1

i

-

NUMERICAL INDEX

INTEGRATED CIRCUITS

10000001 PNP Quad Core Driver 100-16 10000002 16 Diode Array 100-17 10000003 Quad 2-Input NAND Gate 100-18 10000004 Triple 3-Input NAND Gate 100-20 10000005 Dual 4-Input NAND Gate 100-20 10000006 Dual Extendable AND-OR-INVERT Gates 100-21 10000007 8-Input NAND Gate 100-23 100000008 Single Extendable AND-OR-INVERT Gates 100-24 10000009 Dual 4-Input NAND Gate 100-24 100000011 Dual J -K Flip-Flop 100-26 100000012 4-Bit Shift Register 100-26 100000013 One-of-Ten Decoder 100-28 100000014 16-Bit Coincident Select Read-Write Memory 100-28 100000015 Retriggerable Monostable Multivibrator 100-28 100000016 16-Bit Sinary Full Adder (Look Ahead Carry) 100-30 100000021 Hex Inverter 100-33 100000023 Dual Differential Amplifier 100-35 10000024 Dual Differential Amplifier 100-38	DGC Part Number	Functional Description	Page Number
100000003 Quad 2-input NAND Gate 100-18 100000004 Triple 3-Input NAND Gate 100-19 100000005 Dual 4-Input NAND Gate 100-20 10000006 Dual Extendable AND-OR-INVERT Gates 100-21 10000007 8-Input NAND Gate 100-22 10000008 Single Extendable AND-OR-INVERT Gates 100-23 10000009 Dual 4-Input NAND Gate 100-24 10000001 Dual J-K Flip-Flop 100-25 100000012 4-Bit Shift Register 100-26 100000013 One-of-Ten Decoder 100-27 100000016 16-Bit Coincident Select Read-Write Memory 100-28 100000017 Dual D-Type Edge-Triggered Flip-Flop 100-30 100000019 Quad 2-Input NAND Interface Gate 100-31 100000020 Hex Inverter 100-33 100000021 4-Bit Binary Full Adder (Look Ahead Carry) 100-33 100000024 Dual Differential Amplifier 100-36 100000026 Precision Voltage Regulator 100-38 100000038 BCD Decade Counter/Storage Element	10000001	PNP Quad Core Driver	100-16
100000004 Triple 3-Input NAND Gate 100-19 100000005 Dual 4-Input NAND Gate 100-20 100000006 Dual Extendable AND-OR-INVERT Gates 100-21 100000007 8-Input NAND Gate 100-22 100000008 Single Extendable AND-OR-INVERT Gates 100-23 10000009 Dual 4-Input NAND Gate 100-24 100000011 Dual J-K Flip-Flop 100-26 100000012 4-Bit Shift Register 100-26 100000013 One-of-Ten Decoder 100-27 100000016 16-Bit Coincident Select Read-Write Memory 100-28 100000017 Dual D-Type Edge-Triggered Flip-Flop 100-30 100000019 Quad 2-Input NAND Interface Gate 100-31 100000020 Hex Inverter 100-32 100000021 4-Bit Binary Full Adder (Look Ahead Carry) 100-33 100000024 Dual Differential Amplifier 100-37 100000026 Precision Voltage Regulator 100-38 100000028 4-Bit Binary Counter/Storage Element 100-33 100000028 Guad 2-Input NAND Gate	10000002	16 Diode Array	100-17
100000005 Dual 4-Input NAND Gate 100-20 100000006 Dual Extendable AND-OR-INVERT Gates 100-21 100000007 8-Input NAND Gate 100-22 100000008 Single Extendable AND-OR-INVERT Gates 100-23 100000009 Dual 4-Input NAND Gate 100-24 100000011 Dual J-K Flip-Flop 100-25 100000012 4-Bit Shift Register 100-26 100000015 Retriggerable Monostable Multivibrator 100-28 100000016 16-Bit Coincident Select Read-Write Memory 100-29 100000017 Dual D-Type Edge-Triggered Flip-Flop 100-30 100000020 Hex Inverter 100-31 10000021 4-Bit Binary Full Adder (Look Ahead Carry) 100-33 100000023 Dual Differential Amplifier 100-35 100000024 Dual Differential Amplifier 100-38 100000038 BCD Decade Counter/Storage Element 100-38 100000039 Dual Extender AND-OR-INVERT Gates 100-40 10000004 Dual X-Input NAND Gate 100-41 10000004 Dual Extender AND-O	10000003	Quad 2-Input NAND Gate	100-18
10000006Dual Extendable AND-OR-INVERT Gates100-21100000078-Input NAND Gate100-2310000008Single Extendable AND-OR-INVERT Gates100-2310000009Dual 4-Input NAND Gate100-2410000011Dual J-K Flip-Flop100-25100000124-Bit Shift Register100-2610000013One-of-Ten Decoder100-271000001616-Bit Coincident Select Read-Write Memory100-2910000017Dual D-Type Edge-Triggered Flip-Flop100-3010000019Quad 2-Input NAND Interface Gate100-3110000020Hex Inverter100-32100000214-Bit Binary Full Adder (Look Ahead Carry)100-3310000023Dual Pulse Shaper-Delay AND Gate100-3610000024Dual Differential Amplifier100-37100000254-Bit Binary Counter/Storage Element100-3810000026Precision Voltage Regulator100-3810000038BCD Decade Counter/Storage Element100-3910000041NPN Quad Core Driver100-42100000424-Bit Shift Register100-4310000043Arithmetic Logic Element100-43100000443-Input A-Bit Digital Multiplexer100-4510000045Quad 2-Input NAND Gate100-46100000443-Input , 4-Bit Digital Multiplexer100-4610000045Quad 2-Input NAND Gate100-46	10000004	Triple 3-Input NAND Gate	100-19
10000007 8-Input NAND Gate 100-22 10000008 Single Extendable AND-OR-INVERT Gates 100-23 10000009 Dual 4-Input NAND Gate 100-24 100000011 Dual J-K Flip-Flop 100-25 100000012 4-Bit Shift Register 100-26 100000013 One-of-Ten Decoder 100-27 100000016 16-Bit Coincident Select Read-Write Memory 100-28 100000017 Dual D-Type Edge-Triggered Flip-Flop 100-30 100000020 Hex Inverter 100-32 10000021 4-Bit Binary Full Adder (Look Ahead Carry) 100-33 10000023 Dual Differential Amplifier 100-36 10000024 Dual Differential Amplifier 100-38 10000025 Precision Voltage Regulator 100-38 10000026 Precision Voltage Regulator 100-38 100000028 4-Bit Binary Counter/Storage Element 100-38 100000038 BCD Decade Counter/Storage Element 100-38 100000040 Dual A-Input NAND Gate 100-40 100000041 NPN Quad Core Driver 100-42	100000005	Dual 4-Input NAND Gate	100-20
100000008 Single Extendable AND-OR-INVERT Gates 100-23 100000009 Dual 4-Input NAND Gate 100-24 10000011 Dual J-K Flip-Flop 100-25 10000012 4-Bit Shift Register 100-26 100000013 One-of-Ten Decoder 100-27 100000015 Retriggerable Monostable Multivibrator 100-28 100000016 16-Bit Coincident Select Read-Write Memory 100-29 100000017 Dual D-Type Edge-Triggered Flip-Flop 100-30 100000019 Quad 2-Input NAND Interface Gate 100-31 100000020 Hex Inverter 100-32 100000021 4-Bit Binary Full Adder (Look Ahead Carry) 100-33 100000023 Dual Differential Amplifier 100-35 100000024 Dual Differential Amplifier 100-37 100000025 Precision Voltage Regulator 100-38 100000026 Precision Voltage Counter/Storage Element 100-39 100000038 BCD Decade Counter/Storage Element 100-39 100000040 Dual 4-Input NAND Gate 100-44 100000041 NPN Qua	100000006	Dual Extendable AND-OR-INVERT Gates	100-21
10000009 Dual 4-Input NAND Gate 100-24 10000011 Dual J-K Flip-Flop 100-25 10000012 4-Bit Shift Register 100-26 10000013 One-of-Ten Decoder 100-27 100000015 Retriggerable Monostable Multivibrator 100-28 100000016 16-Bit Coincident Select Read-Write Memory 100-29 100000017 Dual D-Type Edge-Triggered Flip-Flop 100-30 100000019 Quad 2-Input NAND Interface Gate 100-31 100000020 Hex Inverter 100-32 100000021 4-Bit Binary Full Adder (Look Ahead Carry) 100-33 100000023 Dual Differential Amplifier 100-35 100000024 Dual Differential Amplifier 100-37 100000025 Precision Voltage Regulator 100-38 100000026 Precision Voltage Regulator 100-38 100000038 BCD Decade Counter/Storage Element 100-39 100000039 Dual Extender AND-OR-INVERT Gates 100-40 100000041 NPN Quad Core Driver 100-42 1000000042 4-Bit Shift Register	10000007	8-Input NAND Gate	100-22
100000011 Dual J-K Flip-Flop 100-25 100000012 4-Bit Shift Register 100-26 10000013 One-of-Ten Decoder 100-27 100000015 Retriggerable Monostable Multivibrator 100-28 100000016 16-Bit Coincident Select Read-Write Memory 100-29 100000017 Dual D-Type Edge-Triggered Flip-Flop 100-30 100000019 Quad 2-Input NAND Interface Gate 100-31 100000020 Hex Inverter 100-33 100000021 4-Bit Binary Full Adder (Look Ahead Carry) 100-33 100000023 Dual Differential Amplifier 100-35 10000024 Dual Differential Amplifier 100-36 10000025 Precision Voltage Regulator 100-38 100000026 Precision Voltage Regulator 100-38 100000038 BCD Decade Counter/Storage Element 100-39 10000004 Dual 4-Input NAND Gate 100-40 100000041 NPN Quad Core Driver 100-42 100000042 4-Bit Shift Register 100-43 100000043 Arithmetic Logic Element	10000008	Single Extendable AND-OR-INVERT Gates	100-23
1000000124-Bit Shift Register100-2610000013One-of-Ten Decoder100-2710000015Retriggerable Monostable Multivibrator100-281000001616-Bit Coincident Select Read-Write Memory100-29100000017Dual D-Type Edge-Triggered Flip-Flop100-30100000019Quad 2-Input NAND Interface Gate100-31100000020Hex Inverter100-32100000214-Bit Binary Full Adder (Look Ahead Carry)100-3310000023Dual Differential Amplifier100-3610000024Dual Differential Amplifier100-3610000025Precision Voltage Regulator100-3810000026Precision Voltage Regulator100-3810000037Dual Extender AND-OR-INVERT Gates100-4010000038BCD Decade Counter/Storage Element100-4110000041NPN Quad Core Driver100-42100000424-Bit Shift Register100-4310000043Arithmetic Logic Element100-45100000443-Input, 4-Bit Digital Multiplexer100-4510000045Quad 2-Input NAND Gate100-46100000474-Bit Binary Counter100-46	10000009	Dual 4-Input NAND Gate	100-24
100000013One-of-Ten Decoder100-27100000015Retriggerable Monostable Multivibrator100-2810000001616-Bit Coincident Select Read-Write Memory100-29100000017Dual D-Type Edge-Triggered Flip-Flop100-30100000019Quad 2-Input NAND Interface Gate100-3110000020Hex Inverter100-32100000214-Bit Binary Full Adder (Look Ahead Carry)100-3310000023Dual Dulse Shaper-Delay AND Gate100-3510000026Precision Voltage Regulator100-3610000027Quad 2-Input NAND Gate100-37100000284-Bit Binary Counter/Storage Element100-3710000038BCD Decade Counter/Storage Element100-3910000040Dual Atenput NAND Gate100-4010000041NPN Quad Core Driver100-42100000424-Bit Shift Register100-4310000043Arithmetic Logic Element100-45100000443-Input, 4-Bit Digital Multiplexer100-4510000045Quad 2-Input NAND Gate100-45100000474-Bit Binary Counter100-46	100000011	Dual J-K Flip-Flop	100-25
100000015Retriggerable Monostable Multivibrator100-281000001616-Bit Coincident Select Read-Write Memory100-2910000017Dual D-Type Edge-Triggered Flip-Flop100-30100000019Quad 2-Input NAND Interface Gate100-3110000020Hex Inverter100-32100000214-Bit Binary Full Adder (Look Ahead Carry)100-3310000023Dual Pulse Shaper-Delay AND Gate100-3610000026Precision Voltage Regulator100-36100000284-Bit Binary Counter/Storage Element100-3710000038BCD Decade Counter/Storage Element100-3910000039Dual Extender AND-OR-INVERT Gates100-4110000041NPN Quad Core Driver100-42100000424-Bit Shift Register100-4310000043Arithmetic Logic Element100-45100000443-Input, 4-Bit Digital Multiplexer100-4610000045Quad 2-Input NAND Gate100-45100000474-Bit Binary Counter100-46	100000012	4-Bit Shift Register	100-26
10000001616-Bit Coincident Select Read-Write Memory100-29100000017Dual D-Type Edge-Triggered Flip-Flop100-30100000019Quad 2-Input NAND Interface Gate100-31100000020Hex Inverter100-321000000214-Bit Binary Full Adder (Look Ahead Carry)100-33100000023Dual Pulse Shaper-Delay AND Gate100-3410000024Dual Differential Amplifier100-3510000026Precision Voltage Regulator100-36100000284-Bit Binary Counter/Storage Element100-37100000038BCD Decade Counter/Storage Element100-3910000039Dual Extender AND-OR-INVERT Gates100-4010000041NPN Quad Core Driver100-43100000424-Bit Shift Register100-4310000043Arithmetic Logic Element100-45100000443-Input, 4-Bit Digital Multiplexer100-4510000045Quad 2-Input NAND Gate100-4510000046Quad 2-Input NAND Gate100-45100000474-Bit Binary Counter100-45	10000013	One-of-Ten Decoder	100-27
100000017 Dual D-Type Edge-Triggered Flip-Flop 100-30 100000019 Quad 2-Input NAND Interface Gate 100-31 10000020 Hex Inverter 100-32 10000021 4-Bit Binary Full Adder (Look Ahead Carry) 100-33 10000023 Dual Pulse Shaper-Delay AND Gate 100-35 10000026 Precision Voltage Regulator 100-36 10000028 4-Bit Binary Counter/Storage Element 100-37 10000028 4-Bit Binary Counter/Storage Element 100-38 10000028 Guad 2-Input NAND Gate 100-38 100000039 Dual Extender AND-OR-INVERT Gates 100-40 10000041 NPN Quad Core Driver 100-42 10000042 4-Bit Shift Register 100-43 10000043 Arithmetic Logic Element 100-45 10000044 3-Input, 4-Bit Digital Multiplexer 100-45 10000045 Quad 2-Input NAND Gate 100-46 10000044 3-Input, 4-Bit Digital Multiplexer 100-45 10000045 Quad 2-Input NAND Gate 100-46 100000046 Quad 2-Input NAND Gate	10000015	Retriggerable Monostable Multivibrator	100-28
100000019Quad 2-Input NAND Interface Gate100-3110000020Hex Inverter100-32100000214-Bit Binary Full Adder (Look Ahead Carry)100-3310000023Dual Pulse Shaper-Delay AND Gate100-3410000024Dual Differential Amplifier100-3510000026Precision Voltage Regulator100-36100000284-Bit Binary Counter/Storage Element100-3710000036Quad 2-Input NAND Gate100-3810000038BCD Decade Counter/Storage Element100-3910000039Dual Extender AND-OR-INVERT Gates100-4010000041NPN Quad Core Driver100-42100000424-Bit Shift Register100-4310000043Arithmetic Logic Element100-45100000443-Input, 4-Bit Digital Multiplexer100-4510000045Quad 2-Input NAND Gate100-47100000474-Bit Binary Counter100-48, 100-47	100000016	16-Bit Coincident Select Read-Write Memory	100-29
100000020Hex Inverter100-32100000214-Bit Binary Full Adder (Look Ahead Carry)100-3310000023Dual Pulse Shaper-Delay AND Gate100-3410000024Dual Differential Amplifier100-3510000026Precision Voltage Regulator100-36100000284-Bit Binary Counter/Storage Element100-3710000036Quad 2-Input NAND Gate100-3810000038BCD Decade Counter/Storage Element100-3910000039Dual Extender AND-OR-INVERT Gates100-4010000041NPN Quad Core Driver100-42100000424-Bit Shift Register100-4310000043Arithmetic Logic Element100-45100000443-Input, 4-Bit Digital Multiplexer100-4510000045Quad 2-Input NAND Gate100-46100000474-Bit Binary Counter100-46	10000017	Dual D-Type Edge-Triggered Flip-Flop	100-30
1000000214-Bit Binary Full Adder (Look Ahead Carry)100-3310000023Dual Pulse Shaper-Delay AND Gate100-3410000024Dual Differential Amplifier100-3510000026Precision Voltage Regulator100-36100000284-Bit Binary Counter/Storage Element100-3710000036Quad 2-Input NAND Gate100-3810000038BCD Decade Counter/Storage Element100-3910000039Dual Extender AND-OR-INVERT Gates100-4010000041NPN Quad Core Driver100-42100000424-Bit Shift Register100-4310000043Arithmetic Logic Element100-45100000443-Input, 4-Bit Digital Multiplexer100-4510000045Quad 2-Input NAND Gate100-46100000474-Bit Binary Counter100-48, 100-44	100000019	Quad 2-Input NAND Interface Gate	100-31
100000023Dual Pulse Shaper-Delay AND Gate100-3410000024Dual Differential Amplifier100-3510000026Precision Voltage Regulator100-36100000284-Bit Binary Counter/Storage Element100-3710000036Quad 2-Input NAND Gate100-3810000038BCD Decade Counter/Storage Element100-3910000039Dual Extender AND-OR-INVERT Gates100-4010000040Dual 4-Input NAND Gate100-4110000041NPN Quad Core Driver100-42100000424-Bit Shift Register100-4310000043Arithmetic Logic Element100-45100000443-Input, 4-Bit Digital Multiplexer100-4610000045Quad 2-Input NAND Gate100-46100000474-Bit Binary Counter100-48, 100-47	10000020	Hex Inverter	100-32
100000024Dual Differential Amplifier100-3510000026Precision Voltage Regulator100-36100000284-Bit Binary Counter/Storage Element100-3710000036Quad 2-Input NAND Gate100-3810000038BCD Decade Counter/Storage Element100-3910000039Dual Extender AND-OR-INVERT Gates100-4010000040Dual 4-Input NAND Gate100-4110000041NPN Quad Core Driver100-42100000424-Bit Shift Register100-4310000043Arithmetic Logic Element100-45100000443-Input, 4-Bit Digital Multiplexer100-4510000045Quad 2-Input NAND Gate100-4610000046Quad 2-Input NAND Gate100-47100000474-Bit Binary Counter100-48, 100-44	100000021	4-Bit Binary Full Adder (Look Ahead Carry)	100-33
100000026Precision Voltage Regulator100-361000000284-Bit Binary Counter/Storage Element100-37100000036Quad 2-Input NAND Gate100-38100000038BCD Decade Counter/Storage Element100-39100000039Dual Extender AND-OR-INVERT Gates100-40100000040Dual 4-Input NAND Gate100-41100000041NPN Quad Core Driver100-421000000424-Bit Shift Register100-43100000043Arithmetic Logic Element100-451000000443-Input, 4-Bit Digital Multiplexer100-4510000045Quad 2-Input NAND Gate100-4710000046Quad 2-Input NAND Gate100-47100000474-Bit Binary Counter100-48, 100-44	10000023	Dual Pulse Shaper-Delay AND Gate	100-34
100000028 4-Bit Binary Counter/Storage Element 100-37 100000036 Quad 2-Input NAND Gate 100-38 100000038 BCD Decade Counter/Storage Element 100-39 100000039 Dual Extender AND-OR-INVERT Gates 100-40 100000040 Dual 4-Input NAND Gate 100-41 100000041 NPN Quad Core Driver 100-43 100000042 4-Bit Shift Register 100-43 100000043 Arithmetic Logic Element 100-45 100000044 3-Input, 4-Bit Digital Multiplexer 100-45 100000045 Quad 2-Input NAND Gate 100-46 100000046 Quad 2-Input NAND Gate 100-47 100000047 4-Bit Binary Counter 100-48, 100-4	10000024	Dual Differential Amplifier	100-35
100000036Quad 2-Input NAND Gate100-38100000038BCD Decade Counter/Storage Element100-39100000039Dual Extender AND-OR-INVERT Gates100-4010000040Dual 4-Input NAND Gate100-4110000041NPN Quad Core Driver100-42100000424-Bit Shift Register100-4310000043Arithmetic Logic Element100-45100000443-Input, 4-Bit Digital Multiplexer100-4510000045Quad 2-Input NOR Gate100-46100000474-Bit Binary Counter100-48, 100-4	10000026	Precision Voltage Regulator	100-36
100000038BCD Decade Counter/Storage Element100-39100000039Dual Extender AND-OR-INVERT Gates100-4010000040Dual 4-Input NAND Gate100-4110000041NPN Quad Core Driver100-42100000424-Bit Shift Register100-4310000043Arithmetic Logic Element100-45100000443-Input, 4-Bit Digital Multiplexer100-4510000045Quad 2-Input NOR Gate100-46100000474-Bit Binary Counter100-48, 100-4	10000028	4-Bit Binary Counter/Storage Element	100-37
100000039 Dual Extender AND-OR-INVERT Gates 100-40 10000040 Dual 4-Input NAND Gate 100-41 10000041 NPN Quad Core Driver 100-42 10000042 4-Bit Shift Register 100-43 10000043 Arithmetic Logic Element 100-45 10000044 3-Input, 4-Bit Digital Multiplexer 100-45 10000045 Quad 2-Input NOR Gate 100-46 10000046 Quad 2-Input NAND Gate 100-47 10000047 4-Bit Binary Counter 100-48, 100-4	10000036	Quad 2-Input NAND Gate	100-38
100000040 Dual 4-Input NAND Gate 100-41 100000041 NPN Quad Core Driver 100-42 100000042 4-Bit Shift Register 100-43 100000043 Arithmetic Logic Element 100-44 100000044 3-Input, 4-Bit Digital Multiplexer 100-45 100000045 Quad 2-Input NOR Gate 100-46 100000046 Quad 2-Input NAND Gate 100-47 100000047 4-Bit Binary Counter 100-48, 100-48	10000038	BCD Decade Counter/Storage Element	100-39
100000041 NPN Quad Core Driver 100-42 100000042 4-Bit Shift Register 100-43 100000043 Arithmetic Logic Element 100-44 100000044 3-Input, 4-Bit Digital Multiplexer 100-45 100000045 Quad 2-Input NOR Gate 100-46 100000046 Quad 2-Input NAND Gate 100-47 100000047 4-Bit Binary Counter 100-48, 100-48	10000039	Dual Extender AND-OR-INVERT Gates	100-40
100000042 4-Bit Shift Register 100-43 100000043 Arithmetic Logic Element 100-44 100000044 3-Input, 4-Bit Digital Multiplexer 100-45 100000045 Quad 2-Input NOR Gate 100-46 100000046 Quad 2-Input NAND Gate 100-47 100000047 4-Bit Binary Counter 100-48, 100-48	10000040	Dual 4-Input NAND Gate	100-41
100000043 Arithmetic Logic Element 100-44 100000044 3-Input, 4-Bit Digital Multiplexer 100-45 100000045 Quad 2-Input NOR Gate 100-46 100000046 Quad 2-Input NAND Gate 100-47 100000047 4-Bit Binary Counter 100-48, 100-48	100000041	NPN Quad Core Driver	100-42
100000044 3-Input, 4-Bit Digital Multiplexer 100-45 100000045 Quad 2-Input NOR Gate 100-46 100000046 Quad 2-Input NAND Gate 100-47 100000047 4-Bit Binary Counter 100-48, 100-48	100000042	4-Bit Shift Register	100-43
100000045 Quad 2-Input NOR Gate 100-46 100000046 Quad 2-Input NAND Gate 100-47 100000047 4-Bit Binary Counter 100-48, 100-48	100000043	Arithmetic Logic Element	100-44
100000046 Quad 2-Input NAND Gate 100-47 100000047 4-Bit Binary Counter 100-48, 100-48	100000044	3-Input, 4-Bit Digital Multiplexer	100-45
100000047 4-Bit Binary Counter 100-48, 100-4	100000045	Quad 2-Input NOR Gate	100-46
	10000046	Quad 2-Input NAND Gate	100-47
100000048Dual Four-Input Multiplexer100-50	10000047	4-Bit Binary Counter	100-48, 100-49
	10000048	Dual Four-Input Multiplexer	100-50

.

DGC Part Number	Functional Description	Page Number
100000049	Expandable 4-Input AND-OR-INVERT Gate	100-51
10000050	4-Bit Bistable Latches	100-52
100000052	Dual Sense Amplifier	100-53
10000053	Dual J-K Flip-Flop	100-54
100000057	2-Input, 4-Bit Digital Multiplexer	100-55
100000059	High Speed Differential Comparator	100-56
100000060	Dual Comparator	100-57
100000061	Quad 2-Input NOR Gate	100-58
100000062	Differential Video Amplifier	100-59
10000063	Quad 2-Input OR Gate	100-60
10000066	Dual 4-Input Positive-NAND Schmitt Trigger	100-61
10000067	8-Bit Odd/Even Parity Generator/Checker	100-62
100000068	Quadruple 2-Input Exclusive-OR Gate	100-63
10000069	Single 7-Input NOR Gate	100-64
10000070	Dual 4-Input NOR Gate	100-65
100000071	Hex Inverter	100-66
10000072	Quad 2-Input OR Gate	100-67
10000073	Triple 3-Input NAND Gate	100-68
10000074	64-Bit Random Access Memory	100-69, 100-70
10000075	8-Input Multiplexer	100-71, 100-72
100000076	Hex Inverter	100-73
100000077	BCD-To-Decimal Decoder-Driver	100-74
10000078	Quadruple 2-Input Positive-NAND Buffer with Open-Collector Outputs	100-75
100000079	Memory Driver with Decode Inputs	100-76
10000080	Presettable High Speed Binary Counter	100-77
100000081	Quadruple 2-Input Positive-NAND Buffer	100-78
10000082	Quad D Type Flip-Flop	100-79
10000083	2-Input, 4-Bit Digital Multiplexer	100-80
10000084	Arithmetic Logic Unit/Function Generator	100-81, 100-82, 100-83
10000085	4-By-4 Register File	100-84
10000086	Quad 2-Input Multiplexer	100-85
10000089	Quad 2-Input AND Gate	100-86
10000090	6-Input Hex Inverter	100-87
100000091	Hex Buffer/Driver with Open Collector High Voltage Outputs	100-88
100000092	Dual One-of-Four Decoder	100-89
100000093	Monolithic Dual Operational Amplifiers	100-90

DGC Part Number	Functional Description	Page Number
100000094	Precision Voltage Regulator	100-91
100000095	256-Bit Bipolar Read Only Memory	100-92
100000096	256-Bit Bipolar Read Only Memory	100-92
100000098	Quad Hex Inverter	100-93
100000100	Look-Ahead Carry Generator	100-94
100000101	8-Bit Shift Register	100-95
100000102	256-Bit Read/Write Memory	100-96, 100-97
100000103	Decoder/Driver	100-96, 100-97
100000104	Dual D-Type Positive-Edge-Triggered Flip-Flops with Preset and Clear	100-98
100000105	Quad Line Receivers	100-99
100000106	Dual Retriggerable Resettable Monostable Multivibrator	100-100
100000107	Quad NOR Gate	100-101
100000108	2-Input, 4-Bit Digital Multiplexer	100-102
100000109	Buffer Register	100-103
100000111	Buffer Register	100-103
100000112	Dual 8-Bit Shift Register	100-104, 100-105
100000114	Dual Voltage Controlled Multivibrator	100-106
100000115	Dual J-K Flip-Flop	100-107
100000116	Quadruple 2-Input Positive-NAND Buffer	100-108
100000117	Dual Peripheral Driver	100-109
100000118	Dual Sense Amplifier	100-110
100000119	Dual 4-Input Positive-AND Gate	100-111
100000120	Phase Locked Loop	100-112
100000121	CMOS Hex Inverter	100-113
100000122	Dual Line Receiver	100-114
100000123	Triple 3-Input NOR Gate	100-115
100000124	Quadruple Line Receiver	100-116
100000125	Buffer Register	100-117
100000126	Triple 3-Input AND Gate	100-118
100000127	Zero Voltage Switch	100-119
100000128	Up/Down 4-Bit Binary Counter	100-120, 100-121
100000129	3-Input, 4-Bit Digital Multiplexer	100-122
100000130	Asynchronous Receiver/Transmitter	100-123, 100-124, 100-125 100-126, 100-127
100000131	General Purpose Transistor Array	100-128
100000132	Dual Stereo Preamplifier	100-129
100000133	Hex Inverter	100-130
100000134	4-Bit Data Selector/Storage Register	100-131

DGC Part Number	Functional Description	Page Number
100000135	4-Bit Bidirectional Universal Shift Register	100-132, 100-133
100000136	8-Input Priority Encoder	100-134
100000137	8-Bit Position Scaler	100-135
100000140	256-Bit Bipolar Read Only Memory	100-136
100000141	256-Bit Bipolar Read Only Memory	100-136
100000142	256-Bit Bipolar Read Only Memory	100-136
100000143	BCD-To-Decimal Decoder/Driver	100-137
100000144	5-Bit Comparator	100-138
100000145	8-Bit Addressable Latch	100-139, 100-140
100000146	Dual Line Driver	100-141
100000147	Dual 2-Line-To-4-Line Decoder/Demultiplexer	100-142, 100-143
100000148	256-Bit Bipolar Read Only Memory	100-144
100000149	256-Bit Bipolar Read Only Memory	100-144
100000150	High Speed 64x7x5 Character Generator	100-145
100000151	Hex 40-Bit Static Shift Register	100-146
100000152	1024-Bit Recirculating Dynamic Shift Register	100-147
100000153	BCD Decade Counter	100-148, 100-149
100000154	Dual Peripheral Driver	100-150
100000156	High Performance Operational Amplifier	100-151
100000157	High Speed Differential Comparator	100-152
100000158	Quadruple 2-Input Positive-NAND Gate	100-153
100000159	Hex Inverter	100-154
100000160	Dual J-K Edge-Triggered Flip-Flops	100-155
100000161	Divide-By-Twelve Counter (Divide-By-Two and Divide-By-Six)	100-156, 100-157
100000162	Dual J-K Master/Slave Flip-Flop with Separate Clears and Clocks	100-158
100000164	256-Bit Bipolar Random Access Memory	100-159
100000165	Data Selector/Multiplexer with 3-State Outputs	100-160
100000166	Dual 4-Line-To-1-Line Data Selector/Multiplexer	100-161
100000167	Quadruple 2-Line-To-1-Line Data Selector/ Multiplexer	100-162
100000168	Dual 4-Line-To-1-Line Multiplexer	100-163
100000169	Arithmetic Logic Unit/Function Generator	100-164, 100-165, 100-166
100000170	Look-Ahead Carry Generator	100-167
100000171	16-Bit Multiple-Port Register File with 3-State Outputs	100-168, 100-169
100000172	Dual J-K Negative-Edge-Triggered Flip-Flops with Preset and Clear	100-170
100000173	Dual 4-Input Positive-NAND 50 Ohm Line Driver	100-171

DGC Part Number	Functional Description	Page Number
100000174	Positive-NAND Gate with Open-Collector Outputs	100-172
100000175	Quadruple 2-Input Positive-NAND Gate with Open-Collector Outputs	100-173
100000178	BCD-To-Decimal Decoder	100-1'74
100000180	High Speed 4-Bit Shift Register with Enable	100-175, 100-176
100000181	Expandable 4-Wide AND-OR Gates	100-177
100000182	4-2-3-2-Input AND-OR-INVERT Gates	100-178
100000185	Decoder/Demultiplexer	100-179, 100-180
100000186	8-Line-To-1-Line Data Selector/Multiplexer	100-181
100000187	Quadruple 2-Line-To-1-Line Data Selector/Multiplexer	100-182
100000188	Hex Inverter with Open-Collector Outputs	100-183
100000189	One-Of-Ten Decoder with Open Collector Output	100-184
100000190	High Speed Fully Decoded 256-Bit Random Access Memory	100-185
100000191	High Speed Fully Decoded 1024-Bit Read Only Memory	100-186
100000192	High Speed Electrically Programmable 1024-Bit Read Only Memory	100-187
100000193	Timer	100-188
100000194	Quad MOS Clock Driver	100-189
100000195	8-Input Positive-NAND Gate	100-190
100000196	Quadruple 2-Input Positive-NOR Buffers with Open-Collector Outputs	100-191
100000197	Monostable Multivibrator	100-192, 100-193
100000198	Synchronous 4-Bit Counter	100-194
100000199	Hex D-Type Flip-Flops with Clear	100-195
100000200	Quadruple D-Type Flip-Flops with Clear	100-195
100000201	Quadruple 2-Input Multiplexer with Storage	100-196
100000203	13-Input Positive-NAND Gate	100-197
100000204	Hex D-Type Flip-Flops with Clear	100-198
100000205	Quadruple D-Type Flip-Flops with Clear	100-198
100000206	4-Bit Quad Exclusive-NOR Gates	100-199
100000207	9-Bit Parity Generator and Checker	100-200
100000208	256-Bit Bipolar Programmable ROM (32x8 PROM)	100-201
100000211	16-Bit Associative-Content Addressable Memory	100-202
100000214	2048-Bit MOS LSI Random Access Memory	100-203, 100-204
100000215	256-Bit Bipolar Read Only Memory	100-205
100000216	256-Bit Bipolar Read Only Memory	100-205
100000217	256-Bit Bipolar Read Only Memory	100-205
100000218	256-Bit Bipolar Read Only Memory	100-205

DGC Part Number	Functional Description	Page Number
100000219	256-Bit Bipolar Read Only Memory	100-205
100000221	Expandable Dual 2-Wide 2-Input AND-OR Invert Gate	100-206
100000222	Dual Retriggerable Monostable Multivibrator with Clear	100-207
100000223	Decoder/Demultiplexer	100-208, 100-209
100000224	16-Channel Analog Multiplexer Complementary MOS (CMOS)	100-210
100000225	8-Channel Differential Analog Multiplexer Complementary MOS (CMOS)	100-211
100000226	High Speed Fully Decoded 64-Bit Memory	100-212
100000227	Presettable High Speed Binary Counter	100-213
100000228	Dual Peripheral Driver	100-214
100000229	Dual Sense Amplifier	100-215
100000231	Dual Peripheral Driver	100-216
100000232	1024-Bit Field Programmable Bipolar PROM	100-217
100000233	Quadruple 2-Line-To-1-Line Data Selector/Multiplexer	100-218
100000234	4-Bit Bidirectional Universal Shift Register	100-219, 100-220
100000235	Triple 3-Input Positive-NAND Gate	100-221
100000236	2-Input, 4-Bit Digital Multiplexer	100-222
100000237	Triple 3-Input Positive-AND Gate	100-223
100000238	Dual Peripheral Driver	100-224
100000240	Quadruple 2-Line-To-1-Line Data Selector/Multiplexer	100-225
100000241	256-Bit Read-Write Memory with 3-State Outputs	100-226, 100-227
100000242	Four-Channel Programmable Amplifier	100-228
100000243	Wide Band, High Impedance Operational Amplifier	100-229
100000244	High Slew Rate F. E. T. Input Operational Amplifier	100-230
100000245	1024-Bit Bipolar Programmable ROM (256x4 PROM, Open Collector)	100-231
100000247	Dual Peripheral Driver	100-232
100000248	Sense Amplifier	100-233
100000249	Positive-NAND Gate	100-234
100000250	Quad Exclusive OR Gate	100-235
100000252	Up/Down BCD Decade Counter	100-236, 100-237
100000255	256-Bit Bipolar Random Access Memory	100-238
100000256	1024-Bit Programmable Bipolar Read Only Memory	100-23 9
100000257	Dual D-Type Edge-Triggered Flip-Flop	100-240
100000258	256-Bit Bipolar (32x8) Electrically Programmable Read Only Memory	100-241
100000259	Triple 3-Input Positive-AND Gate with Open-Collector Outputs	100-242
100000260	Triple 3-Input Positive-NOR Gate	100-243

DGC Part Number	Functional Description	Page Number
100000261	Phase Locked Loop	100-244
100000262	Quadruple 2-Input Positive-NOR Gate	100-245
100000263	BCD-To-Seven-Segment Decoder/Driver	100-246, 100-247
100000264	Dual 4-Input Positive-NAND Buffer	100-248
100000265	Hex Schmitt-Trigger Inverter	100-249
100000266	64-Bit Random Access Read/Write Memory	100-250
100000267	Operational Amplifier	100-251
100000268	Dual Operational Amplifier	100-252
100000281	Quadruple 2-Input Positive-NAND Schmitt Trigger	100-253
100000282	2-Input, 4-Bit Digital Multiplexer	100-254
100000283	Low Power Dual Retriggerable Resettable Monostable Multivibrator	100-255
100000284	Hex Inverter with Open-Collector Outputs	100-256
100000287	9-Bit Odd/Even Parity Generator/Checker	100-257
100000290	Three-Terminal Negative Regulator	100-258
100000292	Voltage Comparator/Buffer	100-259
100000293	Operational Amplifier	100-260
100000294	Operational Amplifier	100-261
100000295	Dual Line Receiver	100-262
100000296	4-Bit Magnitude Comparator	100-263
100000297	Data Selector/Multiplexer	100-264
100000298	Dual Sense Amplifier	100-265
100000299	Dual Sense Amplifier	100-265

FUNCTIONAL INDEX

INTEGRATED CIRCUITS

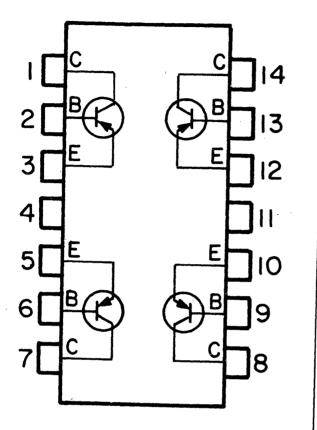
DGC Part Number	Function	Page Number
	ARITHMETIC ELEMENTS	
10000021	4-Bit Binary Full Adder (Look Ahead Carry)	100-33
100000296	4-Bit Magnitude Comparator	100-263
100000144	5-Bit Comparator	100-138
10000068	Quadruple 2-Input Exclusive-OR Gate	100-63
100000250	Quad Exclusive-OR Gate	100-235
10000206	4-Bit Quad Exclusive NOR Gate	100-199
10000067	8-Bit Odd/Even Parity Generator/Checker	100-62
10000207	9-Bit Parity Generator and Checker	100-200
10000287	9-Bit Odd/Even Parity Generator/Checker	100-257
100000100) 100000170)	Look Ahead Carry Generators	100-94 100-167
100000043	Arithmetic Logic Element	100-44
100000084) 100000169)	Arithmetic Logic Units/Function Generators	100-81, 100-82, 100-83 100-164, 100-165, 100-166
	CHARACTER GENERATOR	
100000150	High Speed 64x7x5 Character Generator	100-145
	COMMUNICATIONS CIRCUITS	
10000024	Dual Differential Amplifier	100-35
100000132	Dual Stereo Preamplifier	100-129
10000062	Differential Video Amplifier	100-59
	COMPARATORS AND SENSE AMPLIFIERS	
10000060	Dual Comparator	100-57
100000059) 100000157)	High-Speed Differential Comparator	100-56 100-152
100000292	Voltage Comparator/Buffer	100-259
100000248	Sense Amplifier	100-233
10000052	Dual Sense Amplifier	100-53
100000118) 100000229) 100000298) 100000299)	Dual Sense Amplifiers	100-110 100-215 100-265 100-265

DGC Part Number	Function	Page Number
	COUNTERS	
100000161	Divide-By-Twelve Counter (Divide-By-Two and Divide-By-Six)	100-156, 100-15'
100000080) 100000227)	Presettable High Speed Binary Counter	100-77 100-213
100000153	BCD Decade Counter	100-148, 100-14
100000047	4-Bit Binary Counter	100-48, 100-49
10000038	BCD Decade Counter/Storage Element	100-39
10000028	4-Bit Binary Counter/Storage Element	100-37
100000198	Synchronous 4-Bit Counter	100-194
100000252	Up/Down BCD Decade Counter	100-236, 100-23
100000128	Up/Down 4-Bit Binary Counter	100-120, 100-12
	DECODERS/DEMULTIPLEXERS	
100000092	Dual One-Of-Four Decoder	100-89
100000013	One-Of-Ten Decoder	100-27
100000189	One-Of-Ten Decoder With Open Collector Output	100-184
100000178	BCD-To-Decimal Decoder	100-174
100000185) 100000223)	Decoders/Demultiplexers	100-179, 100-180 100-208, 100-209
100000147	Dual 2-Line-To-4-Line Decoder/Demultiplexer	100-142, 100-143
10000077	BCD-To-Decimal Decoder-Driver	100-74
100000143	BCD-To-Decimal Decoder/Driver	100-137
100000263	BCD-To-Seven-Segment Decoder-Driver	100-246, 100-24
10000079	Memory Driver With Decode Inputs	100-76
	FLIP-FLOPS/LATCHES	
100000011	Dual J-K Flip-Flop	100-25
100000053	Dual J-K Flip-Flop	100-54
100000115	Dual J-K Flip-Flop	100-107
100000160	Dual J-K Edge-Triggered Flip-Flops	100-155
100000162	Dual J-K Master/Slave Flip-Flop With Separate Clears and Clocks	100-158
100000172	Dual J-K Negative-Edge-Triggered Flip-Flops With Preset and Clear	100-170
100000017) 100000257)	Dual D-Type Edge-Triggered Flip-Flop	100-30 100-240

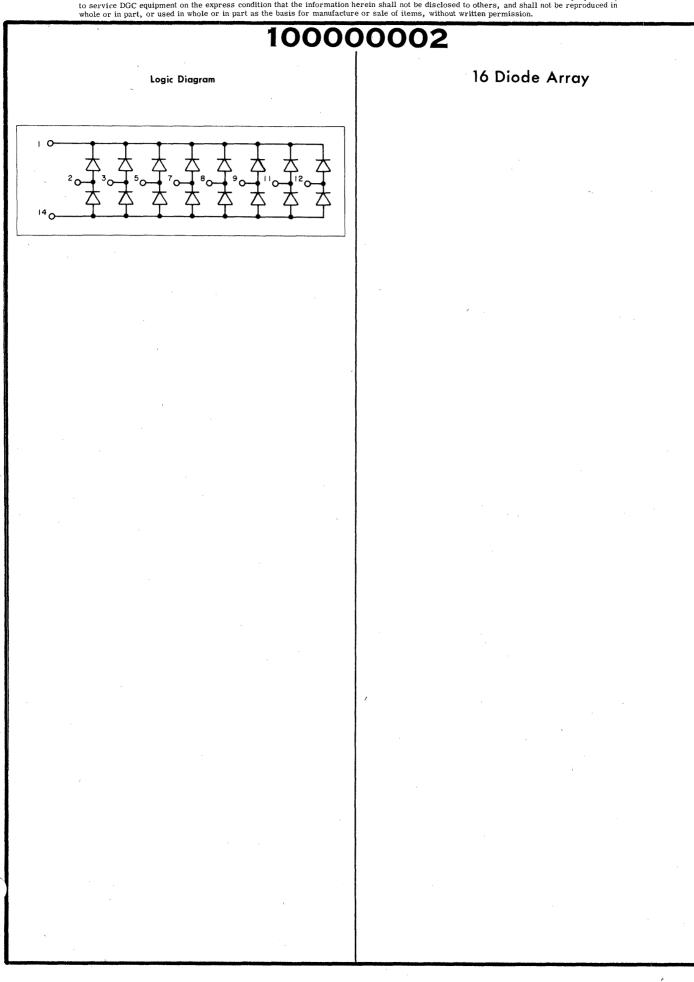
DGC Part Number	Function	Page Number
100000104	Dual D-Type Positive-Edge-Triggered Flip-Flops With Preset and Clear	100-98
10000082	Quad D Type Flip-Flop	100-79
100000199	Hex D-Type Flip-Flop With Clear	100-195
100000200	Quadruple D-Type Flip-Flop With Clear	100-195
100000204	Hex D-Type Flip-Flop With Clear	100-198
100000205	Quadruple D-Type Flip-Flop With Clear	100-198
100000050	4-Bit Bistable Latches	100-52
100000145	8-Bit Addressable Latch	100-139, 100-140
	GATES/BUFFERS	
100000089	Quad 2-Input AND Gate	100-86
100000126	Triple 3-Input AND Gate	100-118
100000237	Triple 3-Input Positive-AND Gate	100-223
100000259	Triple 3-Input Positive-AND Gate With Open-Collector Outputs	100-242
100000119	Dual 4-Input Positive-AND Gate	100-111
10000023	Dual Pulse Shaper-Delay AND Gate	100-34
100000158	Quadruple 2-Input Positive-NAND Gate	100-153
10000036	Quad 2-Input NAND Gate	100-38
100000046	Q uad 2-Input NAND Gate	100-47
10000003	Quad 2-Input NAND Gate	100-18
10000073	Triple 3-Input NAND Gate	100-68
10000004	Triple 3-Input NAND Gate	100-19
100000235	Triple 3-Input Positive-NAND Gate	100-221
100000249	Positive-NAND Gate	100-234
100000005) 100000009) 100000040)	Dual 4-Input NAND Gate	100-20 100-24 100-41
10000007	8-Input NAND Gate	100-22
100000195	8-Input Positive-NAND Gate	100-190
100000203	13-Input Positive-NAND Gate	100-197
100000175	Quadruple 2-Input Positive-NAND Gate With Open-Collector Outputs	100-173
100000174	Positive-NAND Gate With Open-Collector Outputs	100-172
100000019	Quad 2-Input NAND Interface Gate	100-31
100000173	Dual 4-Input Positive-NAND 50 Ohm Line Driver	100-171

DGC Part Number	Function	Page Number
100000281	Quadruple 2-Input Positive-NAND Schmitt Trigger	100-253
100000066	Dual 4-Input Positive-NAND Schmitt Trigger	100-61
100000116	Quadruple 2-Input Positive-NAND Buffer	100-108
10000081	Quadruple 2-Input Positive-NAND Buffer	100-78
100000264	Dual 4-Input Positive-NAND Buffer	100-248
10000078	Quadruple 2-Input Positive-NAND Buffer With Open-Collector Outputs	100-75
10000063	Quad 2-Input OR Gate	-100-60
10000072	Quad 2-Input OR Gate	100-67
100000045	Quad 2-Input NOR Gate	100-46
10000061	Quad 2-Input NOR Gate	100-58
100000262	Quadruple 2-Input Positive-NOR Gate	100-245
10000070	Dual 4-Input NOR Gate	100-65
100000107	Quad NOR Gate	100-101
100000123	Triple 3-Input NOR Gate	100-115
100000260	Triple 3-Input Positive-NOR Gate	100-243
10000069	Single 7-Input NOR Gate	100-64
100000196	Quadruple 2-Input Positive-NOR Buffer With Open-Collector Outputs	100-191
100000181	Expandable 4-Wide AND-OR Gate	100-177
100000182	4-2-3-2-Input AND-OR-INVERT Gate	100-178
10000008	Single Extendable AND-OR-INVERT Gate	100-23
100000221	Expandable Dual 2-Wide 2-Input AND-OR-INVERT Gate	100-206
10000006	Dual Extendable AND-OR-INVERT Gate	100-21
10000049	Expandable 4-Input AND-OR-INVERT Gate	100-51
10000039	Dual Extender AND-OR-INVERT Gate	100-40
10000020) 100000071)	Hex Inverter	100-32 100-66
10000076	Hex Inverter	100-73
100000090	6-Input Hex Inverter	100-87
100000159	Hex Inverter	100-154
10000098	Quad Hex Inverter	100-93
100000121	CMOS Hex Inverter	100-113
100000133	Hex Inverter	100-130
100000188) 100000284)	Hex Inverter With Open-Collector Outputs	100-183 100-256
100000265	Hex Schmitt-Trigger Inverter	100-249

DGC Part Number	Function	Page Number
	INTERFACE ELEMENTS	
100000146	Dual Line Driver	100-141
100000117) 100000154) 100000238) 100000247)	Dual Peripheral Drivers	100-109 100-150 100-224 100-232
100000228	Dual Peripheral Driver	100-214
100000231	Dual Peripheral Driver	100-216
100000194	Quad MOS Clock Driver	100-189
100000091	Hex Buffer/Driver With Open-Collector High Voltage Outputs	100-88
100000122	Dual Line Receiver	100-114
100000295	Dual Line Receiver	100-262
100000105	Quad Line Receivers	100-99
100000124	Quadruple Line Receiver	100-116
100000197	Monostable Multivibrator	100-192, 100-193
100000015	Retriggerable Monostable Multivibrator	100-28
100000222	Dual Retriggerable Monostable Multivibrator With Clear	100-207
100000106	Dual Retriggerable Resettable Monostable Multivibrator	100-100
100000283	Low Power Dual Retriggerable Resettable Monostable Multivibrator	100-255
100000114	Dual Voltage Controlled Multivibrator	100-106
100000130	Asynchronous Receiver/Transmitter	100-123, 100-124, 100-12 100-126, 100-127
· · ·	MEMORIES	
100000266	64-Bit Random Access Read/Write Memory	100-250
100000074	64-Bit Random Access Memory	100-69, 100-70
100000226	High Speed Fully Decoded 64-Bit Memory	100-212
100000164	256-Bit Bipolar Random Access Memory	100-159
100000190	High Speed Fully Decoded 256-Bit Random Access Memory	100-185
100000255	256-Bit Bipolar Random Access Memory	100-238
100000241	256-Bit Read-Write Memory With 3-State Outputs	100-226, 100-227
100000016	16-Bit Coincident Select Read-Write Memory	100-29
100000102) 100000103)	256-Bit Read/Write Memory and Decoder/Driver	100-96, 100-97 100-96, 100-97

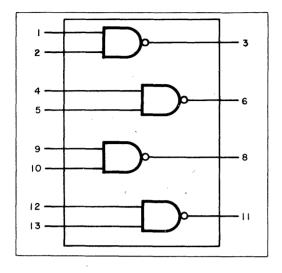

DGC Part Number	Function	Page Number
100000214	2048-Bit MOS LSI Random Access Memory	100-203, 100-204
100000211	16-Bit Associative-Content Addressable Memory	100-202
100000140) 100000141) 100000142) 100000148) 100000149) 100000215) 100000216) 100000217) 100000218) 100000219)	256-Bit Bipolar Read Only Memory	100-136 100-136 100-136 100-144 100-205 100-205 100-205 100-205 100-205
10000095) 10000096)	256-Bit Bipolar Read Only Memory	100-92 100-92
100000191	High Speed Fully Decoded 1024-Bit Read Only Memory	100-186
10000208	256-Bit Bipolar Programmable ROM (32x8 PROM)	100-201
100000258	256-Bit Bipolar (32x8) Electrically Programmable Read Only Memory	100-241
100000256	1024-Bit Programmable Bipolar Read Only Memory	100-239
100000232	1024-Bit Field Programmable Bipolar PROM	100-217
100000245	1024-Bit Bipolar Programmable ROM (256x4 PROM, Open Collector)	100-231
100000192	High Speed Electrically Programmable 1024-Bit Read Only Memory	100-187
10000001	PNP Quad Core Driver	100-16
100000041	NPN Quad Core Driver	100-42
	MULTIPLEXERS	
100000167) 100000187)	Quadruple 2-Line-To-1-Line Data Selectors/ Multiplexers	100-162 100-182
100000233) 100000240)	Quadruple 2-Line-To-1-Line Data Selector/ Multiplexer	100-218 100-225
100000166	Dual 4-Line-To-1-Line Data Selector/Multiplexer	100-161
100000165	Data Selector/Multiplexer with 3-State Outputs	100-160
100000186	8-Line-To-1-Line Data Selector/Multiplexer	100-181
100000297	Data Selector/Multiplexer	100-264
100000057) 100000108)	2-Input, 4-Bit Digital Multiplexer	100-55 100-102
10000083	2-Input, 4-Bit Digital Multiplexer	100-80
100000236	2-Input, 4-Bit Digital Multiplexer	100-222
10000282	2-Input, 4-Bit Digital Multiplexer	100-254

DGC Part Number	Function	Page Number
100000129) 100000044)	3-Input, 4-Bit Digital Multiplexer	100-122 100-45
100000086	Quad Two-Input Multiplexer	100-85
100000201	Quadruple 2-Input Multiplexer With Storage	100-196
100000048	Dual Four-Input Multiplexer	100-50
100000075	Eight-Input Multiplexer	100-71, 100-72
100000168	Dual 4-Line-To-1-Line Multiplexer	100-163.
100000225	8-Channel Differential Analog Multiplexer Complementary MOS (CMOS)	100-211
100000224	16-Channel Analog Multiplexer Complementary MOS (CMOS)	100-210
	OPERATIONAL AMPLIFIERS	
100000293	Operational Amplifier	100-260
100000294	Operational Amplifier	100-261
100000267	Operational Amplifier	100-251
100000156	High Performance Operational Amplifier	100-151
100000268	Dual Operational Amplifier	100-252
100000093	Monolithic Dual Operational Amplifier	100-90
100000242	Four Channel Programmable Amplifier	100-228
100000243	Wide Band, High Impedance Operational Amplifier	100-229
100000244	High Slew Rate F.E.T. Input Operational Amplifier	100-230
	PHASE LOCKED LOOP	·
100000261	Phase Locked Loop	100-244
100000120	Phase Locked Loop	100-112
100000120		100-112
	REGISTERS	-
100000042	4-Bit Shift Register	100-43
100000012	4-Bit Shift Register	100-26
100000134	4-Bit Data Selector/Storage Register	100-131
100000137	8-Bit Position Scaler	100-135
100000085	4-By-4 Register File	100-84
100000135) 100000234)	4-Bit Bidirectional Universal Shift Registers	100-132, 100-133 100-219, 100-220
100000101	8-Bit Shift Register	100-95


DGC Part Number	Function	Page Number
100000111) 100000109) 100000125)	Buffer Registers	100-103 100-103 100-117
100000112	Dual 8-Bit Shift Register	100-104, 100-105
100000151	Hex 40-Bit Static Shift Register	100-146
100000152	1024-Bit Recirculating Dynamic Shift Register	100-147
100000171	16-Bit Multiple-Port Register File With 3-State Outputs	100-168, 100-169
100000180	High Speed 4-Bit Shift Register With Enable	100-175, 100-176
	SPECIAL FUNCTIONS	
100000136	Eight-Input Priority Encoder	100-134
10000002	16 Diode Array	100-17
100000131	General Purpose Transistor Array	100-128
100000193	Timer	100-188
100000127	Zero Voltage Switch	100-119
	VOLTAGE REGULATORS	
10000026) 100000094)	Precision Voltage Regulator	100-36 100-91
100000290	Three-Terminal Negative Regulator	100-258

10000001

Pin Configuration



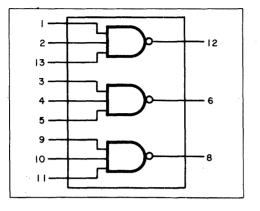
PNP Quad Core Driver

10000003

Pin Configuration

Quad 2-Input NAND Gate

Logic Diagram/Pin Designations


 $V_{CC} = Pin 14$ Gnd = Pin 7

Truth Table

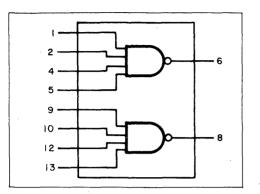
All Inputs High = Low Out Any Input Low = High Out

100000004

Pin Configuration

Triple 3-Input NAND Gate

Logic Diagram/Pin Designations


 $V_{CC} = Pin 14$ Gnd = Pin 7

Truth Table

All Inputs High = Low Out Any Input Low = High Out

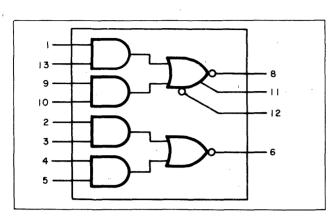
10000005 10000009 10000040

Pin Configuration

Dual 4-Input NAND Gate

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7


Truth Table

All Inputs High = Low Out Any Input Low = High Out

The 100000009 device has higher input-output loading parameters than 100000005.

100000006

Dual Extendable AND-OR-INVERT Gates

Logic Diagram/Pin Designations

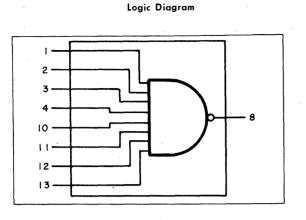
 $V_{CC} = Pin 14$ Gnd = Pin 7

Truth Table

 $(2\cdot 3)\cdot (4\cdot 5) = \overline{6}$ $(\overline{2} + \overline{3}) + (\overline{4} + \overline{5}) = 6$

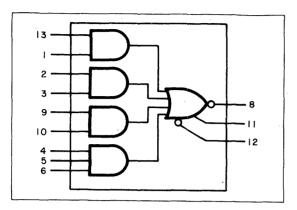
Four extenders may be tied to these terminals.

100000007


8 - Input NAND Gate

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7


Truth Table

All Inputs High = Low Out Any Input Low = High Out

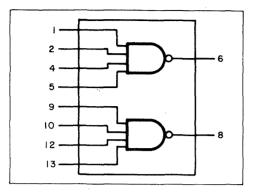
10000008

Pin Configuration

Single Extendable AND-OR-INVERT Gate

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7


Truth Table

$$(1 \cdot 13) \cdot (2 \cdot 3) \cdot (9 \cdot 10) \cdot (4 \cdot 5 \cdot 6) = \overline{8}$$

 $(1 + 13) + (2 + 3) + (9 + 10) + (4 + 5 + 6) = 8$

Four extenders (100000039) may be tied to these terminals.

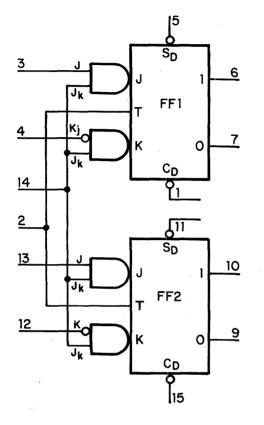
10000005 10000009 10000040

Pin Configuration

Dual 4-Input NAND Gate

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7


Truth Table

All Inputs High = Low Out Any Input Low = High Out

The 100000009 device has higher input-output loading parameters than 100000005.

100000011

Dual J-K Flip-Flop

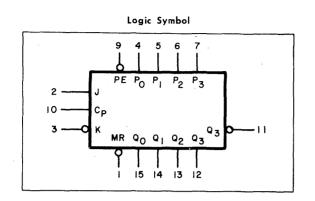
Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Truth Tables

Synchronous Operation

Before C Outputs One Zero		lock Inputs J K		After Clock Outputs One Zero	
L	Н	L*	x	L	Н
L	н	H*	X	н	\mathbf{L}^{*}
Н	L	x	L^*	н	L
Н	\mathbf{L}	х	H*	\mathbf{L}	Н


Asynchronous Operation

Inp	uts	Outputs		
s _D	CD	One	Zero	
L	L	Н	Н	
L	Η	н	${\tt L}$	
н	\mathbf{L}	\mathbf{L}	н	
H	H	Synchronous In puts Control		

Synchronous Operation: The truth table defines the next state of the flip-flop after a Low to High transition of the clock pulse. The next state is a function of the present state and the J and K inputs as shown in the table.

The L* symbol means that input does not go High at any time while the clock is Low. The H* symbol means that the input is High at some time while the clock is Low. The X symbol indicates that the condition of that input has no effect on the next state of the flip-flop. The H and L symbols refer to steady state High and Low voltage levels, respectively.

10000012

4-Bit Shift Register

Logic Diagram/Pin Designations

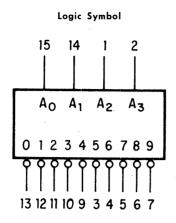
 $V_{CC} = Pin 14$

Gnd = Pin 8

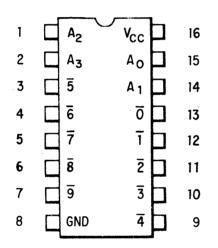
Pin Nomenclature

PE	Parallel Enabl e (Active Low) Input
P ₀ , P ₁ , P ₂ , P ₃	Parallel Inputs
J	First Stage J (Active High) Input
K	First Stage K (Active Low) Input
Ср	Clock Active High Going Edge Input
MR	Master Reset (Active High) Input
Q_0, Q_1, Q_2, Q_3	Parallel Outputs
$\overline{Q_3}$	Complementary Last Stage Output

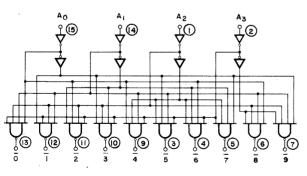
Truth Table For Serial Entry


J	K	Q_0 at $t_n + 1$
L	L	L
L	H	Q _o at t _n (no change)
н	\mathbf{L}	\overline{Q}_{o} at t_{n} (toggles)
н	H	Н

 \overline{PE} = High, \overline{MR} = High (n + 1) indicates state after next clock.


Data entry is synchronous with the registers changing state after each low to high transition of the clock. With the parallel enable low, the parallel inputs determine the next condition of the shift register. When the parallel enable input is high the shift register performs a onebit shift to the right, with data entering the first stage flip-flop through \overline{JK} inputs. By tying the two inputs together D type entry is obtained.

The asynchronous active low master reset when activated overrides all other input conditions and clears the register.


100000013

Logic Diagram

O = PIN NUMBER

One-Of-Ten Decoder

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

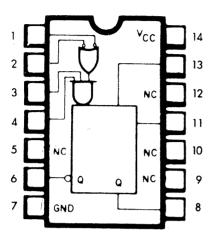
Pin Names

 A_0 , A_1 , A_2 , A_3 = Addressed Inputs $\overline{0}$ to $\overline{9}$ = Outputs, Active LOW

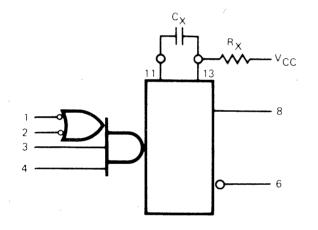
Truth Table

A ₀	A	A2	A3	ō	ī	$\overline{2}$	3	4	5	6	$\overline{7}$	8	9
L	L	L	L	L	н	н	н	н	н	н	н	н	н
H	\mathbf{L}	\mathbf{L}	\mathbf{L}	н	\mathbf{L}	н	H	н	н	н	Н	Н	H
L	н	\mathbf{L}	\mathbf{L}	н	H	L	H	H	H	H	H	H	Н
н	Н	\mathbf{L}	\mathbf{L}	Н	H	H	\mathbf{L}	H	H	H	H	H	Н
L	\mathbf{L}	Н	L	н	н	н	н	\mathbf{L}	н	н	Н	н	н
н	\mathbf{L}	H	\mathbf{L}	н	Н	H	Н	Н	\mathbf{L}	н	Н	H	н
L	H	H	\mathbf{L}	н	H	H	H	H	H	\mathbf{L}	H	H	н
н	н	Н	\mathbf{L}	н	H	H	H	н	H	H	L	Н	н
L	\mathbf{L}	\mathbf{L}	н	н	H	H	н	H	H	H	H	\mathbf{L}	н
н	\mathbf{L}	L	H	н	H	H	H	H	H	Н	н	H	\mathbf{L}
\mathbf{L}	H	\mathbf{L}	н	н	H	H	H	H	H	H	н	H	н
H	H	\mathbf{L}	н	Н	H	H	H	H	H	Н	H	Н	н
L	\mathbf{L}	H	н	н	H	H	н	H	H	Н	Н	H	н
н	\mathbf{L}	H	H	Н	Н	H	H	H	H	H	H	H	Н
L	H	H	H	н	H	H	H	H	H	H	H	H	H
H	H	н	H	H	Н	H	H	Н	н	н	Н	Н	H

The 100000013 is a multipurpose decoder designed to accept four active HIGH BCD inputs and to provide ten mutually exclusive active LOW outputs, as shown by the logic symbol.


The logic design ensures that all outputs are HIGH when binary codes greater than nine are applied to the inputs.

The most significant A_3 input produces a useful inhibit function when the device is used as a one-of-eight decoder.


100 - 27

100000015

Pin Configuration

Retriggerable Monostable Multivibrator

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

Triggering Truth Table

	Pin Nu			
1	2	3	4	Operation
H→L	Н	H	H	Trigger
н	H→L	Н	н	Trigger
\mathbf{L}	Х	L→H	Н	Trigger
x	\mathbf{L}	L→H	H	Trigger
\mathbf{L}	Х	H	L→H	Trigger
x	\mathbf{L}	H	L→H	Trigger

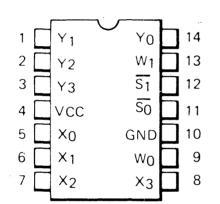
T (trigger) = $(\overline{1} + \overline{2}) \cdot 3 \cdot 4$

Change of T from FALSE to TRUE causes trigger.

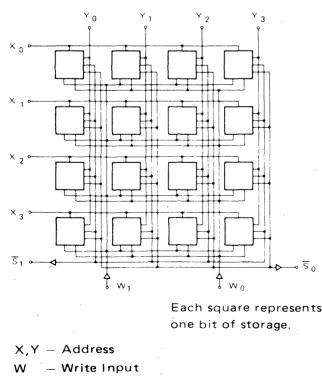
H = HIGH voltage level $\geq V_{IH}$

 $L = LOW \text{ voltage } \leqslant V_{IL}$

 $L \rightarrow H$ = transition from LOW to HIGH voltage level H $\rightarrow L$ = transition from HIGH to LOW voltage level X = Don't care (either HIGH or LOW voltage level)


This retriggerable monostable multivibrator provides an output pulse whose duration and accuracy is a function of external timing components.

This device has four inputs, two active HIGH and two active LOW. This allows a choice of leading edge or trailing edge triggering. The TTL inputs make triggering independent of input transition times. When input conditions for triggering are met, a new cycle starts and the external capacitor is rapidly discharged and then allowed to charge. An input cycle time shorter than the output cycle time will retrigger the device and result in a continuous true output. Retriggering may be inhibited by tying the negation (Q) output to an active LOW input. Active pullups are provided on the outputs for good drive capability into capacitive loads.



Pin Configuration

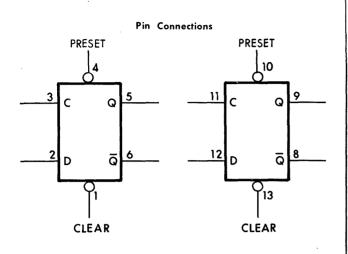
Logic Diagram

S — Sense Output

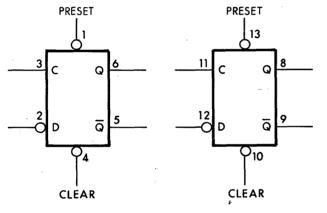
16-Bit Coincident Select Read-Write Memory

Logic Diagram/Pin Designations

 $V_{CC} = Pin 4$ Gnd = Pin 10


This device is comprised of 16-bit, bit-oriented, non-destructive readout memory cells. These memory cells, organized as 16 words by one bit, are designed for high speed scratch-pad memory applications.

The memory cell consists of 16 RS flip-flops arranged in an addressable four-by-four matrix. The desired bit location is selected by raising the coincident X-Y address lines to a logic "H" level (>2.1 volts) and holding the non-selected address lines at logic "L" level (<0.7 volts). As many as four locations may be addressed simultaneously without destroying stored information. The stored data and its complement at the addressed bit location may be read at the output terminals. If the addressed bit location contains a "1", the $\overline{S_1}$ output will be LOW and the $\overline{S_0}$ output will be HIGH. If the addressed bit location contains a "0", the $\overline{S_1}$ output will be HIGH and the $\overline{S_0}$ output will be LOW.


Writing is accomplished by activating one of the write amplifiers. To write a "1", the desired bit location is addressed and the input of the "write one" (W_1) amplifier is raised to a HIGH level. To write a "0", the input of the "write zero" (W_0) amplifier is raised to a HIGH level.

The outputs are open-collector, which may be wired OR for word expansion. (The output transistors are off when none of the bits are selected.) An external resistor should be returned to V_{CC} to pull-up the wired OR outputs.

10000017 100000257

Alternate Pin Connections

Dual D-Type Edge-Triggered Flip-Flop

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

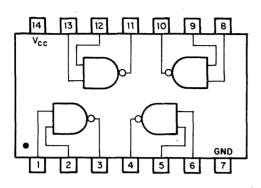
Function Table

	Inputs				
Preset	Preset Clear Clock		D	Q	\overline{Q}
L	Н	Х	X	Н	L
н	\mathbf{L}	Х	х	L	Η
L	\mathbf{L}	X	х	Н*	H*
н	н	t	Н	н	L
н	Н	t	\mathbf{L}	\mathbf{L}	H
н	Н	\mathbf{L}	x	Q_0	\overline{Q}_0

H = high level (steady state)

L = low level (steady state)

X = irrelevant


 \dagger = transition from low to high level

 Q_0 = the level of Q before the indicated input conditions were established.

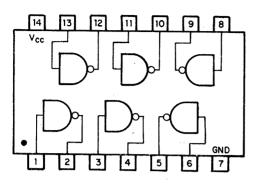
* = This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

100000019

Pin Configuration

Quad 2-Input NAND Interface Gate

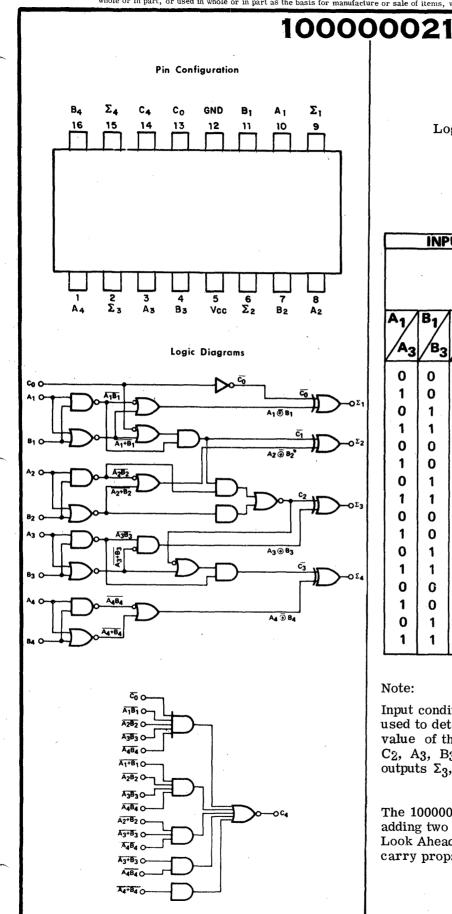
Logic Diagram/Pin Designations


 $V_{CC} = Pin 14$ Gnd = Pin 7

Truth Table

v _{IN}	V _{IN}	V _{OUT}
L	L	Н
\mathbf{L}	н	Н
H	\mathbf{L}	Н
Н	Н	\mathbf{L}

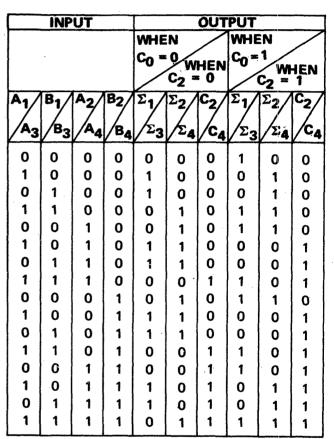
10000020 10000071


Hex Inverter

Pin Configuration

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

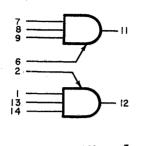


4-Bit Binary Full Adder (Look Ahead Carry)

Logic Diagram/Pin Designations

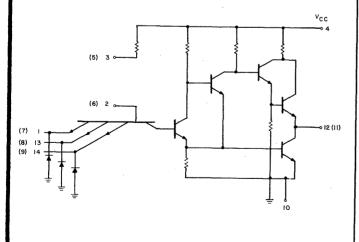
 $V_{CC} = Pin 5$ Gnd = Pin 12

Truth Table


Note:

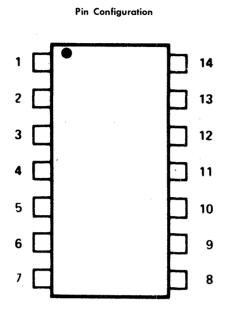
Input conditions at A₁, A₂, B₁, B₂, and C₀ are used to determine outputs Σ_1 and Σ_2 , and the value of the internal carry C₂. The values at C₂, A₃, B₃, A₄ and B₄ are then used to determine outputs Σ_3 , Σ_4 and C₄.

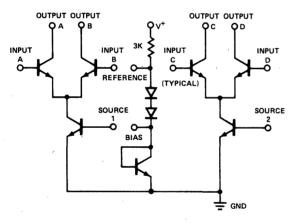
The 100000021 is a 4-Bit Binary Full Adder for adding two four bit binary numbers. A Carry Look Ahead circuit is included to provide minimum carry propagation delays.


10000023

Logic Diagram

(V _{CC})	4		3 (INPUT PULL-) (UP RESISTORS)
		L	5


Schematic


Dual Pulse Shaper-Delay AND Gate

DGC PROPRIETARY - This manual contains proprietary information of Data General Corporation (DGC) revealed for the limited purpose only but PROPAREMARY - This manual contains proprietary information of Data General Corporation (DGC) revealed for the infinited purpose only to service DGC equipment on the express condition that the information herein shall not be disclosed to others, and shall not be reproduced in whole or in part, or used in whole or in part as the basis for manufacture or sale of items, without written permission.

10000024

Basic Circuit Schematic

Dual Differential Amplifier

Pin Designations

1.	Output B	
	Output A	

- Input A
- Input B
- 5. Reference

3.

4.

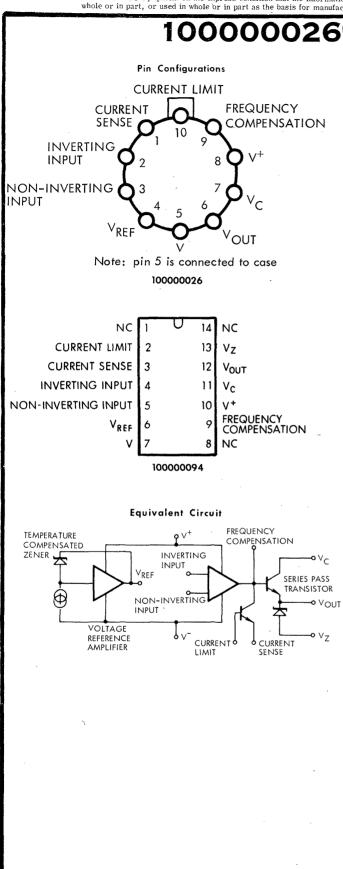
- 6.
- 7.
- 10. Input D 11. Input C

8.

9.

- Source 1

- Ground

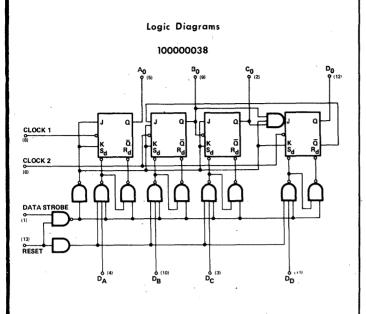

12. Output C

Bias

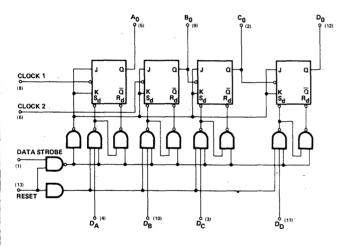
Source 2

- 13. Output D
- 14. V⁺

The 100000024 is a dual high-frequency differential amplifier with associated constant current sources and biasing elements contained within a silicon monolithic epitaxial substrate. This device is intended for RF-IF amplifier service to beyond 100mHz. Circuit layout provides for connection as either a high-gain, common-emitter, common-base, cascade amplifier or a commoncollector, common-base, differential amplifier. Automatic gain control may be applied to either circuit.



10000094


Precision Voltage Regulator

The 100000026(Can) and 100000094(DIP) are monolithic voltage regulators, consisting of a temperature compensated reference amplifier, error amplifier, power series pass transistor and current limit circuitry. Additional NPN or PNP pass elements may be used when output currents exceeding 150mA are required. Provisions are made for adjustable current limiting and remote shutdown.

10000038 10000028

10000028

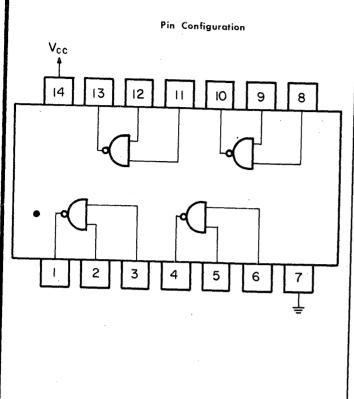
BCD Decade Counter/Storage Element 4-Bit Binary Counter/Storage Element

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

The 100000038 Decade Counter and the 100000028 16-State Binary Counter are four-bit subsystems.

The Decade Counter can be connected in the BCD counting mode, in a divide-by-two and divide-by-five configuration or in the Bi-Quinary mode.

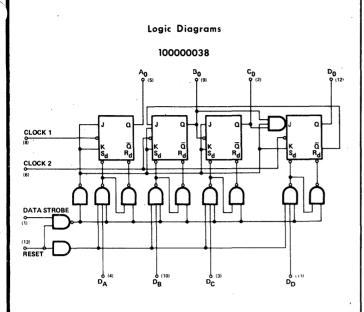

The Binary Counter may be connected as a divideby-two, eight, or sixteen counter.

Both devices have strobed parallel-entry capability so that the counter may be set to any desired output state. A "1" or "0" at a data input will be transferred to the associated output when the strobe input is put at the "0" level.

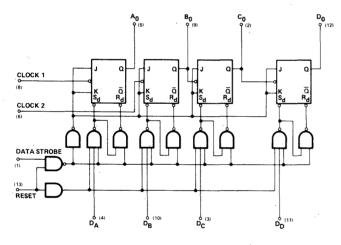
Both units are provided with a reset input which is common to all four bits. A "0" on the reset line produces "0" at all four outputs.

The counting operation is performed on the falling (negative-going) edge of the input clock pulse; however, there is no restriction on the transition time since the individual binaries are levelsensitive.

10000036



Quad 2-Input NAND Gate


Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

10000038 10000028

BCD Decade Counter/Storage Element 4-Bit Binary Counter/Storage Element

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

The 100000038 Decade Counter and the 100000028 16-State Binary Counter are four-bit subsystems.

The Decade Counter can be connected in the BCD counting mode, in a divide-by-two and divide-by-five configuration or in the Bi-Quinary mode.

The Binary Counter may be connected as a divideby-two, eight, or sixteen counter.

Both devices have strobed parallel-entry capability so that the counter may be set to any desired output state. A "1" or "0" at a data input will be transferred to the associated output when the strobe input is put at the "0" level.

Both units are provided with a reset input which is common to all four bits. A "0" on the reset line produces "0" at all four outputs.

The counting operation is performed on the falling (negative-going) edge of the input clock pulse; however, there is no restriction on the transition time since the individual binaries are levelsensitive.

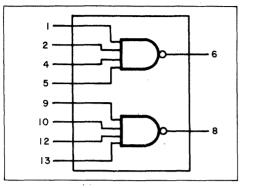
100000039

Logic Diagram

Dual Extender AND-OR-INVERT Gates

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7


Truth Table

 $4 \cdot 5 \cdot 6 \cdot 8 = \overline{9}$ $\overline{4} + \overline{5} + \overline{6} + \overline{8} = 9$

Extender for use with 100000006 and 100000008.

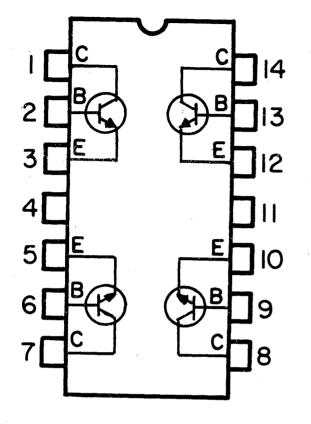
10000005 10000009 10000040

Pin Configuration

Dual 4-Input NAND Gate

Logic Diagram/Pin Designations

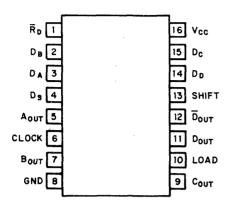
 $V_{CC} = Pin 14$ Gnd = Pin 7

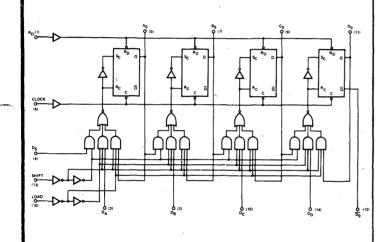

Truth Table

All Inputs High = Low Out Any Input Low = High Out

The 100000009 device has higher input-output loading parameters than 100000005.

100000041


Pin Configuration


NPN Quad Core Driver

100000042

Logic Diagram

4-Bit Shift Register

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$

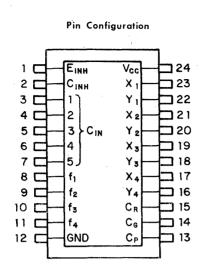
Gnd = Pin 8

Truth Table

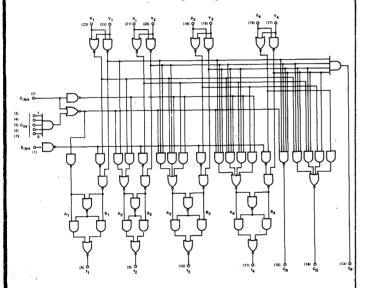
Control State	Load	Shift
Hold	0	0
Parallel Entry	1	0
Shift Right	0	1
Shift Right	1	1

This 4-bit shift register has both a serial and a parallel data entry capability.

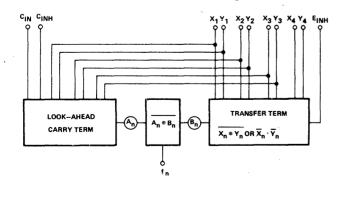
The data input lines are single-ended true input data lines which condition their specific register bit location after an enabled clocking transition. Since data transfer is synchronous with clock, data may be transferred in any serial/parallel input/output relationship.


This device provides a direct reset (R_D) and a $\overline{D_{out}}$ line.

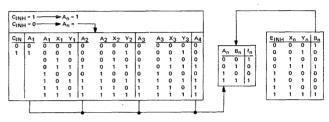
The internal design uses level sensitive binaries which respond to the negative-going clock transition. A buffer clock driver is included to minimize input clock loading.


Mode control logic is available to determine three possible control states. These register states are serial shift right mode, parallel enter mode, and no change or hold mode. These states accomplish logical decoding for system control. The control modes are shown in the truth table.

For applications not requiring the hold mode, the load input may be tied high and the shift input used as the mode control.


100000043

Functional Block Diagram



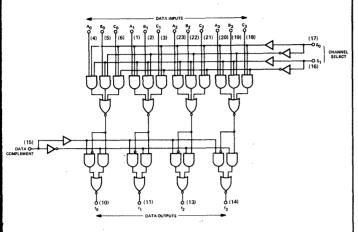
Arithmetic Logic Element

Logic Diagram/Pin Designations

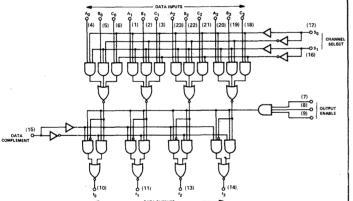
 $V_{CC} = Pin 24$ Gnd = Pin 12

This arithmetic logic element is a monolithic gate array incorporating four full-adders structured in a look-ahead mode. The device may be used as four mutually independent exclusive NOR or AND gates by proper addressing of the inhibit lines.

As a four-bit adder, this device permits high speed parallel addition of four sets of data and has both simultaneous addition on a character to character and on a bit to bit basis.


When true input variables are used, the true sum is formed at the f output. Inverted input variables produce the complement of the sum of the true variables.

The carry-outs available are: Internally Generated (C_G) , Propagated (C_p) and Ripple (C_R) .


0000129 10000044

Logic Diagrams

100000129 (Active Pull-up)

100000044 (Open Collector)

3-Input, 4-Bit Digital Multiplexer

Logic Diagram/Pin Designations

$$V_{CC} = Pin 24$$

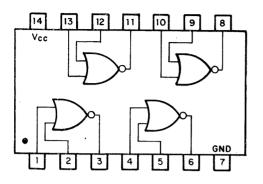
Gnd = Pin 12

Truth Table

I)ata nput		Channel Select		Data	Output Enable	
An	Bn	Cn	s ₀	s_1	Complement	'044	Outputs
An	X	х	1	1	0	1	An
x	вn	x	0	1	0	1	Bn
x	x	$\mathbf{C}_{\mathbf{n}}$	1	0	0	1	Cn
x	х	х	0	0	0	1	0
An	х	х	1	1	1	1	\overline{A}_n
x	Bn	x	0	1	1	1	\overline{B}_n
x	x	$\mathbf{C}_{\mathbf{n}}$	1	0	1	1	\overline{C}_n
x	x	х	0	0	1	1	1
x	x	x	x	x	x	0	1

X = Either state.

The 3-input, 4-bit multiplexer is a gating array whose function is analogous to that of a 4-pole, 3-position switch. Four bits of digital data are selected from one of three inputs. A 2-bit channel-selection code determines which input is to be active.


The data complement input controls the conditional complement circuit at the multiplexer output to effect either inverting or non-inverting data flow.

The 100000129 employs active output structures to effect minimum delays; the 100000044 utilizes bare collector outputs for expansion of input terms.

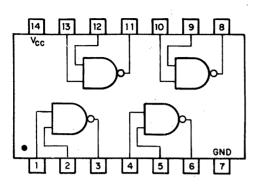
The 100000044 may be expanded by connecting its outputs to the outputs of another 100000044. Provision is made for use of a 3-bit code to determine which multiplexer is selected; thus, eight multiplexers may be commoned to effect a 4-pole, 24-position switch.

10000045

Pin Configuration

Quad 2-Input NOR Gate

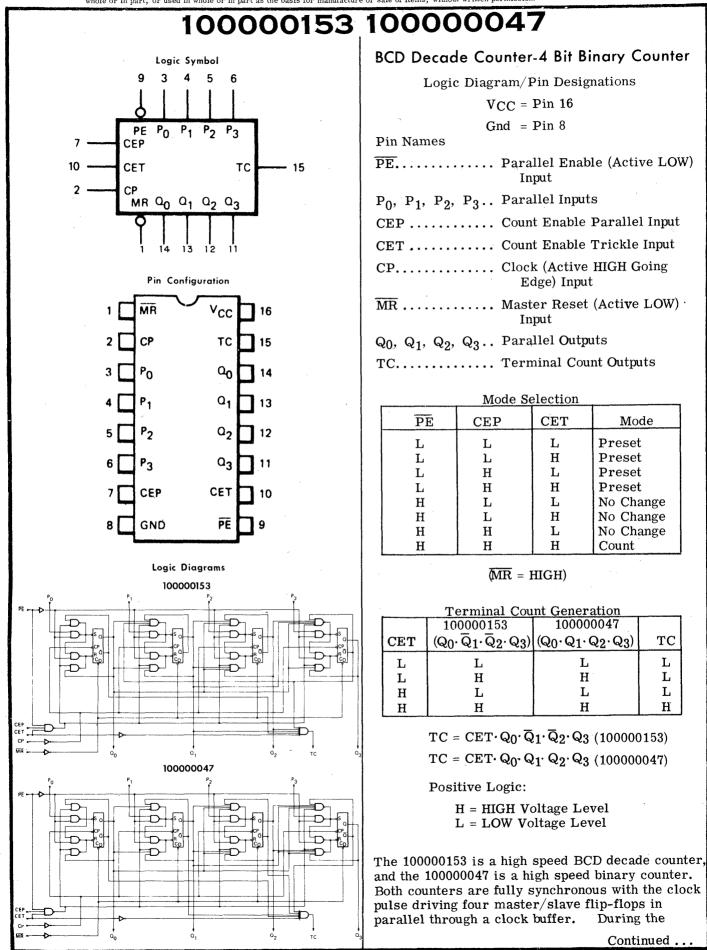
Logic Diagram/Pin Designations


 $V_{CC} = Pin 14$ Gnd = Pin 7

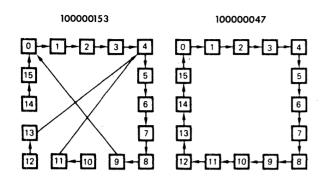
Truth Table

v _{II}	J VI	N V _{OU}	Г
Н	· I	I L	
Н	- I	L	
L	H	H L	
L	I	Н	

10000046


Pin Configuration

Quad 2-Input NAND Gate


Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

100000153 100000047

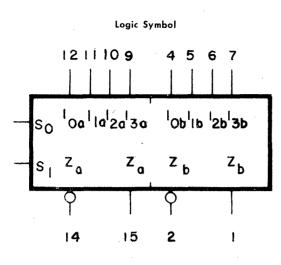
Continued

Logic Equations

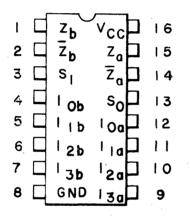
 $\begin{array}{l} \text{Count Enable} = \text{CEP} \cdot \text{CET} \cdot \text{PE} \\ \text{TC for 100000153} = \text{CET} \cdot \text{Q}_0 \cdot \overline{\text{Q}_1} \cdot \overline{\text{Q}_2} \cdot \text{Q}_3 \\ \text{TC for 100000047} = \text{CET} \cdot \text{Q}_0 \cdot \text{Q}_1 \cdot \text{Q}_2 \cdot \text{Q}_3 \\ \text{Preset} = \overline{\text{PE}} \cdot \text{CP} + (\text{rising clock edge}) \\ \text{Reset} = \overline{\text{MR}} \end{array}$

Note: The 100000153 can be preset to any state but will not count beyond 9. If preset to state 10, 11, 12, 13, 14 or 15, it will return to its normal sequence within two clock pulses. LOW to HIGH transition of the clock, the master is inhibited from further change. After the masters are locked out, data is transferred from the master to the slaves and reflected at the outputs. When the clock is HIGH, the masters are inhibited and the master/slave data path remains established. During the HIGH to LOW transition of the clock, the slave is inhibited from further change, followed by the enabling of the masters for the acceptance of data from the counting logic or the parallel entry logic.

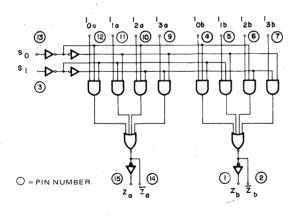
The three control inputs, Parallel Enable (\overline{PE}) , Count Enable Parallel (CEP), and Count Enable Trickle (CET), select the mode of operation. When the conditions for counting are satisfied, the rising edge of a clock pulse will change the counters to the next state of the count sequence shown in the State Diagram. The Count Mode is enabled when CEP and CET inputs and \overline{PE} are HIGH.


These devices can be synchronously preset from the four Parallel inputs (P_{0-3}) when \overrightarrow{PE} is LOW. When the Parallel Enable and Clock are LOW, each master of the flip-flops is connected to the appropriate parallel input (P_{0-3}) and the slaves (outputs) are steady in their previous state. When the clock goes HIGH, the masters are inhibited and this information is transferred to the slaves and reflected at the outputs. The parallel enable input overrides both count enable inputs, presetting the counter when LOW.

Terminal count is HIGH when the counter is at terminal count (state 9 for 100000153 and state 15 for 100000047), and Count Enable Trickle is HIGH, as shown in the logic equations.


When LOW, the asynchronous master reset overrides all other inputs resetting the four outputs LOW.

Conventional operation, as shown in the Mode Selection table, requires that the mode control inputs (\overline{PE} , CEP, CET) are stable while the clock is LOW.


100000048

Pin Configuration

Logic Diagram

Dual Four-Input Multiplexer

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$

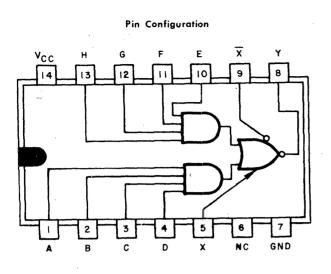
Gnd = Pin 8

Pin Names

S₀, S₁ Common Select Inputs Multiplexer A

$I_{0a}, I_{1a}, I_{2a}, I_{3a} \dots Z_a$	Multiplexer Inputs Multiplexer Output
\overline{Z}_{a}	Complementary Multi- plexer Output
Multiplexer B	
I _{0b} , I _{1b} , I _{2b} , I _{3b}	Multiplexer Inputs

Truth Table


Sel Inp			Inpu	ıts		Out	puts
s ₀	s ₁	I _{0a}	I _{1a}	I _{2a}	I _{3a}	Za	\overline{z}_{a}
L	\mathbf{L}	\mathbf{L}	х	х	х	L	н
L	\mathbf{L}	Н	Х	х	х	н	L
H	\mathbf{L}	Х	\mathbf{L}	х	X	L	н
H	\mathbf{L}	Х	H	Х	Х	Н	\mathbf{L}
L	Н	Х	Х	\mathbf{L}	Х	\mathbf{L}	н
\mathbf{L}	Η	Х	Х	н	Х	H	\mathbf{L}
H	н	Х	X	X	\mathbf{L}	\mathbf{L}	н
H	H	X	Х	Х	H	Н	\mathbf{L}
s ₀	s_1	I _{0b}	I _{1b}	I _{2b}	I3b	$\mathbf{Z}\mathbf{b}$	$\overline{\mathbf{Z}}_{\mathbf{b}}$
L	\mathbf{L}	\mathbf{L}	х	х	х	\mathbf{L}	н
L	\mathbf{L}	н	Х	Х	Х	Н	L
H	\mathbf{L}	Х	\mathbf{L}	Х	Х	\mathbf{L}	н
H	\mathbf{L}	Х	\mathbf{H}	Х	Х	\mathbf{H}	L
L	н	Х	Х	\mathbf{L}	Х	L	H
L	Н	Х	X	H	Х	H	\mathbf{L}
H	H	Х	Х	х	\mathbf{L}	\mathbf{L}	Н
H	H	X	X	X	H	H	L

L = LOW Voltage Level H = HIGH Voltage Level X = Either HIGH or LOW

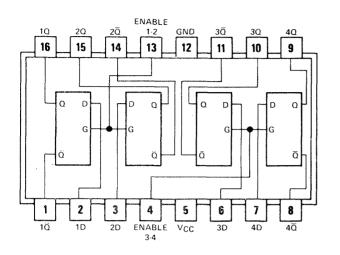
Logic Level

The 100000048 is a monolithic, high speed, Dual Four-Input Multiplexer circuit, consisting of two multiplexing circuits with common input select logic. Each circuit contains four inputs and fully buffered complementary outputs. This device can generate any two functions of three variables. It may be cascaded to multiple levels so that any number of lines can be multiplexed on to a single output bus.

10000049

Expandable 4-Input AND-OR-INVERT Gate

Logic Diagram/Pin Designations


$$V_{CC} = Pin 14$$

Gnd = Pin 7

Both expander inputs are used simultaneously for expanding. If expander is not used, leave X and \overline{X} pins open.

Positive logic: Y = (ABCD) + (EFGH) + (X)

10000050

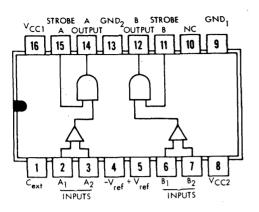
Pin Configuration

4-Bit Bistable Latches

Logic Diagram/Pin Designations

 $V_{CC} = Pin 5$ Gnd = Pin 12

Function Table (Each Latch)


Γ	Inp	uts	Oup	uts
L	DG		Q	\overline{Q}
	\mathbf{L}	н	L	н
	H	н	н	L
	х	\mathbf{L}	Q_0	\overline{Q}_0

 $\begin{array}{l} H = \mbox{ high level; } L = \mbox{ low level; } X = \mbox{ irrelevant.} \\ Q_0 = \mbox{ the level of } Q \mbox{ before the high-to-low} \\ \mbox{ transition of } G. \end{array}$

These latches are suited for use as temporary storage for binary information between processing units and input/output or indicator units. Information present at a data (D) input is transferred to the Q output when the enable (G) is high, and the Q output will follow the data input as long as the enable remains high. When the enable goes low, the information (that was present at the data input at the time the transition occurred) is retained at the Q output until the enable is permitted to go high.

10000052

Pin Configuration

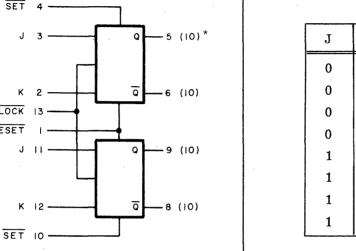
Dual Sense Amplifier

Logic Diagram/Pin Designations

 $V_{CC1} = Pin 16$ $V_{CC2} = Pin 8$ Gnd 1 = Pin 9 Gnd 2 = Pin 13

Truth Table

$IN_A \cdot STROBE A = OUT A$
$\overline{IN}_{A} \cdot \text{STROBE A} = \overline{OUT A}$
$IN_B \cdot STROBE B = OUT B$
\overline{IN}_{B} · STROBE B = $\overline{OUT B}$


10000053

Dual J-K Flip-Flop

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

*Loading Max. Shown in Parenthesis

Logic Diagram

SET

J

κ

CLOCK

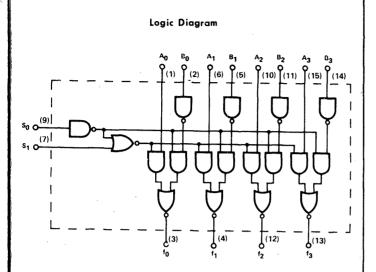
RESET

* (1.6)

(0.6)

(3.2)

(3.2)


(0.6)

(0.6)

(1.6)

 $\mathbf{Q}_{\mathbf{N}}$ Κ Q_{N+1} 0 0 0 0 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 1

10000057

100000108

2-Input, 4-Bit Digital Multiplexer

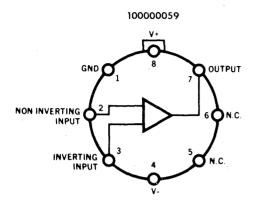
Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

Truth Table

Select	Lines	Outputs		
s ₀	s_1	f _n (0, 1, 2, 3)		
0	0	B _n		
0	[.] 1.	B _n		
1	0	\overline{A}_n		
1	1	1		

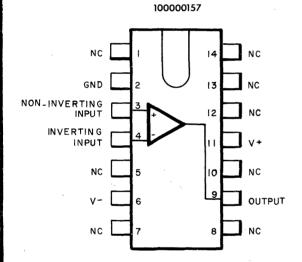
The 2-Input, 4-Bit Digital Multiplexer is a monolithic array utilizing TTL circuit structures. The 100000108 features a bare-collector output to allow expansion with other devices.


The multiplexer is able to choose from two different input sources, each containing 4 bits: $A = (A_0, A_1, A_2, A_3); B = (B_0, B_1, B_2, B_3).$ The selection is controlled by the input S₀, while the second control input, S₁, is held at zero.

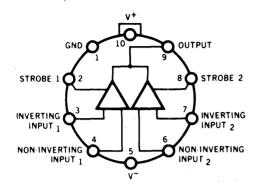
For conditional complementing, the two inputs (A_n, B_n) are tied together to form the function TRUE/COMPLEMENT, which is needed in conjunction with added elements to perform Addition/Subtraction. Further, the inhibit state $S_0 = S_1 = 1$ can be used to facilitate transfer operations in an arithmetic section.

100-55

10000059 10000157

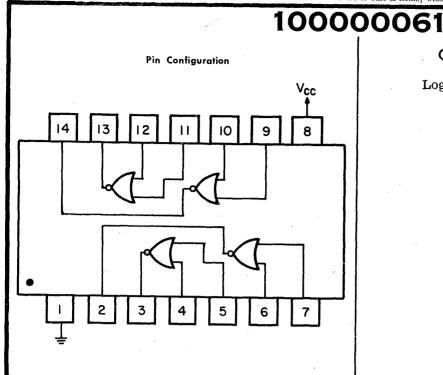

Pin Configurations

Note: Pin 4 connected to case.



The 100000059 (Can) and 100000157 (DIP) are differential voltage comparators intended for applications requiring high accuracy and fast response times. Constructed on a single silicon chip, the devices are useful as a variable threshold Schmitt trigger, a pulse height discriminator, a voltage comparator in high-speed A/D converters, a memory sense amplifier or a high-noise immunity line receiver.

10000060

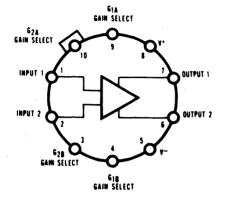

Pin Configuration

Dual Comparator

The 100000060 is a dual, differential voltage comparator intended primarily for core-memory sense amplifier applications. The device features high accuracy, fast response times, large input voltage range, low power consumption and compatibility with practically all integrated logic forms.

When used as a sense amplifier, the threshold voltage can be adjusted over a wide range, almost independent of the integrated circuit characteristics. Independent strobing of each comparator channel is provided.

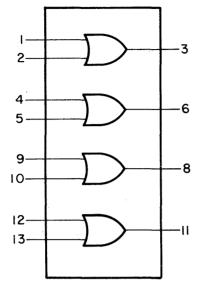
Quad 2-Input NOR Gate


Logic Diagram/Pin Designations

 $V_{CC} = Pin 8$ Gnd = Pin 1

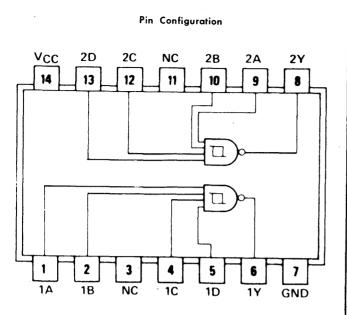
100000062

Differential Video Amplifier


Pin Configuration Top View

The 100000062 is a monolithic two-stage differential input, differential output video amplifier. Emitter follower outputs enable the device to drive capacitive loads and all stages are currentsource biased to obtain high power supply and common mode rejection ratios. This device provides fixed gains of 10, 100 or 400 without external components, and adjustable gains from 10 to 400 by the use of a single external resistor. No external frequency compensation components are required for any gain option.

Pin Configuration

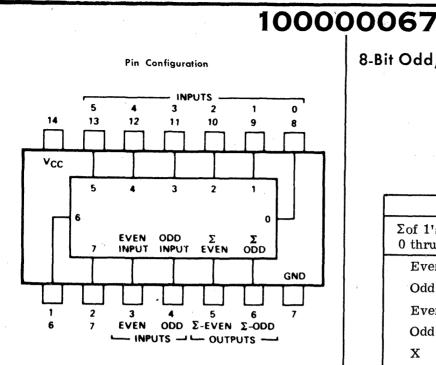


Quad 2-Input OR Gate

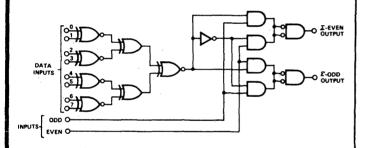
Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7 3 = 1 + 2

100000066



Dual 4-Input Positive-NAND Schmitt Trigger


Logic Diagram/Pin Designations

V_{CC} = Pin 14 Gnd = Pin 7 NC = No internal connection

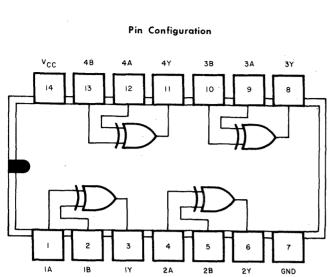
Positive logic: $Y = \overline{ABCD}$

Logic Diagram

8-Bit Odd/Even Parity Generator/Checker

Pin Designations

$V_{CC} = Pin 14$ Gnd = Pin 7


Truth Table

Inp	Inputs						
Σof 1's at 0 thru 7	Even	Odd	Σ Even	Σ Odd			
Even	1	0	1	0			
Odd	1	0	0	1			
Even	0	1	0	1			
Odd	0	. 1	1	0			
x	1	1	0	0			
X	0	0	1 .	1			

X = irrelevant.

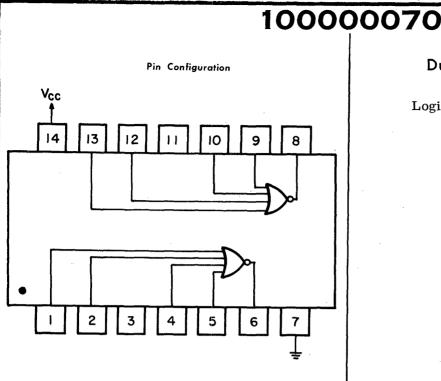
100-62

100000068

Quadruple 2-Input Exclusive-OR Gate

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

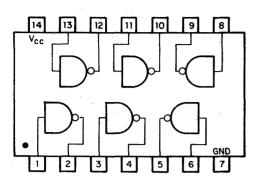

Positive logic: $Y = A \oplus B$

Pin Configuration V_{cc}

Single 7-Input NOR Gate

Logic Diagram/Pin Designations

 $V_{CC} = Pin 8$ Gnd = Pin 1

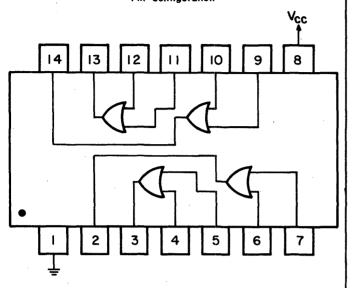

Dual 4-Input NOR Gate

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

10000020 10000071

Pin Configuration

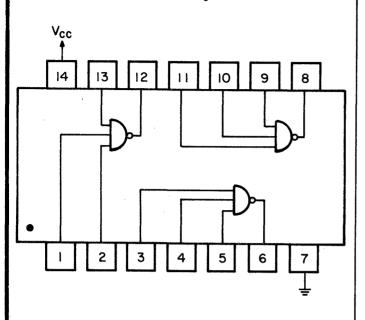

Hex Inverter

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

10000072

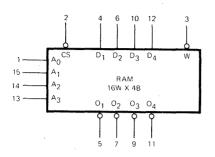
Pin Configuration


Quad 2-Input OR Gate

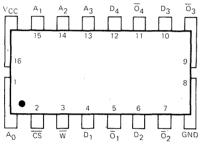
Logic Diagram/Pin Designations

 $V_{CC} = Pin 8$ Gnd = Pin 1

Pin Configuration


Triple 3-Input NAND Gate

Logic Diagram/Pin Designations


 $V_{CC} = Pin 14$ Gnd = Pin 7

10000074

Pin Configuration

NOTE: PIN 1 is marked for orientation.

64-Bit Random Access Memory

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Truth Table

	Inputs		Outputs	Mode	
CS	W	Di	ōi	·	
H H L L L	L L H L L H	L H X L H X	$\begin{array}{c} H\\ L\\ H\\ H\\ L\\ \overline{D}_i(t_{n-x})\end{array}$	No Selection) No Selection) No Selection Write ''0'' Write ''1'' Read	Note

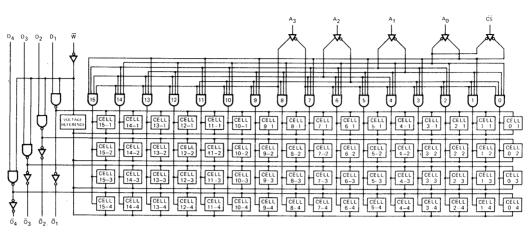
H = HIGH Voltage Level L = LOW Voltage Level

Note: When the chip select \overline{CS} input is HIGH and the Write Enable \overline{W} is LOW data is not written into the memory. However, the data outputs do follow the data inputs inverted.

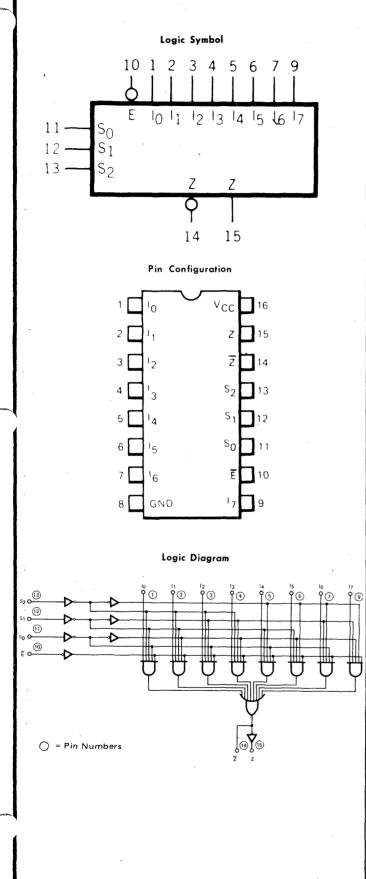
The 100000074 is a 64-bit RAM, using Schottky diode clamped transistors. The memory is organized as a fully decoded 16-word memory of 4 bits per word. Memory expansion is provided by an active LOW Chip Select (\overline{CS}) input and open collector OR tieable outputs. Chip selection for large memory systems can be controlled by active LOW output decoders.

An active LOW Write line (\overline{W}) controls the writing/ reading operation of the memory. When the Chip Select and Write lines are LOW the information on the four Data Inputs, D₁ to D₄, is written into the addressed memory word.

Reading is performed with the Chip Select line LOW and the Write line HIGH. The information stored in the addressed word is read out on the four inverting inputs, $\overline{0}_1$ to $\overline{0}_4$.


Whenever the write enable is LOW the four outputs of the memory follow the four data input lines inverted.

Any time the chip select is HIGH and the write enable is HIGH, all four outputs go HIGH.


Continued ...

1

10000075

Eight-Input Multiplexer

	Logic Diagram/Pin Designations												
	$V_{CC} = Pin 16$												
				(Gnd	=]	Pin 8	8					
Pi	n Na	ame	S										
$\frac{S_0}{E}$, s ₁	, s	2 · ·			ct In ole (A			.OW	7) In	nut		
	to I	7 • •	· · · ·	. N	/lult:	iplez	xer	Inpu	ıts	/	.թա		
Z. Z.	• • •	• • • •	• • •			iple: plen			-	1+inl	070		
ų.	•••	• • • •	• • • •		-	utpu		ar y	wiu.	ուր	EAC.	Ľ	
					Tru	ith]	ſabl	е	•				
Ē	$\mathbf{S2}$	S 1	S0	I0	I1	12	13	I4	15	I6	17	$\overline{\mathrm{Z}}$	Z
H	x	x	x	Х	x	x	x	X	х	X	X	н	L
\mathbf{L}	\mathbf{L}	\mathbf{L}	\mathbf{L}	\mathbf{L}	х	х	x	х	х	х	х	н	L
\mathbf{L}	\mathbf{L}	\mathbf{L}	\mathbf{L}	н	х	х	X	х	х	x	х	L	н
\mathbf{L}	\mathbf{L}	\mathbf{L}	н	X	\mathbf{L}	X .	х	X	х	х	х	н	L
\mathbf{r}	\mathbf{L}	\mathbf{L}	H	х	H	х	х	х	х	х	х	L	н
\mathbf{L}	\mathbf{L}	н	\mathbf{L}	х	х	\mathbf{L}	х	х	х	х	x	н	L
\mathbf{L}	\mathbf{L}	H	\mathbf{L}	х	х	н	х	х	х	х	х	L	н
L	\mathbf{L}	н	н	х	х	х	\mathbf{L}	х	х	х	х	н	\mathbf{L}
\mathbf{L}	\mathbf{L}	н	H	х	х	х	H	х	X	х	х	L	н
\mathbf{L}	H	L	\mathbf{L}	х	х	х	х	\mathbf{L}	х	х	х	н	\mathbf{L}
\mathbf{L}	н	\mathbf{L}	\mathbf{L}	х	х	х	х	н	х	х	х	L	н
\mathbf{L}	н	\mathbf{L}	н	х	х	х	х	х	\mathbf{L}	х	х	н	\mathbf{L}
\mathbf{L}	H	$\cdot \mathbf{\Gamma}$	н	х	х	х	х	х	н	х	х	\mathbf{L}	н
\mathbf{L}	н	н	\mathbf{L}	х	х	х	х	х	х	\mathbf{L}	х	н	L
\mathbf{L}	H	H	\mathbf{L}	х	х	х	х	х	х	н	x	\mathbf{L}	н
\mathbf{L}	H	H	н	х	x	х	x	х	х	x	L	н	г
L	H	H	Н	X	x	x	x	x	x	x	н	L	н
	H = HIGH voltage level L = LOW voltage level												

X = Level does not affect output.

The 100000075 is a monolithic, high speed, eightinput digital multiplexer circuit. It can be used as a universal function generator to generate any logic function of four variables. It is a logical implementation of a single-pole, 8-position switch with the switch position controlled by the state of three Select Inputs, S_0 , S_1 and S_2 . Both assertion and negation outputs are provided. The Enable Input (\overline{E}) is active LOW. When it is not activated the negation output is HIGH and the assertion output is LOW, regardless of all other inputs.

Continued

10000075

Continued

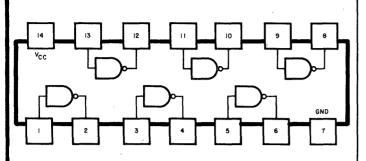
The logic function provided at the output is:

$$Z = E \cdot (I_0 \cdot \overline{S}_0 \cdot \overline{S}_1 \cdot \overline{S}_2 + I_1 \cdot S_0 \cdot \overline{S}_1 \cdot \overline{S}_2 + I_2 \cdot \overline{S}_0 \cdot S_1 \cdot \overline{S}_2 + I_3 \cdot S_0 \cdot S_1 \cdot \overline{S}_2 + I_4 \cdot \overline{S}_0 \cdot \overline{S}_1 \cdot S_2 + I_5 \cdot S_0 \cdot \overline{S}_1 \cdot S_2 + I_6 \cdot \overline{S}_0 \cdot S_1 \cdot S_2 + I_7 \cdot S_0 \cdot S_1 \cdot S_2).$$

This device provides the ability, in one package, to select from eight sources of data or control information. Proper manipulation of the inputs can provide any logic function of four variables and its negation.

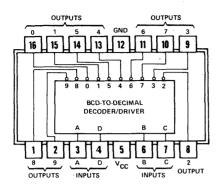
10000076

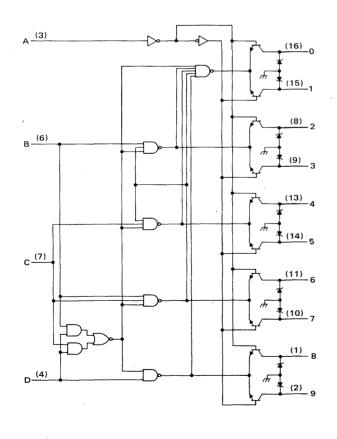
Hex Inverter


Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

Truth Table


Any Input Low = High Out Any Input High = Low Out



10000077

Pin Configuration

Positive Logic: See Function Table

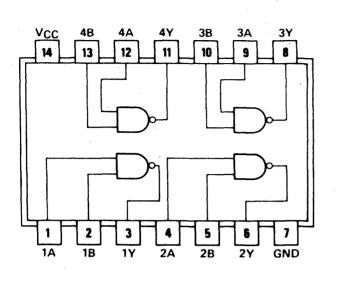
BCD-To-Decimal Decoder-Driver

Pin Designations

$V_{CC} = Pin 5$ Gnd = Pin 12

	Function Table								
		Inj	Output						
	D	С	B	A	On*				
	L	L	L	L	0				
	\mathbf{L}	\mathbf{L}	\mathbf{L}	н	1				
	\mathbf{L}	\mathbf{L}	H	\mathbf{L}	2				
	\mathbf{L}	\mathbf{L}	H	н	3				
	\mathbf{L}	H	\mathbf{L}	\mathbf{L}	4				
	\mathbf{L}	н	\mathbf{L}	н	5				
	L	н	H	\mathbf{L}	6				
	\mathbf{L}	H	Н	н	7				
	н	\mathbf{L}	\mathbf{L}	\mathbf{L}	8				
	н	\mathbf{L}	\mathbf{L}	H	9				
ĺ	н	\mathbf{L}	Н	\mathbf{L}	None				
	н	\mathbf{L}	Н	н	None				
	н	Η	\mathbf{L}	\mathbf{L}	None				
	Н	\mathbf{H}	\mathbf{L}	\mathbf{H}	None				
	Н	\mathbf{H}	H	Ĺ	None				
	H	H	H	<u>H</u>	None				

H = high level; L = low level. * All other outputs are off.

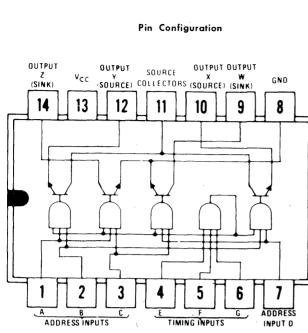

The 100000077 is a second-generation BCD-todecimal decoder designed specifically to drive cold-cathode indicator tubes.

Full decoding is provided for all possible input states. For binary inputs 10 through 15, all the outputs are off. Therefore, this device, combined with a minimum of external circuitry, can use these invalid codes in blanking leading- and/ or trailing edge zeroes in a display. The ten high-performance, n-p-n output transistors have a maximum reverse current of 50 microamperes at 55 volts.

Functional Schematic

100000078

Pin Configuration


Quadruple 2-Input Positive-NAND Buffer With Open-Collector Outputs

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

Positive logic: $Y = \overline{AB}$

100000079

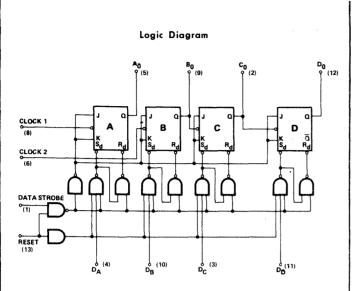
Memory Driver with Decode Inputs

Logic Diagram/Pin Designations

$V_{CC} = Pin 13$ Gnd = Pin 8

Truth Table

Inputs					Outr	outs				
A	dd	res	s	Ti	mi	ng	Sink	Sou	rces	Sink
Α	В	С	D	E	F	G	W	X	Y	Z
0	0	1	1	1	1	1	On	Off	Off	Off
0	1	0	1	1	1	1	Off	On	Off	Off
1	1	0	0	1	1	1	Off	Off	On	Off
1	0	1	0	1	1	1	Off	Off	Off	On
x	х	х	Х	0	Х	х	Off	Off	Off	Off
x	х	х	х	x	0	х	Off	Off	Off	Off
x	х	Х	X	Х	х	0	Off	Off	Off	Off


Notes:

X = Logical 1 or logical 0.

Not more than one output is allowed to be On at one time: When all timing inputs are at a logical 1, two of the address inputs must be at a logical 0.

This monolithic memory driver with decode inputs is designed for use with magnetic memories. The device contains two 400 milliampere (source/sink) switch pairs, with decoding capability from four address lines. Two address inputs (B and C) are used for mode selection; i.e., source or sink. The other two address inputs (A and D) are used for switch-pair selection; i.e., output switch-pair Y/Z or W/X, respectively.

10000080 10000227

Presettable High Speed Binary Counter

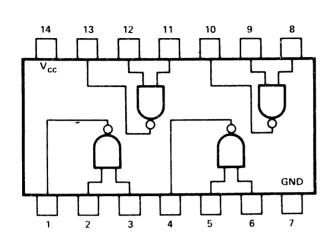
Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

Truth '	Table
---------	-------

······		·····		
Input	A ₀	B ₀	C ₀	D ₀
0	0	0	0	0
1	1	0	0	0
2	0	1	0	0
3	1	1	0	0
4	0	0	1	0
5	1	0	1	0
6	0	1	1	0
7	1	1	1	0
8	0	0	0	1
9	1	0	0	1
10	0	1	0	1
11	1	1	0	1
12	0	0	1	1
13	1	0	1	1
14	0	1	1	1
15	1	1	1	1

The 100000080 Presettable High Speed Binary Counter may be connected as a divide-by-two, four, eight or sixteen counter.


This device has strobed parallel-entry capability so that the counter may be set to any desired output state. A "1" or "0" at a data input will be transferred to the associated output when the strobe input is put at the "0" level. This unit is provided with a reset input which is common to all four bits. A "0" on the reset lines produces "0" at all four outputs.

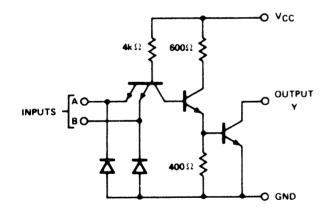
The counting operation is performed on the falling (negative-going) edge of the input clock pulse.

Note: The 100000227 is a Shottky device.

10000081

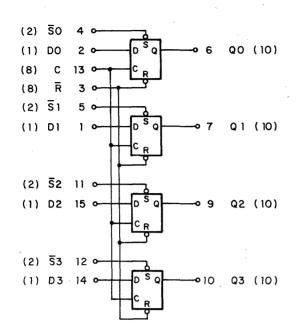
Pin Configuration

Quadruple 2-Input Positive-NAND Buffer


Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

Positive logic: $Y = \overline{AB}$


The 100000081 is a NAND Gate with an opencollector output for "WIRE-AND" applications.

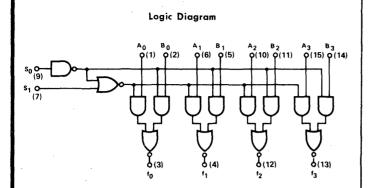
100000082

Quad D Type Flip-Flop

Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Truth Table


Q	Q _{n-1}	Q _n
0	0	0
0	1	0
1	0	1
1	1	1

 Q_{n-1} = Time period prior to clock pulse Q_n = Time period following clock pulse

100-79

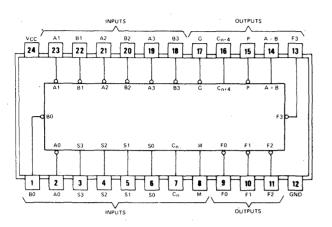
10000083

2-Input, 4-Bit Digital Multiplexer

Logic Diagram/Pin Designations

 $V_{CC} = Pin \ 16$ Gnd = Pin 8

Truth Table


s_1	f _n
0	B
0	Ā
1	B
1	1
	0 0 1

This multiplexer has inverting data paths. It has open collector outputs which permit direct wiring to other open collector outputs (collector logic) to yield "free" four-bit words. As many as one hundred four-bit words can be multiplexed by using fifty of these devices in the WIRED-AND mode.

The inhibit state $S_0 = S_1 = 1$ can be used to facilitate transfer operations in an arithmetic section.

0000084

Pin Configuration

100000169

Arithmetic Logic Units/Function Generators

Pin Designations

	-	
Designation	Pin Nos.	Function
A3, A2, A1, A0	19, 21, 23, 2	Word A Inputs
B3, B2, B1, B0	18, 20, 22, 1	Word B Inputs
S3, S2, S1, S0	3, 4, 5, 6	Function-Select Inputs
C _n	7	Inv. Carry Input
· M .	8	Mode Control Input
F3, F2, F1, F0	13, 11, 10, 9	Function Outputs
A=B	14	Comparator Output
Р	15	Carry Propa- gate Output
C _{n+4}	16	Inv. Carry Output
G	17	Carry Gen- erate Output
v _{cc}	24	Supply Voltage
Gnd	12	Ground

These arithmetic logic units (ALU)/function generators have a complexity of 75 equivalent gates on a monolithic chip, and perform 16 binary arithmetic operations on two 4-bit words as shown in Tables 1 and 2. These operations are selected by the four function-select lines (S0, S1, S2, S3) and include addition, subtraction, decrement and straight transfer. When performing arithmetic manipulations, the internal carries must be enabled by applying a low-level voltage to the mode control input (M). A full carry look-ahead scheme is made available for fast, simultaneous carry generation by means of two cascade-outputs (pins 15 and 17) for the four bits in the package. When used in conjunction with 100000100 or 100000170, full carry look-ahead circuits, highspeed arithmetic operations can be performed. If high speed is not of importance, a ripple-carry input (C_n) and a ripple-carry output (C_{n+4}) are available. However, the ripple-carry delay is minimized so that arithmetic manipulations for small word lengths can be performed without external circuitry.

These devices will accommodate active-high or active-low data if the pin designations are interpreted as follows:

Continued....

10000084 100000169

Continued

		Table 1		
Selection	M = H Logic	Active-High Data M = L; Arithmetic Operations		
S3 S2 S1 S0	Functions	C _n = H (no carry)	Cn = L (with carry)	
LLLL	$F = \overline{A}$	$\mathbf{F} = \mathbf{A}$	F = A Plus 1	
LLLH	$\mathbf{F} = \overline{\mathbf{A} + \mathbf{B}}$	$\mathbf{F} = \mathbf{A} + \mathbf{B}$	F = (A + B) Plus 1	
LLHL	$F = \overline{A}B$	$F = A + \overline{B}$	$F = (A + \overline{B})$ Plus 1	
LLHH	$\mathbf{F} = 0$	F = Minus 1(2's Compl)	F = Zero	
LHLL	$F = \overline{AB}$	$F = A Plus A\overline{B}$	F = A Plus AB Plus 1	
LHLH	$F = \overline{B}$	$F = (A + B) Plus A\overline{B}$	$F = (A + B)$ Plus $A\overline{B}$ Plus 1	
LHHL	$F = A \oplus B$	F = A Minus B Minus 1	F = A Minus B	
L H H H	$F = A\overline{B}$	$F = A\overline{B}$ Minus 1	$\mathbf{F} = \mathbf{A}\mathbf{\overline{B}}$	
HLLL	$F = \overline{A} + B$	F = A Plus AB	F = A Plus AB Plus 1	
нггн	$F = \overline{A \oplus B}$	F = A Plus B	F = A Plus B Plus 1	
HLHL	$\mathbf{F} = \mathbf{B}$	$F = (A + \overline{B})$ Plus AB	$F = (A + \overline{B})$ Plus AB Plus 1	
нгнн	F = AB	F = AB Minus 1	$\mathbf{F} = \mathbf{A}\mathbf{B}$	
ннгг	F = 1	F = A Plus A*	F = A Plus A Plus 1	
ннгн	$\mathbf{F} = \mathbf{A} + \overline{\mathbf{B}}$	F = (A + B) Plus A	F = (A + B) Plus A Plus 1	
HHHL	$\mathbf{F} = \mathbf{A} + \mathbf{B}$	$F = (A + \overline{B})$ Plus A	$F = (A + \overline{B})$ Plus A Plus 1	
нннн	$\mathbf{F} = \mathbf{A}$	F = A Minus 1	F = A	

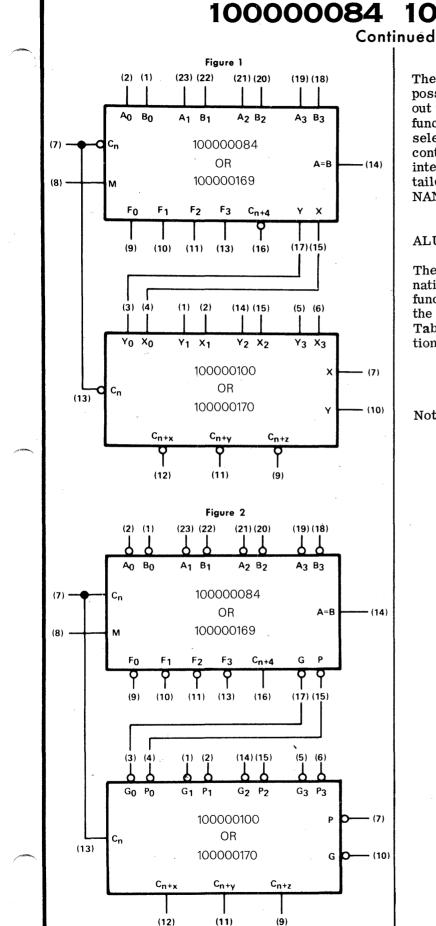
* Each bit is shifted to the next more significant position.

Т	а	bl	e	2
T	a	M	.e	4

Selection	M = H	Active-Low I M = L; Arithi	Data netic Operations
S3 S2 S1 S0	Logic Functions	C _n = L (no carry)	C _n = H (with carry)
LLLL	$\mathbf{F} = \mathbf{\overline{A}}$	F = A Minus 1	F = A
LLLH	$\mathbf{F} = \overline{\mathbf{AB}}$	F = AB Minus 1	$\dot{\mathbf{F}} = \mathbf{A}\mathbf{B}$
LLHL	$F = \overline{A} + B$	F = AB Minus 1	$F = A\overline{B}$
LLHH	F = 1	F = Minus 1(2's Comp)	F = Zero
LHLL	$F = \overline{A + B}$	$F = A Plus (A + \overline{B})$	F = A Plus (A + B) Plus 1
LHLH	$F = \overline{B}$	F = AB Plus (A + B)	$F = AB Plus (A + \overline{B}) Plus 1$
LHHL	$F = \overline{A \oplus B}$	F = A Minus B Minus 1	F = A Minus B
LHHH	$F = A + \overline{B}$	$\mathbf{F} = \mathbf{A} + \overline{\mathbf{B}}$	$F = (A + \overline{B}) Plus 1$
HLLL	$F = \overline{A}B$	F = A Plus (A + B)	F = A Plus (A + B) Plus 1
HLLH	$F = A \oplus B$	F = A Plus B	F = A Plus B Plus 1
HLHL	F = B	$F = A\overline{B} Plus (A + B)$	$F = A\overline{B} Plus (A + B) Plus 1$
нгнн	$\mathbf{F} = \mathbf{A} + \mathbf{B}$	$\mathbf{F} = \mathbf{A} + \mathbf{B}$	F = (A + B) Plus 1
HHLL	$\mathbf{F} = 0$	F = A Plus A*	F = A Plus A Plus 1
ннгн	$F = A\overline{B}$	F = AB Plus A	F = AB Plus A Plus 1
нннг	F = AB	$F = A\overline{B}$ Plus A	$F = A\overline{B}$ Plus A Plus 1
нннн	F = A	$\mathbf{F} = \mathbf{A}$	F = A Plus 1

* Each bit is shifted to the next more significant position.

	Pin No.	Active-high data Table 1	Active-low data Table 2
	2	A ₀	Ā ₀
	1	B ₀	\overline{B}_0
	23	'A ₁	\overline{A}_1
	22	В ₁	\overline{B}_1
	21	A ₂	\overline{A}_2
	20	B ₂	\overline{B}_2
	19	• A ₃	\overline{A}_3
	18	B ₃	\overline{B}_3
,	9	F ₀	$\overline{\mathbf{F}}_{0}$
	10	F ₁	\overline{F}_1
	11	\mathbf{F}_2	$\overline{\mathbf{F}}_{2}$.
	13	\mathbf{F}_{3}	$\overline{\mathbf{F}}_{3}$
	7	\overline{C}_n	Cn
	16	\overline{C}_{n+4}	C_{n+4}
	15	х	$\overline{\mathbf{P}}$
	17	Y	G

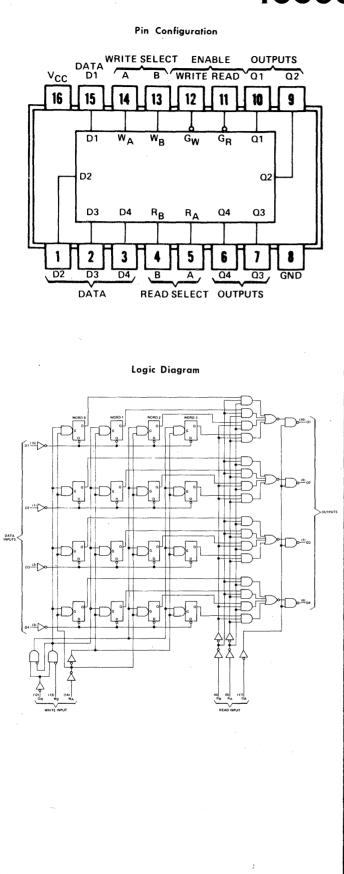

Subtraction is accomplished by 1's complement addition where the 1's complement of the subtrahend is generated internally. The resultant output is A-B-1, which requires an end-around or forced carry to provide A-B.

These devices can also be utilized as comparators. The A=B output is internally decoded from the function outputs (F0, F1, F2, F3) so that when two words of equal magnitude are applied at the A and B inputs, it will assume a high level to indicate equality (A = B). The ALU should be in the subtract mode with C_n = H when performing this comparison. The A = B output is opencollector so that it can be wire-AND connected to give a comparison for more than four bits. The carry output (C_{n+4}) can also be used to supply relative magnitude information. Again, the ALU should be placed in the subtract mode by placing the function select inputs S3, S2, S1, S0 at L, H, H, L, respectively.

Input Cn	Output C _{n+4}	(Figure 1) Active-high Data	(Figure 2) Active-low Data
H H L L	H L H L	$\begin{array}{l} \mathbf{A} \leqslant \mathbf{B} \\ \mathbf{A} > \mathbf{B} \\ \mathbf{A} < \mathbf{B} \\ \mathbf{A} \geqslant \mathbf{B} \end{array}$	$\begin{array}{c} A \geqslant B \\ A < B \\ A > B \\ A \leqslant B \end{array}$

Continued....

0000084 10000 169


These circuits have been designed to provide 16 possible functions of two Boolean variables without the use of external circuitry. These logic functions are selected by use of the four functionselect inputs (S0, S1, S2, S3) with the modecontrol input (M) at a high level to disable the internal carry. The 16 logic functions are detailed in Tables 1 and 2 and include exclusive-OR, NAND, AND, NOR and OR functions.

ALU Signal Designations

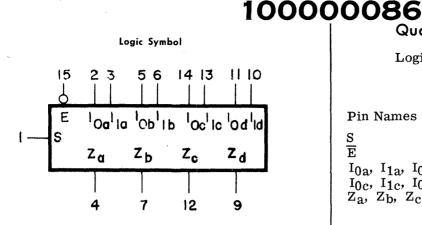
These devices can be used with the signal designations of either Figure 1 or Figure 2. The logic functions and arithmetic operations obtained with the signal designations of Figure 1 are given in Table 1; those obtained with the signal designations of Figure 2 are given in Table 2.

Note: The 100000169 is a Shottky device.

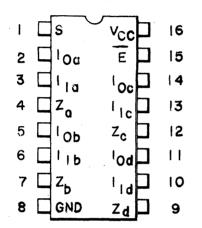
10000085

4-By-4 Register File

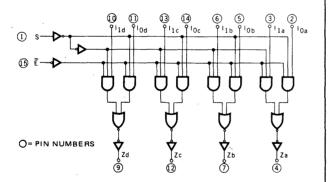
Pin Designations


 $V_{CC} = Pin 16$ Gnd = Pin 8

The 100000085 16-bit TTL register file is organized as 4 words of 4 bits each. Separate onchip decoding is provided for addressing the four word locations to either write-in or retrieve data; this permits simultaneous writing into one location and reading from another word location. The register file has a nondestructive readout in that data is not lost when addressed.


Four data inputs are available which are used to supply 4-bit words to be stored. Location of the word is determined by the write address inputs A and B in conjunction with a write-enable signal. Data applied at the inputs should be in its true form; that is, if a high-level signal is desired from the output, a high-level is applied at the data input for that particular bit location. The latch inputs are arranged so that new data will be accepted only if both internal address gate inputs are high. When this condition exists, data at the D input is transferred to the latch output. When the write enable input, G_W , is high, the data inputs are inhibited and their levels can cause no change in the information stored in the internal latches. When the read enable input, $G_{\mathbf{R}}$, is high, the data outputs are inhibited and remain high.

The individual address lines permit direct acquisition of data stored in any four of the latches. Four individual decoding gates are used to complete the address for reading a word. When the read address is made in conjunction with the read-enable signal, the word appears at the four outputs.


High-speed, double-ended AND-OR-INVERT gates are employed for the read-address function and drive high-sink-current, open-collector outputs. Up to 256 of these outputs may be wire-AND connected for increasing the capacity up to 1024 words. Any number of registers may be paralleled to provide n-bit word length.

Logic Diagram

Logic Diagram

Quad Two-Input Multiplexer

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$

Gnd = Pin 8

Pin Names

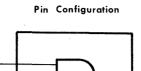
S	Common Selected Input
Ē	Enable (Active LOW)Inputs
$I_{0a}, I_{1a}, I_{0b}, I_{1b})$ $I_{0c}, I_{1c}, I_{0d}, I_{1d})$	Multiplexer Inputs
Z_a, Z_b, Z_c, Z_d	Multiplexer Output

Truth	Table
-------	-------

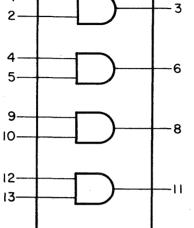
Enable	Select Input	Inputs	Output
Ē	S	IOX IIX	z_{X}
H	X	XX	L
	H H	X L X H	L H
	, L L	L X H X	L H

H = HIGH Voltage Level

L = LOW Voltage Level

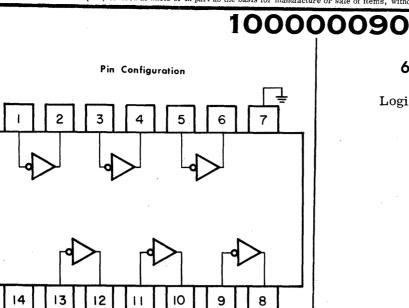

X = Either HIGH or LOW Logic Level

The 100000086 Quad Two-Input Multiplexer consists of four multiplexing circuits with common select and enable logic; each circuit contains two inputs and one output. The Enable input (\overline{E}) is active LOW. When not activated, all outputs (Z) are LOW regardless of other inputs.


The multiplexer is the logical implementation of a four-pole, two-position switch, with the position of the switch being set by the logic levels supplied to the one select input. The logic equations for the outputs follow:

> $Z_a = E \cdot (I_{1a} \cdot S + I_{0a} \cdot \overline{S})$ $Z_{b} = E \cdot (I_{1b} \cdot S + I_{0b} \cdot \overline{S})$ $Z_c = E \cdot (I_{1c} \cdot S + I_{0c} \cdot \overline{S})$ $Z_d = E \cdot (I_{1d} \cdot S + I_{0d} \cdot \overline{S})$

10000089

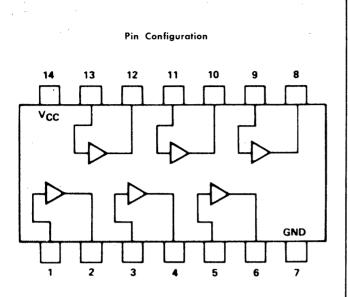

1

Quad 2-Input AND Gate

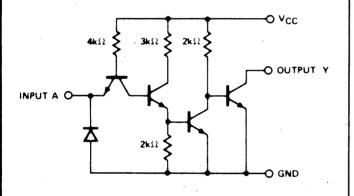
Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7 3 = 1 [•] 2

Vcc


6-Input Hex Inverter

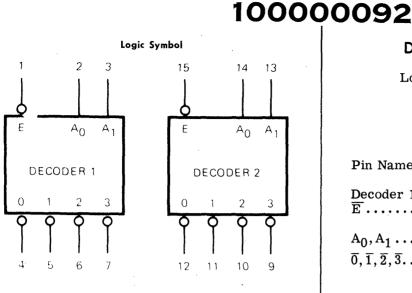
Logic Diagram/Pin Designations


 $V_{CC} = Pin 14$ Gnd = Pin 7

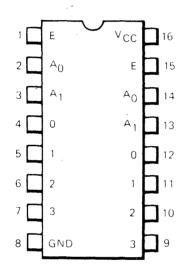
Positive logic: $Y = \overline{AB}$

100000091

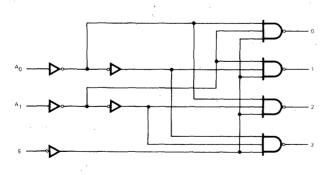
Schematic (Each Buffer/Driver)


Hex Buffer/Driver with Open Collector High Voltage Outputs

Logic Diagram/Pin Designations


 $V_{CC} = Pin 14$ Gnd = Pin 7

Positive logic: Y = A


The 100000091 has standard TTL inputs with noninverted high voltage, high current open collector outputs for interface with MOS, lamps or relays.

Pin Configuration

Logic Diagram

Note: Only one Decoder shown.

Dual One-of-Four Decoder

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Pin Names

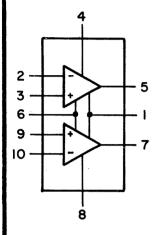
Decoder 1 and 2	
$\overline{\mathbf{E}}$	Enable (Active LOW) In-
	put
$A_0, A_1 \dots$	Address Inputs
$\overline{0}, \overline{1}, \overline{2}, \overline{3}, \dots$	(Active LOW) Outputs

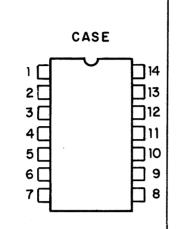
Truth Table Decoder 1 & 2

Ē	A ₀	A ₁	ō	ī	$\overline{2}$	3
L	L	L	L	H	H	H
L	Н	\mathbf{L}	Н	\mathbf{L}	\mathbf{H}	H
L	\mathbf{L}	H	н	н	\mathbf{L}	Η
L	H	H	Н	Η	\mathbf{H}	L
H	х	Х	Н	H	Η	Н

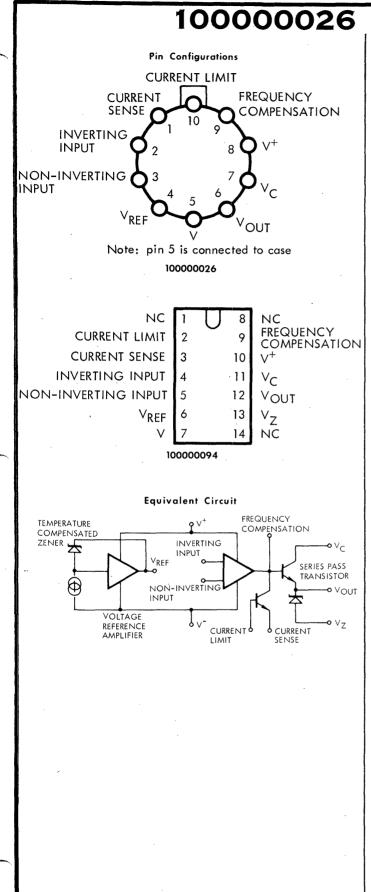
H = HIGH Voltage Level

L = LOW Voltage Level

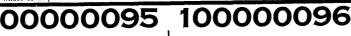

X = Level Does Not Affect Output

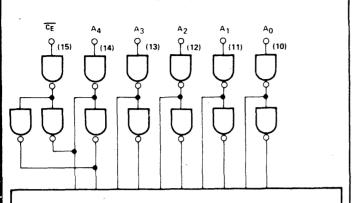

The 100000092 consists of two independent multipurpose decoders, each designed to accept two binary weighted inputs and provide four mutually exclusive active LOW outputs. Each decoder can be used as a 4-output demultiplexer by using the enable as a data input.

The active LOW outputs facilitate memory addressing for units such as the 100000211 associative memory.


100000093

Pin Configuration


Monolithic Dual Operational Amplifier


10000094

Precision Voltage Regulator

The 100000026(Can) and 100000094(DIP) are monolithic voltage regulators, consisting of a temperature compensated reference amplifier, error amplifier, power series pass transistor and current limit circuitry. Additional NPN or PNP pass elements may be used when output currents exceeding 150mA are required. Provisions are made for adjustable current limiting and remote shutdown.

Logic Diagram

32 x 8 ARRAY

(5)

B⊿

(2)

(3)

Ba

) (7)

B₆

(6)

Ċ

Br

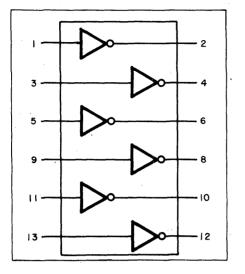
(9)

Q

87

256-Bit Bipolar ROM

Logic Diagram/Pin Designations


 $V_{CC} = Pin 16$ Gnd = Pin 8

These TTL 256-bit read only memories are organized as 32 words with 8 bits per word. The words are selected by five binary address lines with full word decoding incorporated on the chip. A Chip Enable input is provided for additional decoding flexibility, which will cause all eight outputs to go to the high state when the Chip Enable input is taken high.

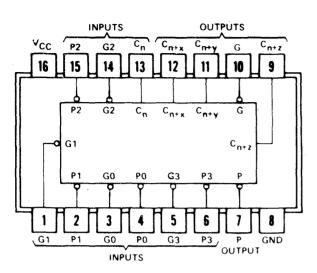
The 100000095 and 100000096 are fully TTL or DTL compatible. The outputs are uncommitted collectors, which allows wired-AND operation with the outputs of other TTL or DTL devices.

10000098

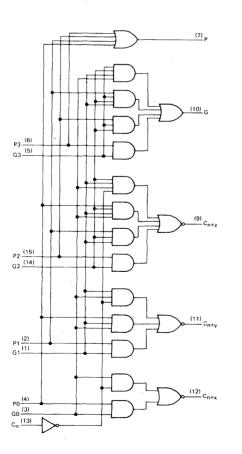
Pin Configuration

Quad Hex Inverter

Logic Diagram/Pin Designations


 $V_{CC} = Pin 14$ Gnd = Pin 7

Truth Table


Any Input Low = High Out Any Input High = Low Out

100000100 100000170

Logic Diagram

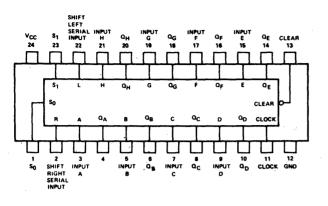
Look-Ahead Carry Generators

Pin Designations								
Designation	Pin Nos.	Function						
G0, G1, G2, G3	3, 1, 14, 5	Active-Low Carry Generate Inputs						
P0, P1, P2, P3	4, 2, 15, 6	Active-Low Carry Propagate Inputs						
C _n	13	Carry Input						
$C_{n+x}, C_{n+y}, C_{n+z}$	12, 11, 9	Carry Outputs						
G	10	Active-Low Carry Generate Output						
Р	7	Active-Low Carry Propagate Output						
v _{CC}	16	Supply Voltage						
Gnd	8	Ground						

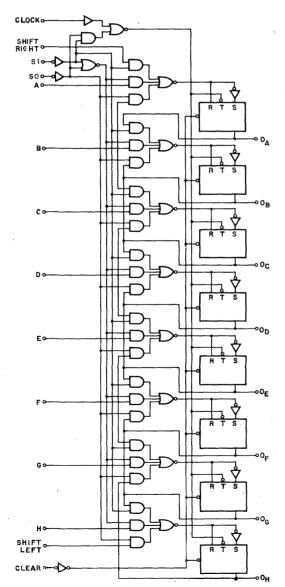
Positive Logic:

 $\begin{array}{rcl} C_{n+x} &=& \overline{G}_0 + \overline{P}_0 \ C_n \\ C_{n+y} &=& \overline{G}_1 + \overline{P}_1 \overline{G}_0 + \overline{P}_1 \overline{P}_0 C_n \\ C_{n+z} &=& \overline{G}_2 + \overline{P}_2 \overline{G}_1 + \overline{P}_2 \overline{P}_1 \overline{G}_0 + \overline{P}_2 \overline{P}_1 \overline{P}_0 C_n \\ \overline{G} &=& \overline{G}_3 (\overline{P}_3 + \overline{G}_2) (\overline{P}_3 + \overline{P}_2 + \overline{G}_1) (\overline{P}_3 + \overline{P}_2 + \overline{P}_1 + \overline{G}_0) \\ \overline{P} &=& \overline{P}_3 \overline{P}_2 \overline{P}_1 \overline{P}_0 \end{array}$

These devices are high-speed, look-ahead carry generators capable of anticipating a carry across four binary adders or group of adders. They are cascadable to perform full look-ahead across n-bit adders. Carry, generate-carry and propagate-carry functions are provided as enumerated in the pin designation table above.


When used in conjunction with arithmetic logic units, 100000084 or 100000169, these generators provide high-speed carry look-ahead capability for any word length.

Carry input and output of the 100000084 or 100000169 are in their true form and the carry propagate (P) and carry generate (G) are in negated form; therefore, the carry functions (inputs, outputs, generate and propagate) of the look-ahead generators are implemented in the compatible forms for direct connection to the ALU.


Note: The 100000170 is a Shottky device.

100000101

Pin Configuration

8-Bit Shift Register

Pin Designations

 $V_{CC} = Pin 24$

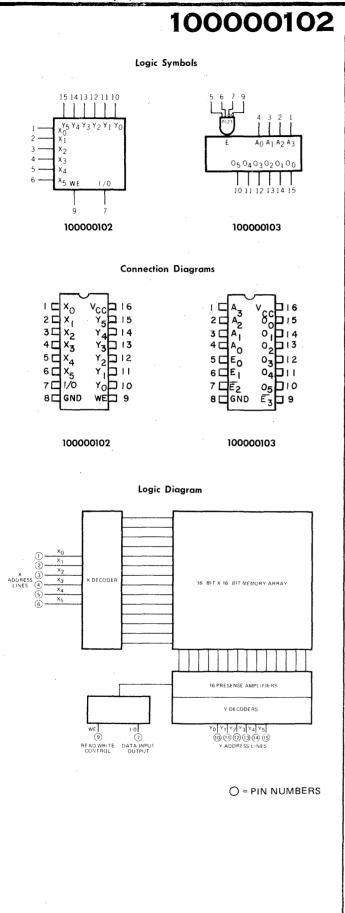
Gnd = Pin 12

Truth Table							
Operation of Mode Control							
Inp	uts						
s ₁	s ₀	Mode					
L H L H	L L H H	Inhibit Clock Shift Left Shift Right Parallel Load					

This 8-bit shift register contains 87 equivalent gates and features parallel inputs, parallel outputs, right-shift and left-shift serial inputs, operating-mode-control inputs and a direct overriding clear line. The register has four distinct modes of operation, namely:

Parallel (Broadside) Load

Shift Right (in the direction Q_A toward Q_H)


Shift Left (in the direction Q_H toward Q_A)

Inhibit Clock (do nothing)

Synchronous parallel loading is accomplished by applying the 8 bits of data and taking both mode control inputs, S_0 and S_1 , high. The data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

Shift right is accomplished synchronously with the rising edge of the clock pulse when S_0 is high and S_1 is low. Serial data for this mode is entered at the shift-right data input. When S_0 is low and S_1 is high, data shifts left synchronously and new data is entered at the shift-left serial input.

Clocking of the flip-flop is inhibited when both mode control inputs are low. The mode controls should be changed only while the clock input is high.

256-Bit Read/Write Memory & Decoder/Driver

100000103

Pin Designations

 $V_{CC} = Pin \ 16$

Gnd = Pin 8

Truth Table

	Bina To 10	ry Inp 200002	ut 103	3 of 6 Code Output of 100000103 Input to 100000102 (L = O or X or Y)					100000102 Internal X or Y Address	
A ₃	A2	A1	A0	L0	L1	L_2	L3	L_4	L_5	Row or Column
L	L	L	L	Н	Н	L	L	L	H	0
L	$\mathbf{\Gamma}$	L	н	н	$\mathbf{\Gamma}$	Н	L	L	н	1
L	L	н	L	н	L	L	н	L	н	2
L	\mathbf{L}	н	н	н	\mathbf{L}	L	L	н	Ή	3
L	н	Γ	L	н	н	н	L	L	L	4
L	н	L	н	н	L	н	L	н	L	5
L	н	н	L	н	Н	L	н	L	L	6
L	н	н	н	н	L	L	н	н	\mathbf{L}	7
н	L	L	L	L.	н	L	н	L	н	8
н	\mathbf{L}	L	H	L	н	н	Ľ	L	н	9
н	\mathbf{L}	н	L	L	L	L	Н	н	н	10
н	\mathbf{L}	н	н	L	L	Н	L	н	н	11
н	н	L	L	L	н	н	н	L	L	12
н	н	L	н	L	Н	н	L	H	L	13
н	н	н	L	L	н	\mathbf{L}	н	н	L	14
н	н	н	н	L	L	н	н	н	L	15

Note: Enables on 100000103 must be LLHH. Any other state on the enable inputs causes the Decoder/Driver outputs to go LOW, and addresses no internal row or column in the 100000102 memory matrix.

The 100000102 256-Bit Read/Write Memory and the 100000103 Decoder/Driver are components for use in high speed memory systems.

The 100000102 contains 256 bipolar storage cells arranged in a 16 by 16 format. Any one of the 256 cells may be accessed by supplying an address code on the X address inputs and the Y address inputs. Internal decoders decode the X and Y addresses into one of 16 rows and one of 16 columns in the matrix of storage cells. Data may be written into or read out from the cell lying at the intersection of the selected row and column.

The X and Y addresses supplied to the memory are partially decoded in a "3 of 6" code. Of the six X address lines and the six Y address lines there are always three lines HIGH and three

Continued

10000102 10000103

Continued

lines LOW. There are 20 such combinations, 16 are decoded by the internal row and column decoders. The four unused combinations of 3 of 6 will not select any row or column. If there are more than three lines HIGH in either the X or Y address, then multiple row or column selection will occur. The sixteen 3 of 6 codes used by the 100000102 memory are generated by the 100000103 decoder/driver.

Data enters and leaves the memory on a single input/output (I/O) line (pin 7). The I/O line is an open collector output, so many 100000102 I/O lines can be connected together in a wired-OR configuration. Input data must be applied to the I/O lines through an open collector gate. Each I/O line requires a pull-up resistor to $V_{\rm CC}$. The magnitude of the pull-up resistor is determined by the number of memory I/O lines tied together. The I/O of the memory which is not addressed will be HIGH.

Read/Write selection is determined by the state of pin 9, the active HIGH write enable. When WE is HIGH, the data on the I/O line will be written into the selected address in the 100000102. When the Write Enable line is LOW, data will be read out of the addressed location.

The 100000103 is a partial decoder and driver for the 100000102. It accepts a 4-bit binary code on the address inputs (A_0-A_3) and produces a 3 of 6 code on the six output pins (O_0-O_5) . The decoder also features four separate enables, two active HIGH and two active LOW. All four enables must be active before the decoder will produce a 3 of 6 code. Since two of the enables are HIGH and two are LOW, it is possible to route two binary coded lines to four different 100000103's to get two additional bits of decoding with no extra packages.

Ordinarily in memory systems, 100000102 memory devices will be arranged in a matrix of rows and columns. Each column will store a particular bit and each row of 100000102's will be 256 words. A 100000103 driver will be used for each row and each column in the matrix. One 100000103 can drive up to 32 100000102 X or Y address lines. The usual driving scheme is to connect the four LSB's of address to each of the column decoders. The next four bits of address are connected to each of the row decoders. Additional address bits are decoded to the chip selects on the row decoders. Each column decoder drives the Y address lines on up to 32 100000102's in a column. Each row decoder drives the address lines on up to 32 100000102's in a row.

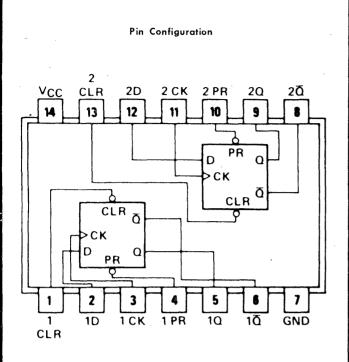
The Three of Six Code

The "3 of 6" code used in the 100000102 and produced by the 100000103 is a trade-off between chip complexity and pin count. The simplest 256-bit memory chip would be a 16 by 16 matrix of storage cells, with all 16 rows and 16 column select lines brought off chip. The lowest pin count for a 256-bit memory chip would be achieved by fully decoded X and Y select lines, reducing the 32 lines of the simple scheme to only 8 lines. However, full binary decoding of the X and Y lines on chip significantly increases the complexity of the memory chip. The 100000102 and 100000103 are designed to gain the good features of both alternatives. The 16 X and Y lines are decoded into 6 lines each, allowing the memory to fit into a 16-lead package and still keeping the memory chip fairly simple, since the 3 of 6 code does not require a complex decoder. The truth table shows the conversion of 4-bit binary to 3 of 6 code by the 100000103. and also the internal column or row selected by the 3 of 6 to 1 of 16 decoder inside the memory.

Code Conversion Equations

$$O_0 = \overline{A_3}$$

$$O_1 = (\overline{A_1 + A_0}) (\overline{A_3} + A_1) (\overline{A_2} + A_0)$$


$$O_2 = (\overline{A_1 + \overline{A_0}}) (\overline{A_3} + \overline{A_0}) (A_2 + \overline{A_1})$$

$$O_3 = (\overline{A_1} + A_0) (\overline{A_3} + A_0) (\overline{A_2} + \overline{A_1})$$

$$O_4 = (\overline{A_1} + \overline{A_0}) (\overline{A_3} + \overline{A_1}) (\overline{A_2} + \overline{A_0})$$

$$O_5 = \overline{A_2}$$

100000104

Dual D-Type Positive-Edge-Triggered Flip-Flops With Preset and Clear

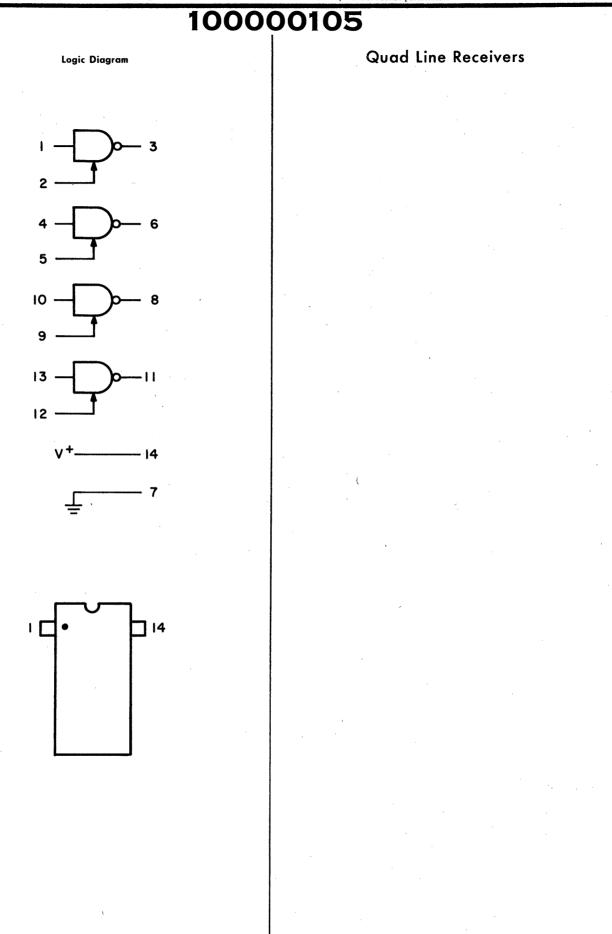
Logic Diagram/Pin Designations

$$V_{CC} = Pin 14$$

Gnd = Pin 7

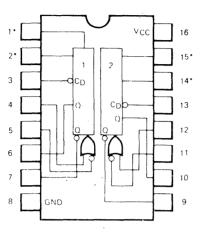
	Outputs				
Preset	Clear	Clock	D	Q	\overline{Q}
\mathbf{L}^{-1}	L H		Х	Н	L
н	H L		х	\mathbf{L}	H
\mathbf{L}	\mathbf{L}^{-1}	х	х	H*	H*
н	н	t	Н	н	\mathbf{L}_{i}
Н	н	t	\mathbf{L}	\mathbf{L}	H
Н	Н	\mathbf{L}	x	Q_0	\overline{Q}_0

H = high level (steady state)

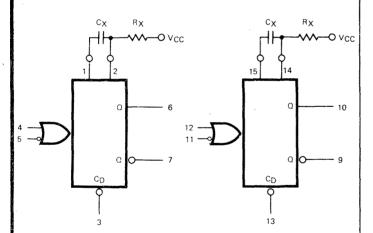

L = low level (steady state)

X = irrelevant

 \uparrow = transition from low to high level


Q₀= the level of Q before the indicated input conditions were established.

* = This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.



100000106

Pin Configuration

Logic Diagram

Dual Retriggerable Resettable Monostable Multivibrator

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Triggering Truth Table

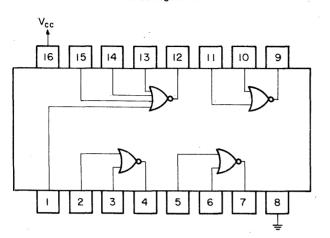
Pin Numbers			
5(11)	4(12)	3(13)	Operation
H→L	\mathbf{L}	Н	Trigger
н	L→H	Н	Trigger
x	Х	\mathbf{L}	Reset

H = HIGH Voltage Level $\geq V_{IH}$

L = LOW Voltage Level $\leq V_{II}$

X = Don't Care

 $H \rightarrow L = HIGH$ to LOW Voltage Level transition

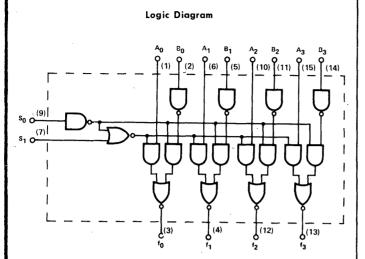

 $L \rightarrow H = LOW$ to HIGH Voltage Level transition

The Dual Retriggerable, Resettable Monostable Multivibrator provides an output pulse whose duration and accuracy is a function of external timing components.

This device has two inputs per function, one active LOW and one active HIGH. This allows leading edge or trailing edge triggering. The TTL inputs make triggering independent of input transition times. When input conditions for triggering are met, a new cycle starts and the external capacitor is rapidly discharged and then allowed to charge. An input cycle time shorter than the output cycle time will retrigger the device and result in a continuous true output. The output pulse may be terminated at any time by connecting the reset pin to a logic level LOW. Retriggering may be inhibited by tying \overline{Q} output to the active level HIGH input.

100000107

Pin Configuration


Quad NOR Gate

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

The 100000107 consists of three 2-input and one 4-input NOR gates. The NOR gate produces a Low output if any of the inputs are High.

10000057 100000108

2-Input, 4-Bit Digital Multiplexer

Logic Diagram/Pin Designations

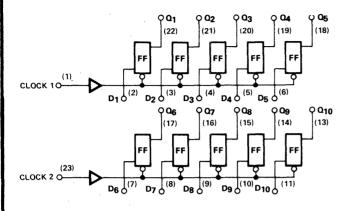
$$V_{CC} = Pin 14$$

Gnd = Pin 7

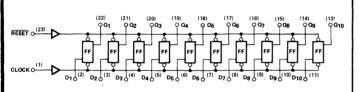
Truth Table

Select Lines		Outputs	
s ₀	s ₁	$f_n (0, 1, 2, 3)$	
0	0	B _n	
0	1	B _n	
1	0	\overline{A}_n	
1	1	1	

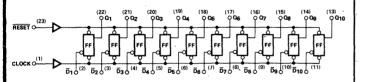
The 2-Input, 4-Bit Digital Multiplexer is a monolithic array utilizing TTL circuit structures. The 100000108 features a bare-collector output to allow expansion with other devices.


The multiplexer is able to choose from two different input sources, each containing 4 bits: $A = (A_0, A_1, A_2, A_3); B = (B_0, B_1, B_2, B_3).$ The selection is controlled by the input S₀, while the second control input, S₁, is held at zero.

For conditional complementing, the two inputs (A_n, B_n) are tied together to form the function TRUE/COMPLEMENT, which is needed in conjunction with added elements to perform Addition/Subtraction. Further, the inhibit state $S_0 = S_1 = 1$ can be used to facilitate transfer operations in an arithmetic section.


100000111 100000109 100000125

Logic Diagrams


100000111

100000109

100000125

Buffer Registers

Logic Diagram/Pin Designations

 $V_{CC} = Pin 24$ Gnd = Pin 12

Truth Tables

Dual 5-Bit Buffer Register No. 100000111

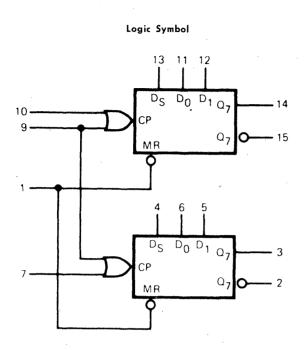
D _n	Q_{n+1}
1	1
0	· 0

10-Bit Buffer Register No. 100000109

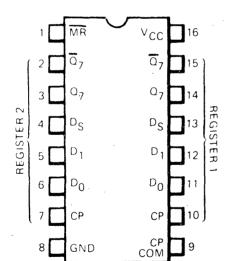
D _n	RESET	Q_{n+1}
1	- 1	1
0	. 1	0

10-Bit Buffer Register-Inverted Inputs No. 100000125

D _n	RESET	Q_{n+1}
0	1	1
1	1	0


Notes:

RESET = $0 \Rightarrow Q = 0$ (overrides clock). n is time prior to clock. n+1 is time following clock.


These buffer registers are arrays of ten clocked "D" flip-flops. The flip-flops are arranged as a dual 5 array (100000111) and single 10 arrays with reset (100000109 and 100000125).

The 100000111 and 100000109 have true "D" inputs. The logic state presented at these "D" inputs will appear at the Q outputs after a negative transition of the clock. The 100000125 has complementing "D" inputs (" \overline{D} "). The logic state presented at these " \overline{D} " inputs will invert and appear at the Q outputs after a negative-going transition of the clock. The complementing input (" \overline{D} ") permits the use of standard AND-OR-INVERT gates to achieve the AND-OR function without additional gate delays.

100000112

Pin Configuration

Dual 8-Bit Shift Register

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$

Gnd = Pin 8

Pin Names

DS..... Data Select Input

D0, D1.... Data Inputs

CP.....Clock (Active HIGH) Going Edge Input Common (Pin 9)

Separate (Pins 7 and 10)

MR.....Master Reset (Active LOW) Input

Q7Last Stage Output

 $\overline{\mathbf{Q7}}$ Complementary Output

Truth Table Shift Selection

$\mathrm{D}_{\mathbf{S}}$	D ₀	D ₁	$Q_7 (t_{n+8})$
L	L	x	L
L	H	Х	Н
Н	Х	\mathbf{L}	L
Н	Х	Н	Н

n+8 = Indicates state after eight clock pulse.

L = LOW voltage level

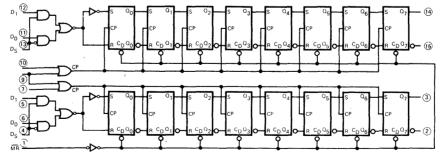
H = HIGH voltage level

X = Either HIGH or LOW voltage level

This device is a high speed serial storage element providing 16 bits of storage in the form of two 8-bit registers that will shift at greater than 20 MHz rates. The multi-functional capability of this device is provided by several features: 1) Additional gating is provided at the input to both shift registers so that the input is easily multiplexed between two sources. 2) The clock of each register may be provided separately or together. 3) Both the true and complementary outputs are provided from each 8-bit register, and both registers may be master cleared from a common input.

The two 8-bit shift registers have a common clock input (pin 9) and separate clock inputs (pins 10 and 7). The clocking of each register is controlled by the OR function of the separate and the common clock input. Each register is composed of eight clocked RS master/slave flipflops and a number of gates. The clock OR gate drives the eight clock inputs of the flip-flops in parallel. When the two clock inputs (the separate and the common) to the OR gate are LOW, the slave latches are steady, but data can enter the master latches via the R and S input. During the first LOW to HIGH transition of either, or both simultaneously, of the two clock inputs, the data inputs (R and S) are inhibited so that a later

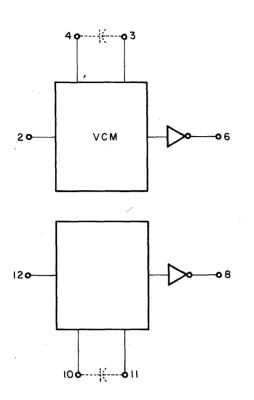
Continued....


100000112 Continued

change in input data will not affect the master; then the now trapped information in the master is transferred to the slave. When the transfer is complete, both the master and the slave are steady as long as either or both clock inputs remain HIGH. During the HIGH to LOW transition of the last remaining HIGH clock input, the transfer path from master to slave is inhibited first, leaving the slave steady in its present state. The data inputs (R and S) are enabled so that new data can enter the master. Either of the clock inputs can be used as clock inhibit inputs by applying a logic HIGH signal. Each 8-bit shift register has a two input multiplexer in front of the serial data input. The two data inputs, D_0 and D_1 , are controlled by the data select input (D_S) following the Boolean expression:

Serial data in: $S_D = \overline{D}_S D_0 + D_S D_1$

An asynchronous master reset is provided which, when activated by a LOW logic level, will clear all sixteen stages independently of any other input signal.

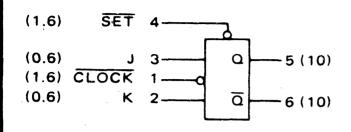


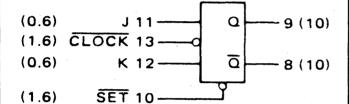
○ = Pin Numbers

100000114

Functional Block Diagram

Dual Voltage Controlled Multivibrator


Pin Designations


 $V_{CC}: VCM = 1, 3$ Output Buffer = 14 Gnd: VCM = 5, 9 Output Buffer = 7

External capacitor for frequency range determination.

100000115

Logic Diagram

Dual J-K Flip-Flop

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

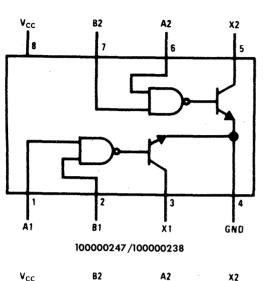
Truth Table

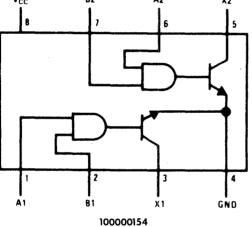
J	К	Q _n	Q _{n+1} /
0	0	0	0
0	0	1	1
0	. 1	· 0	0
. 0	1	1	0
1	0	0	1 .
1	0	1	1
1	1	0	1
1	1	1	0

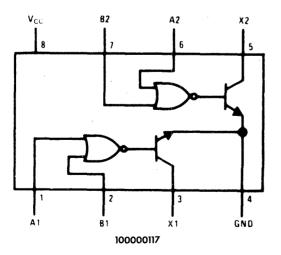
100000116

Pin Configuration 4B 4 A 4 Y 3B 3 A 3 Y Vcc 8 12 9 14 13 10 2 3 4 5 6 7 IA IB IΥ 2 A 2B 2Y GND

Quadruple 2-Input Positive-NAND Buffer


Logic Diagram/Pin Designations


 $V_{CC} = Pin 14$ Gnd = Pin 7


Positive logic: $Y = \overline{AB}$

100000247 100000154

Dual Peripheral Drivers

100000238 100000117

s!

Pin Designations

 $V_{CC} = Pin 8$ Gnd = Pin 4

Truth Tables 100000247 and 100000238

Positive logic: AB=X

A	В	Output X*
0	0	0
1	0	0
0	1	0
1	1	1

*''0'' Output \leq 0.7V ''1'' Output \leq 100 μ A

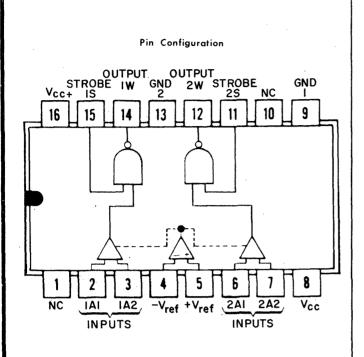
100000154

Positive logic: $\overline{AB}=X$

А	В	Output X*
0	0	1
1	0	1
0	1	1
1	1	0

*''0'' Output \leq 0. 7V ''1'' Output \leq 100 μ A

100000117


Positive logic: A + B = X

Α	В	Output X*
0	0	0
1	0	1
0	1	1
. 1	1	1

*''0'' Output \leq 0. 7V ''1'' Output \leq 100 μ A

These devices are general purpose dual peripheral drivers, each capable of sinking two independent 300mA loads to ground. In the off state (or with $V_{CC} = 0V$) the outputs will withstand 30V. Inputs are fully DTL/TTL compatible.

100000118 100000229 100000298 100000299

Dual Sense Amplifiers

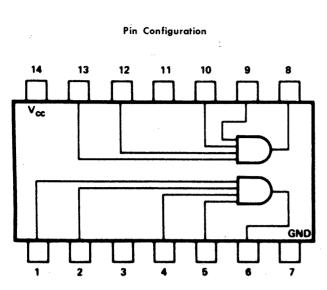
Logic Diagram/Pin Designations

 $V_{CC+} = Pin 16$ $V_{CC} = Pin 8$ Gnd 1 = Pin 9 Gnd 2 = Pin 13 NC = No internal

connection

Positive logic: $W = \overline{AS}$

Truth Table


Inputs		Output
Α	S	w
H	H	L
\mathbf{L}	х	Н
х	\mathbf{L}	Н

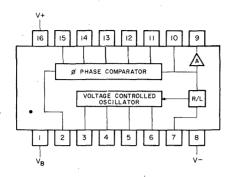
Definition of logic levels:

Input	Н	L	· X
A*	$v_{ID} \ge v_{Tmax}$	$v_{ID} \leqslant v_{Tmin}$	Irrelevant
S	$v_I \ge v_{IHmin}$	$v_{I} \leqslant v_{ILmax}$	Irrelevant

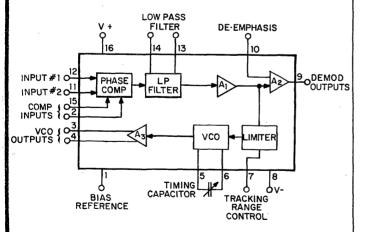
* A is a differential voltage $(V_{\rm ID})$ between A1 and A2. For these circuits, $V_{\rm ID}$ is considered positive regardless of which terminal is positive with respect to the other.

100000119

Dual 4-Input Positive-AND Gate


Logic Diagram/Pin Designations

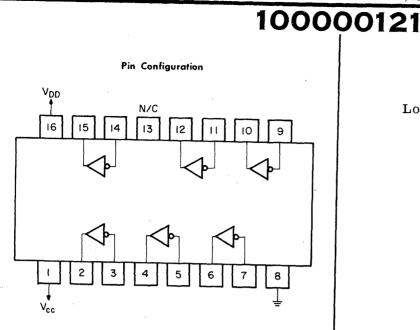
 $V_{CC} = Pin 14$ Gnd = Pin 7


Positive logic: Y = ABCD

100000120

Pin Configuration

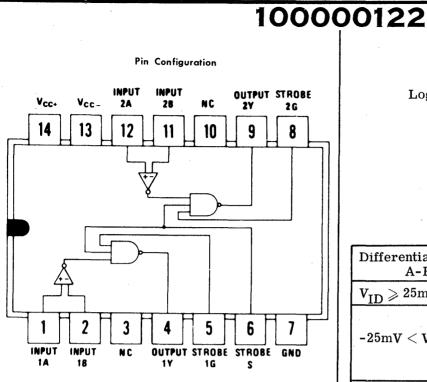
Block Diagram


Phase Locked Loop

Pin Designations

1.	Bias Reference Voltage	9.	Demodulated FM Out- put (Open Emitter)
2.	Phase Comparator Input #1	10.	De-emphasis (Auto Bandshaping)
3.	VCO Output #1	11.	RF Input #1
4.	VCO Output #2	12.	RF Input #2
5.	VCO Timing Capacitor	13.	Low Pass Loop Filter
6.	VCO Timing Capacitor	14.	Low Pass Loop Filter
7.	Range Control	15.	Phase Comparator Input #2
8.	Negative Power Supply (Ground)	16.	Positive Power Supply

The 100000120 Phase Locked Loop is a monolithic signal conditioner and demodulator system, comprising a VCO, phase comparator, amplifier and low pass filter.


The center frequency of the Phase Locked Loop is determined by the free running frequency of the VCO. This VCO frequency is set by an external capacitor. The low pass filter, which determines the capture characteristics of the loop, is formed by two capacitors and two resistors at the phase comparator output. This Phase Locked Loop has two sets of differential inputs, one for the FM/RF input and one for the phase comparator local oscillator input. Both sets of inputs can be used in either a differential or single-ended mode. The FM/RF inputs to the comparator are self-An internally regulated voltage source biased. is provided to bias the phase comparator local oscillator inputs. The VCO output, at high level and in differential form, is available for driving logic circuits.

CMOS Hex Inverter

Logic Diagram/Pin Designations

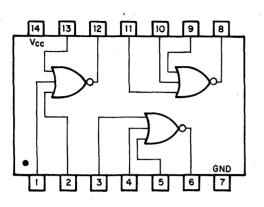
 $V_{CC} = Pin 1$ $V_{DD} = Pin 16$ Gnd = Pin 8

Dual Line Receiver

Logic Diagram/Pin Designations

 $V_{CC+} = Pin 14$ $V_{CC-} = Pin 13$ Gnd = Pin 7NC = No internal connection

Trut	th	Table	

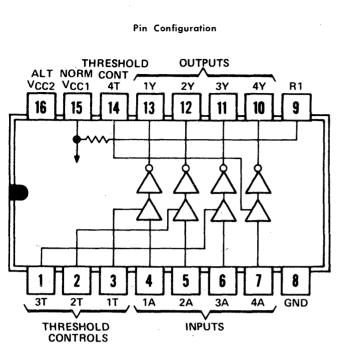

Differential Inputs	Stro	Output	
A-B	G	S	Y
$V_{ID} \geqslant 25 mV$	L or H	L or H	Н
	LorH	L	Н
$-25 \mathrm{mV} < \mathrm{V_{ID}} < 25 \mathrm{mV}$	L	L or H	Н
	Н	Н	Indeter- minate
	LorH	\mathbf{L}	Н
$V_{ID} \leqslant -25 mV$	L	L or H	Н
	H	H	L

100-114

~

100000123

Pin Configuration



Triple 3-Input NOR Gate

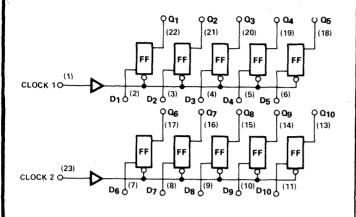
Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

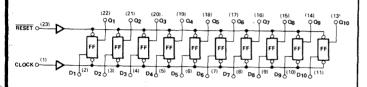
100000124

Quadruple Line Receiver

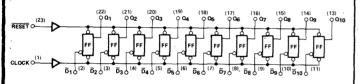
Logic Diagram/Pin Designations


 $V_{CC1} = Pin 15$ $V_{CC2} = Pin 16$ Gnd = Pin 8

Logic: $Y = \overline{A}$


100000111 100000109 100000125

Logic Diagrams


100000111

100000109

100000125

Buffer Registers

Logic Diagram/Pin Designations

 $V_{CC} = Pin 24$ Gnd = Pin 12

Truth Tables

Dual 5-Bit Buffer Register No. 100000111

D _n	Q _{n+1}
1	1
0	· 0

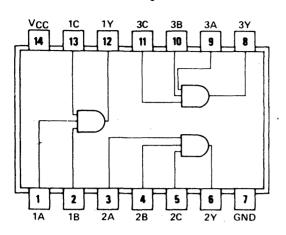
10-Bit Buffer Register No. 100000109

D _n	RESET	Q _{n+1}
1	1	1
0	1	0

10-Bit Buffer Register-Inverted Inputs No. 100000125

Ď _n	RESET	Q_{n+1}
0	1	1
1	1	0

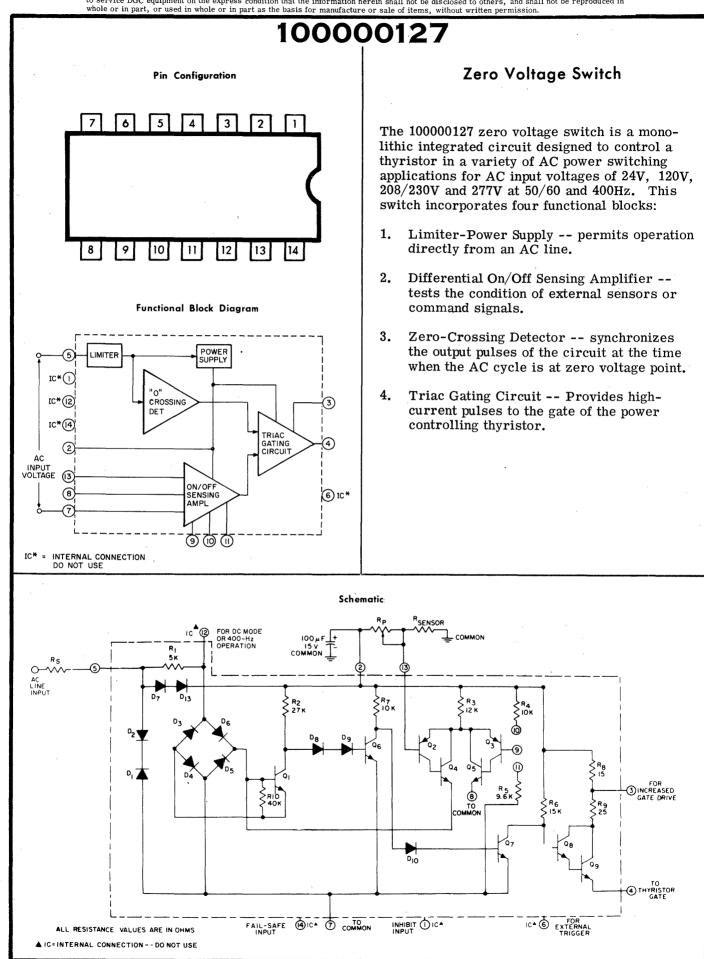
Notes:


RESET = $0 \Rightarrow Q = 0$ (overrides clock). n is time prior to clock. n+1 is time following clock.

These buffer registers are arrays of ten clocked "D" flip-flops. The flip-flops are arranged as a dual 5 array (100000111) and single 10 arrays with reset (100000109 and 100000125).

The 100000111 and 100000109 have true "D" inputs. The logic state presented at these "D" inputs will appear at the Q outputs after a negative transition of the clock. The 100000125 has complementing "D" inputs (" \overline{D} "). The logic state presented at these " \overline{D} " inputs will invert and appear at the Q outputs after a negative-going transition of the clock. The complementing input (" \overline{D} ") permits the use of standard AND-OR-INVERT gates to achieve the AND-OR function without additional gate delays.

100000126


Triple 3-Input AND Gate

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

Positive logic: Y = ABC

DGC PROPRIETARY - This manual contains proprietary information of Data General Corporation (DGC) revealed for the limited purpose only to service DGC equipment on the express condition that the information herein shall not be disclosed to others, and shall not be reproduced in

10000252 100000128

Pin Designations

 $V_{CC} = Pin \ 16$

Gnd = Pin 8

Mode Selection (Both Counters)

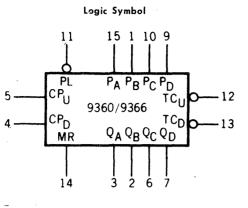
MR	$\overline{\mathrm{PL}}$	CPU	CPD	Mode
Н	Х	Х	Х	Preset (Asyn.)
\mathbf{L}	\mathbf{L}	х	X	Preset (Asyn.)
\mathbf{L}	H	Н	Н	No Change
\mathbf{L}	н	СР	н	Count Up
\mathbf{L}	H	н	СР	Count Down

Notes:

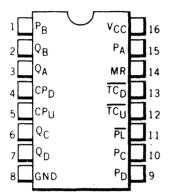
H = High voltage level

L = Low voltage level

X = Don't care condition

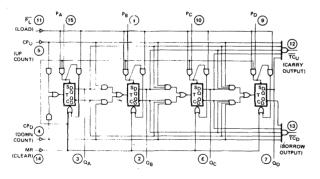

CP = Clock pulse.

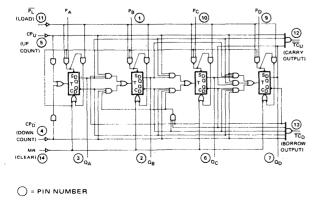
The 100000252 is a synchronous Up/Down BCD Decade Counter and the 100000128 is a synchronous Up/Down 4-Bit Binary Counter. Both counters have separate up/down clocks, parallel load facility, terminal count outputs for multidecade operation and an asynchronous overriding master reset.


These counters can be reset, preset and count up or down. The operating modes are tabulated in the Mode Selection table. The operating modes of both devices are identical; the only difference between the devices is the count sequences.

Counting is synchronous, with the outputs changing state after the Low to High transition of either the Count-Up Clock (CP_U) or Count-Down Clock (CP_D) . The direction of counting is determined by which clock input is pulsed while the other clock input is High. (Incorrect counting will occur if both the count-up clock and count-down clock inputs are Low simultaneously.) Both counters will respond to a clock pulse on either input by changing to the next appropriate state of the count sequence. The state diagram for the 100000252 shows the regular sequence and in addition shows the sequence of states if a code greater than nine is present in the counter.

Continued



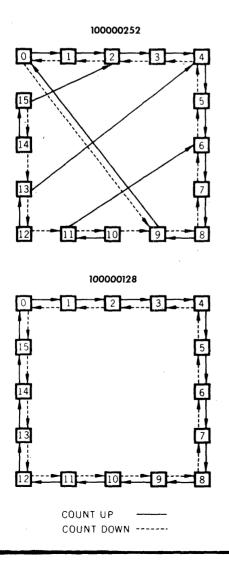


Logic Diagrams

100000252

10000252 10000128 Continued

Logic Equations for Terminal Count


100000252

$$TC_{U} = \alpha_{0} \cdot \overline{\alpha_{1}} \cdot \overline{\alpha_{2}} \cdot \alpha_{3} \cdot \overline{CP_{U}}$$
$$TC_{D} = \overline{\alpha_{0}} \cdot \overline{\alpha_{1}} \cdot \overline{\alpha_{2}} \cdot \overline{\alpha_{3}} \cdot \overline{CP_{D}}$$

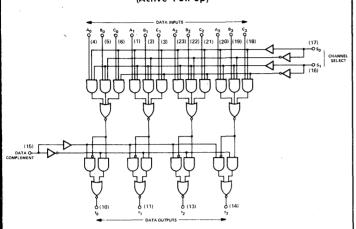
100000128

тси	=	0 ₀ ·	Q ₁ ·	• Q ₂ •	Q3 ·	CPU
тс _D	=	$\overline{\Omega_0}$.	$\overline{Q_1}$	$\overline{Q_2}$	$\overline{\Omega_3}$.	$\overline{CP_D}$

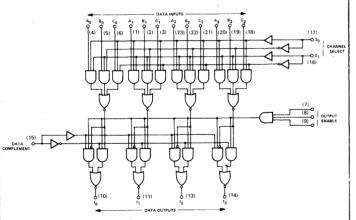
State Diagrams

Both counters have a parallel load (asynchronous) facility which permits the device to be preset. Whenever the parallel load (\overline{PL}) input is Low, and Master Reset is Low, the information present on the Parallel Data inputs (P_A , P_B , P_C , P_D) will be loaded into the counters and appear on the outputs independent of the conditions of the clock inputs. When the Parallel Load Input goes High, this information is stored in the counters and when the counters are clocked they change to the next appropriate state in the count sequence. The Parallel Data inputs are inhibited when the Parallel Load is High and have no effect on the counters.

The Terminal Count-Up (\overline{TC}_U) and Terminal Count-Down (\overline{TC}_D) outputs (carry and borrow, respectively) allow multidecade counter operations without additional logic. The counters are cascaded by feeding the terminal count-up output to the count-up clock input and terminal count-down clock input of the following counter.


The terminal count-up outputs are Low when their count-up clock inputs are Low and the counters are in state nine (100000252) and state fifteen (100000128). Similarly, the terminal count-down outputs are Low when their count-down clock inputs are Low and both counters are in state zero. Thus, when the 100000252 counter is in state nine and the 100000128 counter is in state fifteen and both are counting up, or both counters are in state zero and counting down, a clock pulse will change the counter's state on the rising edge and simultaneously clock the following counter through the appriate active Low terminal count output. There are two gate delays per state when these counters are cascaded.

The asynchronous Master Reset input (MR), when High, overrides all input and clears the counters. Master reset overrides parallel load so that when both are activated the counters will be reset. (Obviously, both parallel load and master reset must not be deactivated simultaneously for predictable operation.)


100000129

Logic Diagrams

100000129 (Active Pull-up)

100000044 (Open Collector)

3-Input, 4-Bit Digital Multiplexer

100000044

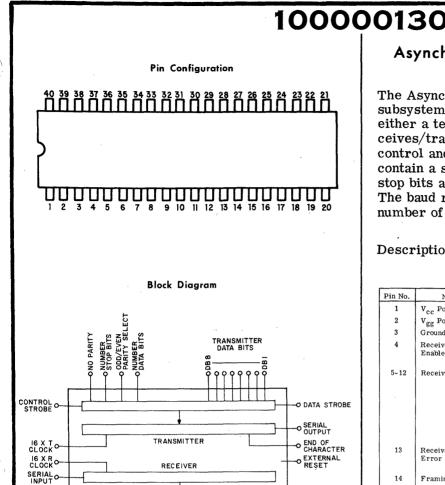
Logic Diagram/Pin Designations

$$V_{CC} = Pin 24$$

Gnd = Pin 12

Truth	Table

			Chai Sel	-	Data	Output Enable	Data
	\tilde{B}_n		s ₀	s_1	Complement	'044	Outputs
An	x	x	1	1	0	1	An
x	Вn	x	0	1	0	1	B _n
x	x	C _n	1	0	0 •	1	Cn
x	x	x	0	0	· 0	1	0
An	x	x	1	1	1 .	1	\overline{A}_n
x	Вn	x	0	1	1	1	\overline{B}_n
x	x	Cn	1	Û	1	1	\overline{C}_n
x	x	x	0	0	1	1	1
x	х	x	x	x	x	0	1


X = Either state.

The 3-input, 4-bit multiplexer is a gating array whose function is analogous to that of a 4-pole, 3-position switch. Four bits of digital data are selected from one of three inputs. A 2-bit channel-selection code determines which input is to be active.

The data complement input controls the conditional complement circuit at the multiplexer output to effect either inverting or non-inverting data flow.

The 100000129 employs active output structures to effect minimum delays; the 100000044 utilizes bare collector outputs for expansion of input terms.

The 100000044 may be expanded by connecting its outputs to the outputs of another 100000044. Provision is made for use of a 3-bit code to determine which multiplexer is selected; thus, eight multiplexers may be commoned to effect a 4-pole, 24-position switch.

STATUS WORD O ENABLE

> OVER RUNO---FRAMING O---

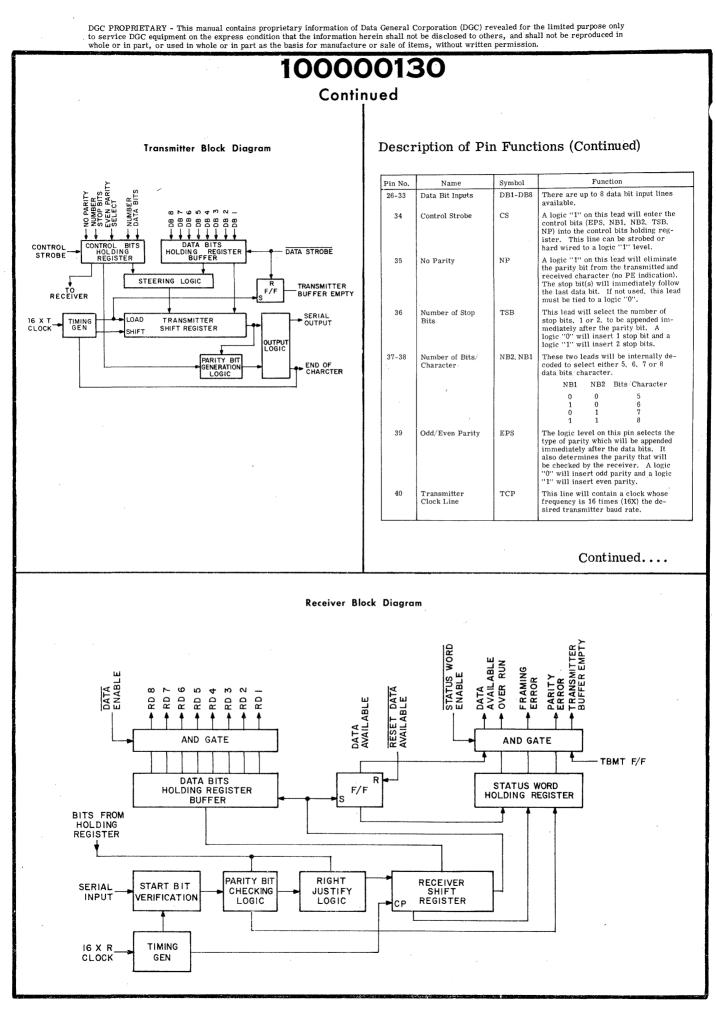
PARITY ERRORO-TRANSMITTER BUFFER EMPTY

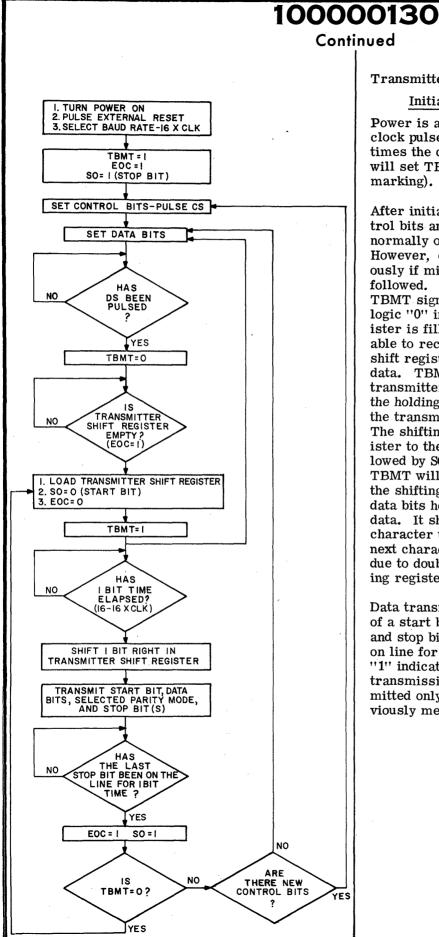
RD 8 0-

ຼ

RECEIVER DATA BITS

Asynchronous Receiver/Transmitter


The Asynchronous Receiver/Transmitter is an LSI subsystem which accepts binary characters from either a terminal device or a computer and receives/transmits this character with appended control and error detecting bits. All characters contain a start bit, 5 to 8 data bits, one or two stop bits and either odd/even parity or no parity. The baud rate (bits per word), parity mode and the number of stop bits are externally selectable.

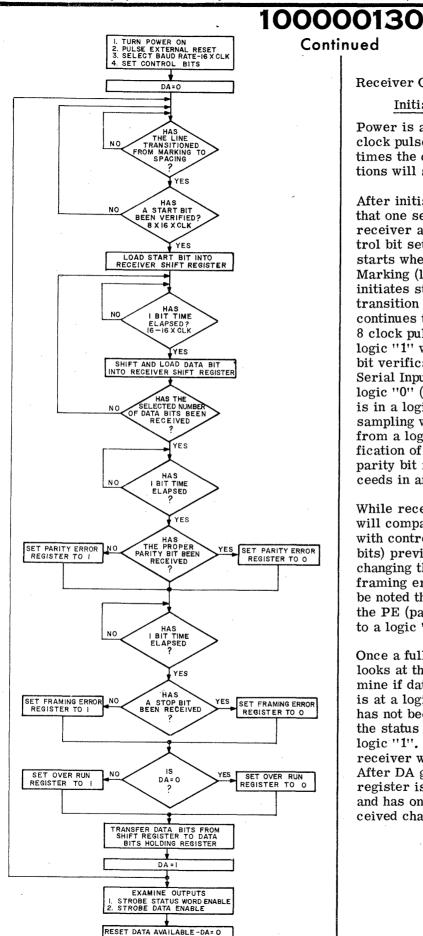

Description of Pin Functions

Pin No.	Name	Symbol	Function
1	V _{cc} Power Supply	Vcc	+5V Supply
2	V _{gg} Power Supply	v _{gg}	-12V Supply
3	Ground	Vgr	Ground
4	Received Data Enable	RDE	A logic "0" on the receiver enable line places the received data onto the output lines.
5-12	Received Data Bits	RD8-RD1	These are the 8 data output lines. Re- ceived characters are right justified, the LSB always appears on RD1. These lines have tri-state outputs; i. e., they have the normal TTL output character- istics when RDE is "0" and a high im- pedance state when RDE is "1". Thus, the data output lines can be bus struc- ture oriented.
13	Receive Parity Error	PE	This line goes to a logic "1" if the re- ceived character parity does not agree with the selected POE.
14	Framing Error	FΕ	This line goes to a logic "1" if the re- ceived character has no valid stop bit.
15	Over-Run	OR	This line goes to a logic "1" if the pre- viously received character is not read (DA line not reset) before the present character is transferred to the receiver holding register.
16	Status Word Enable	SWE	A logic "0" on this line places the status word bits (PE, FE, OR, DA, TBMT) onto the output lines. These are tri-state also.
17	Receiver Clock	RCP	This line will contain a clock whose frequency is 16 times (16X) the de- sired receiver baud rate.
18	Reset Data Available	RDA	A logic "0" will reset the DA line.
19	Receive Data Available	DA	This line goes to a logic "1" when an entire character has been received and transferred to the receiver holding reg- ister.
20	Serial Input	SI	This line accepts the serial bit input stream. A Marking (logic "1") to spacing (logic "0") transition is re- quired for initiation of data reception.
21	External Reset	XR	Resets all registers. Sets SO, EOC, and TBMT to a logic "1".
22	Transmitter Buffer Empty	TBMT	The transmitter buffer empty flag goes to a logic 'l' when the data bits holding register may be loaded with another character.
23	Data Strobe	DS	A strobe on this line will enter the data bits into the data bits holding reg- ister. Initial data transmission is initiated by the rising edge of DS.
24	End of Character	EOC	This line goes to a logic "1" each time a full character is transmitted. It re- mains at this level until the start of transmission of the next character.
25	Serial Output	SO	This line will serially, by bit, provide the entire transmitted character. It will remain at a logic "1" when no data is being transmitted.

Continued

O RECEIVED DATA ENABLE

Transmitter Operation


Initializing

Power is applied, external reset is enabled and clock pulse is applied having a frequency of 16 times the desired baud rate. The above conditions will set TBMT. EOC and SO to logic "1" (line is marking).

After initializing is completed, user may set control bits and data bits with control bits selection normally occurring before data bits selection. However, one may set both $\overline{\text{DS}}$ and CS simultaneously if minimum pulse width specifications are followed. Once data strobe (\overline{DS}) is pulsed the TBMT signal will change from a logic "1" to a logic "0" indicating that the data bits holding register is filled with a previous character and is unable to receive new data bits, and transmitter shift register is transmitting previously loaded data. TBMT will return to a logic "1". When transmitter shift register is empty, data bits in the holding register are immediately loaded into the transmitter shift register for transmission. The shifting of information from the holding register to the transmitter shift register will be followed by SO and EOC going to a logic "0", and TBMT will also go to a logic "1" indicating that the shifting operation is completed and that the data bits holding register is ready to accept new data. It should be remembered that one full character time is now available for loading of the next character without loss in transmission speed due to double buffering, (separate data bits holding register and transmitter shift register).

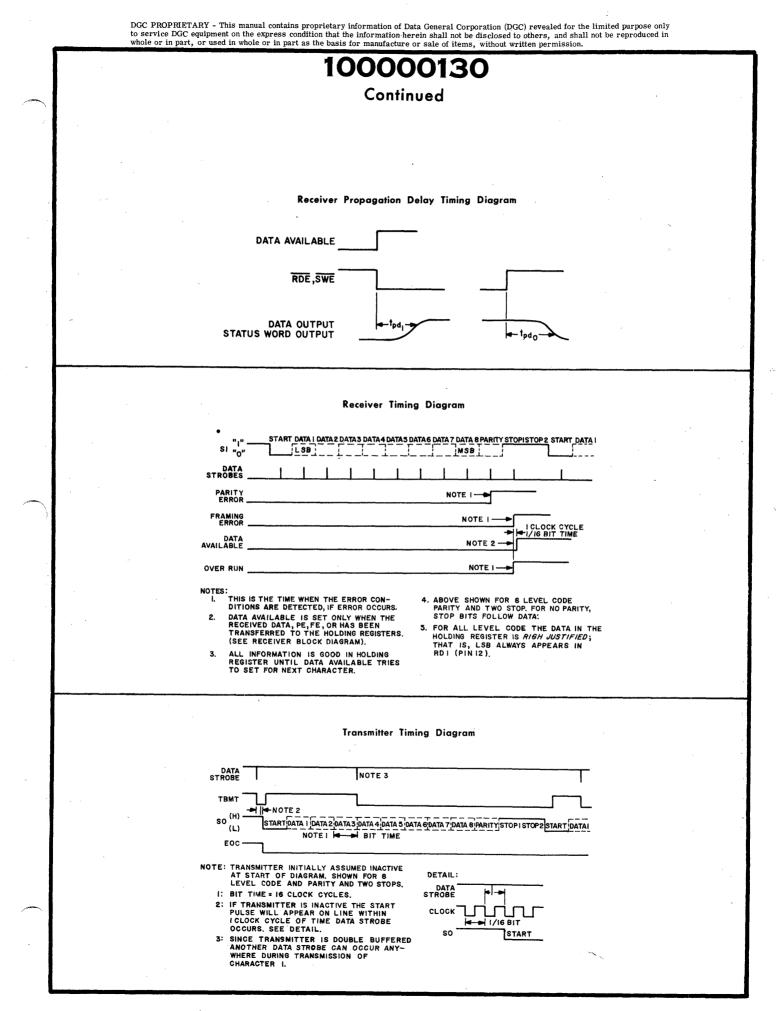
Data transmission is initiated with transmission of a start bit, data bits, parity bit (if desired) and stop bit(s). When the last stop bit has been on line for one bit time. EOC will go to a logic "1" indicating that new character is ready for transmission. This new character will be transmitted only if TBMT is a logic "0" as was previously mentioned.

Continued....

Continued

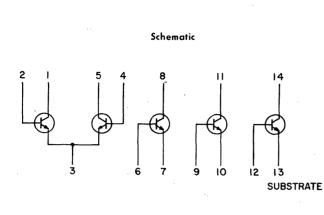
Receiver Operation

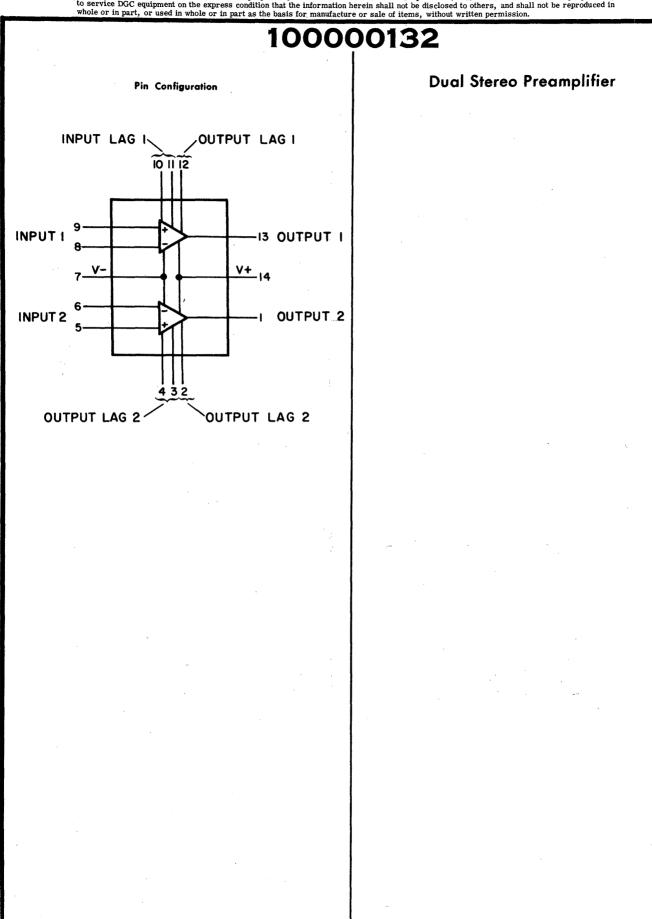
Initializing


Power is applied, external reset is enabled, and clock pulse is applied having a frequency of 16 times the desired baud rate. The previous conditions will set data available (DA) to a logic "0".

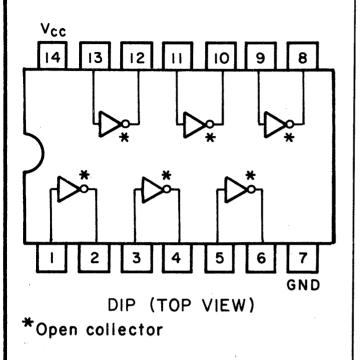
After initializing is completed, user should note that one set of control bits will be used for both receiver and transmitter making individual control bit setting unnecessary. Data reception starts when serial input signal changes from Marking (logic "1") to spacing (logic "0") which initiates start bit. The start bit is valid if, after transition from logic "1" to logic "0", the SI line continues to be at logic "0", when center sampled, 8 clock pulses later. If, however, line is at a logic "1" when center sampling occurs the start bit verification process will be reset. If the Serial Input line transitions from a logic "1" to a logic "0" (marking to spacing) when the 16X clock is in a logic "1" state, the bit time for center sampling will begin when the clock line transitions from a logic "1" to a logic "0" state. After verification of a genuine start bit, data bit reception, parity bit reception and stop bit(s), reception proceeds in an orderly manner.

While receiving parity and stop bit(s) the receiver will compare transmitted parity and stop bit(s) with control data bits (parity and number of stop bits) previously set and indicate an error by changing the parity error flip-flop and/or the framing error flip-flop to a logic "1". It should be noted that if the No Parity Mode is selected the PE (parity error) will be unconditioning set to a logic "0".


Once a full character is received, internal logic looks at the data available (DA) signal to determine if data has been read out. If the DA signal is at a logic "1" the receiver will assume data has not been read out and the overrun flip-flop of the status word holding register will be set to a logic "1". If the DA signal is at a logic "0" the receiver will assume that data has been read out. After DA goes to a logic "1", the receiver shift register is now ready to accept the next character and has one full character time to remove the received character.


Continued....

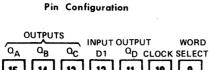
100000131


General Purpose Transistor Array

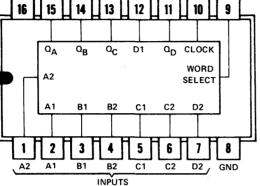
100000133

Pin Configuration

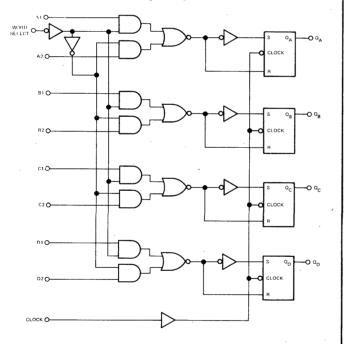
Hex Inverter


Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7


Positive logic: $Y = \overline{A}$

100000134


WORD

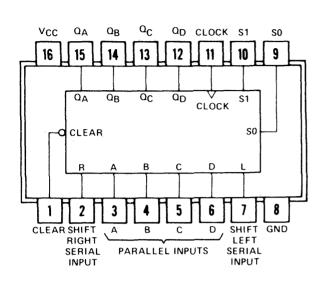
Vcc

Logic Diagram

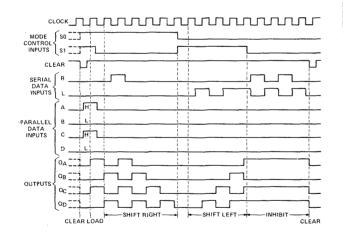
4-Bit Data Selector/Storage Register

Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8


Positive logic: word select low for word 1, word select high for word 2.

This monolithic data selector/storage register is composed of four S-R master-slave flip-flops. four AND-OR-INVERT gates, one buffer and six inverter/drivers.


When the word select input is low, word 1 (A1, B1, C1, D1) is applied to the flip-flops. A high input to word select will cause the selection of word 2 (A2, B2, C2, D2). The selected word is shifted to the output terminals on the negativegoing edge of the clock pulse.

100000135 100000234

Pin Configuration

Typical Clear, Load, Right-Shift, Left-Shift, Inhibit, and Clear Sequences

4-Bit Bidirectional Universal Shift Registers

Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Function Table

INPUTS											OUTI	PUTS	
	MO	DE	CLOCK	SEF	TIAL	PARALLEL			L	0.	0	~	
CLEAR	S ₁	S ₀	CLUCK	LEFT	RIGHT	Α	в	С	D	QA	QB	α _C	٥D
L	X	х	х	х	х	х	х	х	х	L	L	L	L
н	x	х	L	x	х	х	х	х	х	0 _{A0}	QB0	0 _{C0}	σ_{D0}
н	н	н	1	x	х	а	b	с	d	а	b	с	d
Η.	L	н	† †	×	н	х	х	х	х	н	0 _{An}	QBn	QCn
н	L	н	1	x	L	х	х	х	х	L	QAn	QBn	0 _{Cn}
н	н	L	† ,	н	х	х	х	х	х	QBn	QCn	Q _{Dn}	н
н	н	L	† 1	L	х	х	х	х	х	QBn	QCn	Q _{Dn}	L
н	L	L	x	×	х	x	х	х	х	0 _{A0}	Q _{B0}	QC0	QDC

- H = high level (steady state).
- L = low level (steady state).
- X = irrelevant (any input, including transitions).
- \dagger = transition from low to high level.
- a, b, c, d = the level of steady-state input at inputs A, B, C or D, respectively.
- Q_{A0} , Q_{B0} , Q_{C0} , Q_{D0} = the level of Q_A , Q_B , Q_C or Q_D , respectively, before the indicated steady-state input conditions were established.
- Q_{An} , Q_{Bn} , Q_{Cn} , Q_{Dn} = the level of Q_A , Q_B , Q_C or Q_D , respectively, before the most recent † transition of the clock.

Note: The 100000234 is a Shottky device.

The circuit contains 46 equivalent gates and features parallel inputs, parallel outputs, rightshift and left-shift serial inputs, operating-modecontrol inputs, and a direct overriding clear line. The register has four distinct modes of operation:

Parallel (Broadside) Load

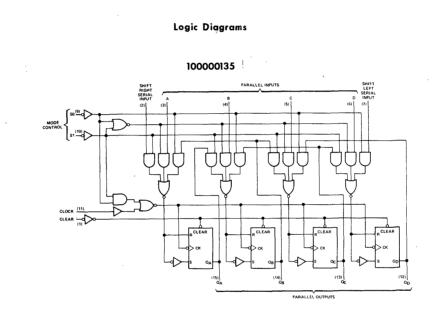
Shift Right (in the direction Q_A toward Q_D)

Shift Left (in the direction Q_D toward Q_A)

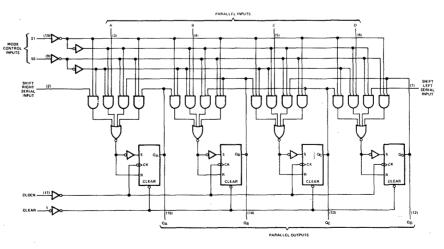
Inhibit Clock (Do nothing)

Continued....

100000135 100000234

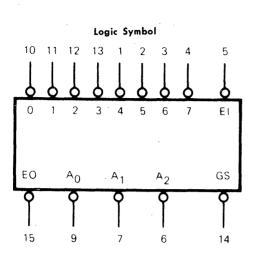

Continued

Synchronous parallel loading is accomplished by applying the four bits of data and taking both mode control inputs, S_0 and S_1 , high. The data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

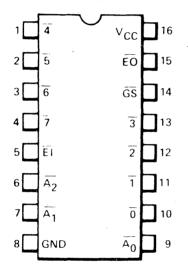

Shift right is accomplished synchronously with the rising edge of the clock pulse when S_0 is high

and S_1 is low. Serial data for this mode is entered at the shift-right data input. When S_0 is low and S_1 is high, data shifts left synchronously and new data is entered at the shift-left serial input.

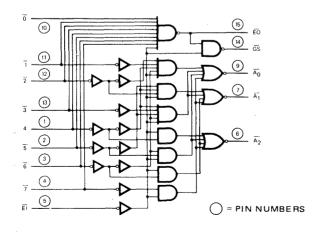
Clocking of the flip-flop is inhibited when both mode control units are low. The mode controls of the 100000135 should be changed only while the clock input is high.



100000234



.... dynamic input activated by a transition from a high level to a low level.


100000136

Pin Configuration

Logic Diagram

Eight-Input Priority Encoder

Logic Diagram/Pin Designations

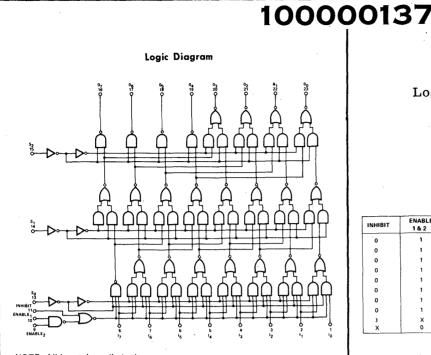
$V_{CC} = Pin 16$

Gnd = Pin 8

Pin Names

0	Priority (Active LOW) Input
1 to 7	Priority (Active LOW) Inputs
	Enable (Active LOW) Input
	Enable (Active LOW) Output
	Group Select (Active LOW) Output
$\overline{A_0}, \overline{A_1}, \overline{A_2}$.	Address (Active LOW) Outputs

Truth Table


ĒĪ	ō	1	2	3	4	5	6	7	GS	$\overline{A_0}$	$\overline{A_1}$	$\overline{A_2}$	ΈŌ
н	х	x	x	x	x	x	x	х	н	Н	н	н	Н
L	Н	н	н	н	н	H	н	Н	н	н	н	н	\mathbf{L}
L	Х	х	Х	х	х	Х	х	\mathbf{L}	L	\mathbf{L}	\mathbf{L}	\mathbf{L}	H
L	Х	Х	Х	Х	Х	Х	\mathbf{L}	н	L	Η	\mathbf{L}	\mathbf{L}	H
L	Х	Х	Х	Х	Х	\mathbf{L}	H	H	L	\mathbf{L}	Н	\mathbf{L}	H
L	Х	х	Х	Х	\mathbf{L}	H	н	H	L	Н	Н	\mathbf{L}	Н
L	Х	Х	Х	\mathbf{L}	H	H	Н	H	L	\mathbf{L}	\mathbf{L}	н	H
L	Х	Х	\mathbf{L}	Н	Η	н	н	H	L	H	\mathbf{L}	н	н
\mathbf{L}	Х	\mathbf{L}	Η	Н	Η	Η	Н	H	L	\mathbf{L}	н	H	H
\mathbf{L}	\mathbf{L}	н	\mathbf{H}	н	н	н	н	Η	L	H	H	н	H

H = HIGH Voltage Level L = LOW Voltage Level X = Don't Care

The 100000136 is a multipurpose 8-input priority encoder designed to accept data from eight active LOW inputs and provides a binary representation on the three active LOW outputs. A priority is assigned to each input so that when two or more inputs are simultaneously active, the input with the highest priority is represented on the output, with input line 7 having the highest priority.

A HIGH on the Input Enable (\overline{EI}) will force all outputs to the inactive (HIGH) state and allow new data to settle without producing erroneous information at the outputs.

A Group Signal output (\overline{GS}) and an Enable Output (\overline{EO}) are provided with the three data outputs. The \overline{GS} is active level LOW when any input is LOW; this indicates when any input is active. The \overline{EO} is active level LOW when all inputs are HIGH. Using the output enable along with the input enable allows priority encoding of N input signals. Both \overline{EO} and \overline{GS} are inactive HIGH when the input enable is HIGH.

NOTE: All inputs have diode clamps.

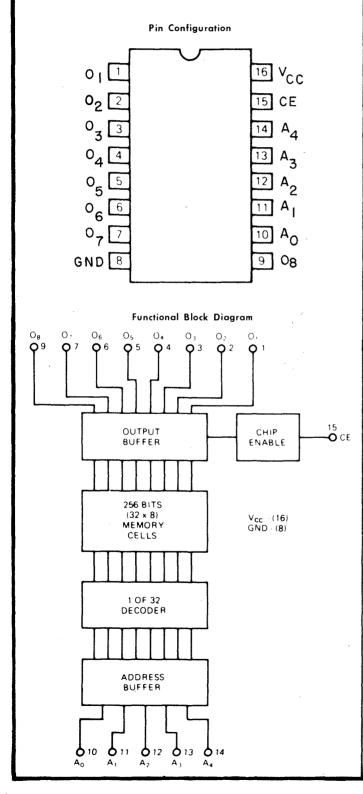
8-Bit Position Scaler

Logic Diagram/Pin Designations

 $V_{CC} = Pin 24$ Gnd = Pin 12

Truth Table

INHIBIT	ENABLE 1&2	s _o	s ₁	s2	o ₀	°,1	o ₂	0 ₃	°4	0 ₅	0 ₆	07
0	1	0	0	0	T ₀	ĩ	$\overline{1}_2$	ī ₃	ī4	ī ₅	Ĩ ₆	T7
0	1	1	0	0	T	ī,	\overline{i}_3	ī4	ī ₅	ī ₆	17	1
0	1	0	1	0	12	T ₃	T ₄	¹ 5	T ₆	Ĩ7	1	1
0	1	1	1	0	Ta	T ₄	T ₅	T ₆	T7	1	1	1
0	1	0	0	1	T ₄	T ₅	T ₆	T7	1	1	1	1
0	1	1	0	1	T ₅	T ₆	T ₇	1	1	1 .	1	1
0	1	0	1	1	T ₆	T ₇	1	• 1	1	1	1	1
0	1	1	1	1	T ₇	1	1	1	1.	1	1	1
1	×	x	×	×	1	1	1	1	1	1	1 -	1
x	0	x	x	x	1	1	1	1	1	1	1	1


Note:

X indicates either logic "1" or logic "0" may be present.

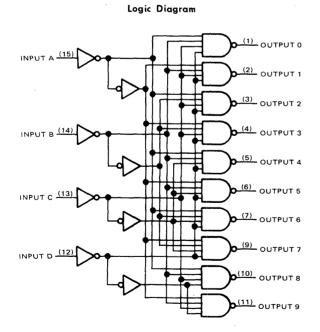
The 8-bit position scaler is an MSI array of approximately 70 gate complexity. The primary function of this device is to scale (or shift) data bit positions by a selection of a 3-bit binary selector code.

The most significant bit input (I_7) may be shifted 8 positions to the least significant bit output (O_0) . At zero shift, or scale select, all eight input data bits are transferred and inverted to their respective outputs, $(I_0 \text{ to } O_0, I_1 \text{ to } O_1, I_2 \text{ to } O_2, \text{ etc.})$ At a shift, or scale select, of one, each input bit (I_n) will shift to the next lower output bit (O_{n-1}) . See truth table for other shift codes.

100000140100000141100000142100000148100000149100000215100000216100000217100000218100000219100000219

256-Bit Bipolar Read Only Memory

Logic Diagram/Pin Designations


 $V_{CC} = Pin 16$ Gnd = Pin 8

These high speed, electrically programmable, fully decoded TTL bipolar 256-bit read only memories are organized as 32 words by 8 bits.

Memory expansion is simple; three-state outputs are provided on the 100000215; uncommitted collector outputs are provided on all other devices. Each device has on-chip address decoding and chip enable. The memory is fabricated with all logic level zeroes(low); logic level ones (high) can be electrically programmed in the selected bit locations. The same address inputs are used for both programming and reading.

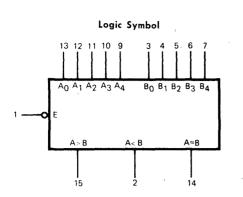
100000143

Pin Configuration INPUTS OUTPUTS В C D CC 9 8 16 15 13 12 14 11 10 Q BCD-TO-DECIMAL 0 2345678 1 Q 2 3 1 6 0 6 GND OUTPUTS

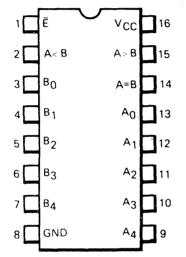
BCD-To-Decimal Decoder-Driver

Logic Diagram/Pin Designations

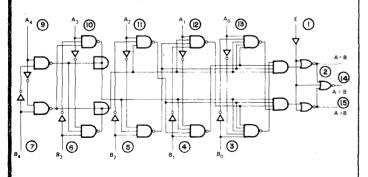
 $V_{CC} = Pin 16$ Gnd = Pin 8


	Fun	ction	Table
--	-----	-------	-------

	Inputs				Outputs									
No.	D	С	В	A	0	1	2	3	4	5	6	7	8	9
0	L	L	L	L	L	Н	Н	Н	Н	Н	Н	н	Н	Н
1	L	L	L	H	H	L	H	H	H	H	H	H	H	H
	L L	$_{ m L}$	H H	$_{ m H}^{ m L}$	H H	H H	L H	H L	H H	H H	H H	H H	H H	H H
4	L	н	L	$^{ m n}_{ m L}$	H	H	H	H	L	H	н Н	H	H	H
5	L	Н	L	Н	Н	Н	н	Н	Н	L	Н	Н	Н	Н
6	L	H	Н	\mathbf{L}	H	Η	Н	Η	Η	Н	\mathbf{L}	H	н	Н
7	L	H	H	Н	H	H	H	H	H	H	H	L	H	H
8	H	Ľ,	Г Г	\mathbf{L}	H	Н	Н	H	H	Н	Н	H	\mathbf{L}	Н
9	Н	L	L	H	H	H	H	Η	H	H	H	<u> </u>	H	L
	Н	L	Н	L	н	Η	Н	Н	Н	H	Н	H	Н	Н
g	H	\mathbf{L}	Н	Н	Н	Η	Η	Η	Η	Н	н	Н	Н	н
al	H	Η	\mathbf{L}	\mathbf{L}	H	Н	Н	Н	н	н	н	Η	Н	Η
Invalid	H	Η	\mathbf{L}	Η	H	Η	Н	Н	Н	Н	Η	Н	Н	Η
	H	Η	Η	\mathbf{L}	H	Н	Η	Η	Η	Н	H	Н	H	Н
	Н	H	H	H	H	H	H	H	H	H	H	H	H	H


H = high level (off); L = low level (on).

This monolithic BCD-to-decimal decoder/ driver consists of eight inverters and ten fourinput NAND gates. The inverters are connected in pairs to make BCD input data available for decoding by the NAND gates. Full decoding of valid BCD input logic ensures that all outputs remain off for all invalid binary input conditions.



Pin Configuration

Logic Diagram

O = PIN NUMBERS

5-Bit Comparator

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Pin Names

Ē	Enable (Active LOW) Input
$A_0, A_1, A_2, A_3, A_4, \ldots$	Word A Parallel Inputs
$B_0, B_1, B_2, B_3, B_4, \ldots$	Word B Parallel Inputs
A < B	A Less Than B Output
A > B	A Greater Than B Out- put

 $A = B \dots A$ Equal to B Output

Truth Table

Ē	Ay	Ву	A <b< th=""><th>A>B</th><th>A=B</th></b<>	A>B	A=B
H	X	X Word D	L	L	L
	Word A = Word A >	Word B		Ц Н	H L
L	Word B $>$	Word A	H	\mathbf{L}	

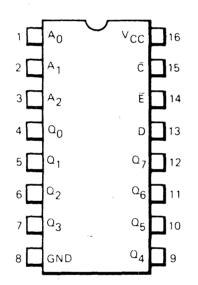
H = HIGH Voltage Level

L = LOW Voltage Level

X = Either HIGH or LOW Voltage Level

The 100000144 is a high speed expandable comparator which provides comparison between two 5-bit words and gives three outputs, "less than", "greater than" and "equal to". A HIGH level on the active LOW enable input forces all three outputs LOW.

This 5-bit comparator uses combinational circuitry to directly generate "A greater than B" and "A less than B" outputs. As evident from the logic diagram, these outputs are generated in only three gate delays. The "A equals B" output is generated in one additional gate delay by decoding the "A neither less than nor greater than B" condition with a NOR gate. All three outputs are activated by the active LOW Enable input (\overline{E}).


Tying the A > B output from one device into an A input on another device and the A < B output into the corresponding B input permits easy expansion.

The A₄ and B₄ inputs are the most significant inputs, and A₀ and B₀ are the least significant. Thus, if A₄ is HIGH and B₄ is LOW, the A > B output will be HIGH regardless of all other inputs except \overline{E} .

100000145

Logic Symbol 2 3 14 13 D $A_0 A_1 A_2$ 9334 $Q_0 Q_1 Q_2 Q_3 Q_4 Q_5 Q_6 Q_7$ 15 Δ 5 6 9 10 12 11

Pin Configuration

8-Bit Addressable Latch

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$

Gnd = Pin 8

Pin Names

A0, A1, A2 A0	ddress Inputs
D Da	ata Input
Ē E 1	nable (Active LOW) Input
$\overline{\mathbf{C}}$ \mathbf{C}	lear (Active LOW) Input
	arallel Latch Outputs

Truth Table

			,					Prese	ent Ou	tput Stat	tes			
Ē	Ē	D	A0	A1	A2	Q0	Q1	Q ₂	Q3	Q4	Q5	Q6	Q7	Mode
L	Н	х	х	х	х	L	L	L	L	L	L	L	L	Clear
L	L	\mathbf{L}	L	L	L	L	L	L	L	L	L	L	Ĺ	Demultiplex
L	L	н	L	L	L	н	L	L	L	\mathbf{L}	L	. L	L	
L	L	L	н	Ŀ	L	L	L	L	L	L	L	L	L	
L	L	н	н	L	L	L	н	L	L	L	L	L	L	
1.														
[·	•	·		·					•					[
·	•	٠		·					·					
L	L	Н	н	Н	н	L	L	L	L	L	L	L	н	
H	Н	х	х	х	х	QN-	1						>	Memory
н	L	L	L	L	L	L	Q _{N-1}	Q _{N-1}	QN-					Addressable
н	L	н	L	L	L	н	QN-1	Q_{N-1}					>	Latch
н	L	L	н	\mathbf{L}	L	Q _{N-}	L	Q _{N-1}						
н	L	н	н	L	L	QN-	ЦН	Q _{N-1}					→	
1.	·	·		·		t.		·						
1:	÷	:		•	**			·				0	. т	
H		L	Н	н	Н		1					► QN-1		
Н	L	Н	Н	Н	H	QN-	1				· · · · · · · · · · · · · · · · · · ·	► QN-1	H	

X = Don't Care Condition

L = LOW Voltage Level

H = HIGH Voltage Level

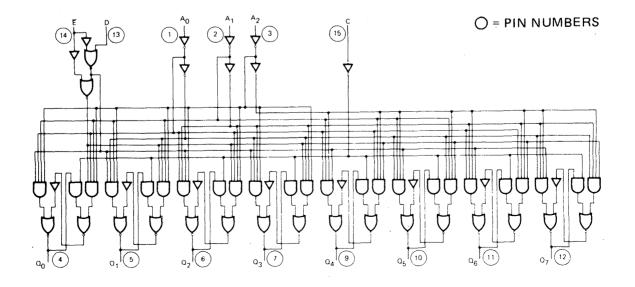
 Q_{N-1} = Previous Output State

Mode Selection

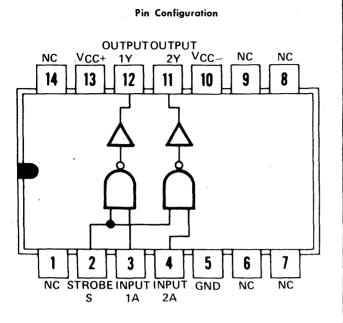
Ē	Ē	Mode
L	H	Addressable Latch
н	Η	Memory
	\mathbf{L}	Active HIGH Eight-Channel
		Demultiplexer
H	L	Clear

The 100000145 is a high speed 8-bit addressable latch designed for general purpose storage applications in digital systems. It is a multifunctional device capable of storing single line data in eight addressable latches, and being a one-of-eight decoder and demultiplexer with active level HIGH outputs. The device also incorporates an active level LOW common clear for resetting all latches as well as an active level LOW enable.

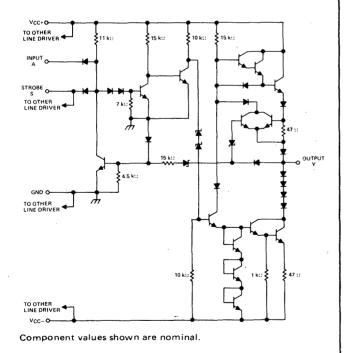
This latch has four modes of operation, which are shown in the mode selection table. In the addressable latch mode, data on the data line (D)


100000145 Continued

is written into the addressed latch. The addressed latch will follow the data input with all nonaddressed latches remaining in their previous states. In the memory mode, all latches remain in their previous state and are unaffected by the data or address inputs.

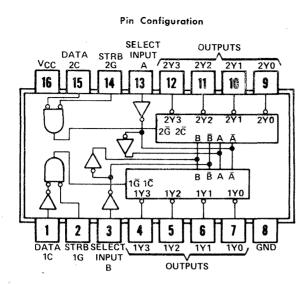

In the one-of-eight decoding or demultiplexing mode, the addressed output will follow the state of the D input with all other outputs in the LOW state. In the clear mode all outputs are LOW and unaffected by the address and data inputs.

When operating this device as an addressable latch, changing more than one bit of the address could impose a transient wrong address. Therefore, this should only be done while in the memory mode.

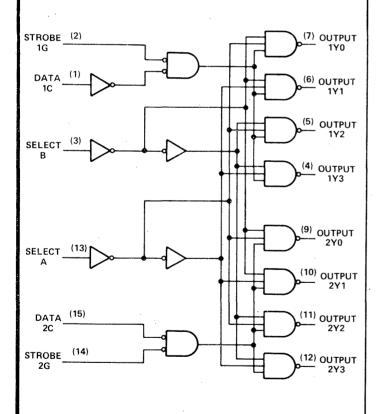

Logic Diagram

100000146

Dual Line Driver


Pin Designations

 $V_{CC+} = Pin \ 13$ $V_{CC-} = Pin \ 10$ $Gnd = Pin \ 5$ NC = No Internal ConnectionPositive logic: $Y = \overline{AS}$


This device is a monolithic dual line driver which satisfies the requirements of the standard interface between data terminal equipment and data communication equipment as defined by EIA Standard RS-232-C.

A rate of 20,000 bits per second can be transmitted with a full 2500pF load.

Logic Diagram

Dual 2-Line-To-4-Line Decoder/Demultiplexer

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Function Tables 2-Line-To-4-Line Decoder or 1-Line-To-4-Line Demultiplexer

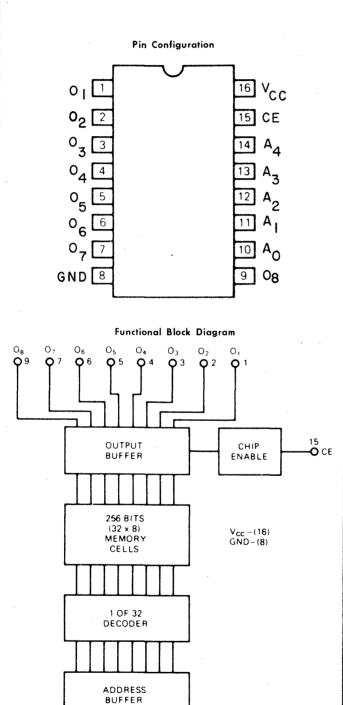
			Inputs			Out	puts	
I	Sel	ect	Strobe	Data				
	в	Α	1G	1C	1Y0	1Y1	1Y2	1Y3
	х	х	н	х	н	н	н	н
	\mathbf{L}	\mathbf{L}	L	н	L	н	н	н
	\mathbf{L}	н	L	н	н	\mathbf{L}	H	н
	н	\mathbf{L}	L	н	н	н	\mathbf{L}	н
	н	H	L	Н	н	H	H	\mathbf{L}
	х	х	х	L	н	Н	Н	H

Γ			Inputs			Out	puts	
Γ	Sel	ect	Strobe	Data				
	в	Α	2G .	2C	2Y0	2Y1	2Y2	2Y3
Γ	х	х	н	х	н	Н	н	н
	\mathbf{L}	\mathbf{L}	L	\mathbf{L}	L	\mathbf{H}	н	н
	\mathbf{L}	н	L	\mathbf{L}	н	\mathbf{L}	н	н
	H	\mathbf{L}	L	\mathbf{L}	н	н	\mathbf{L}	н
	H	н	L	\mathbf{L}	н	\mathbf{H}	н	\mathbf{L}
L	х	х	Х	Н	H	H	Н	н

Function Table 3-Line-To-8-Line Decoder or 1-Line-To-8-Line Demultiplexer

Inp				Out	outs				
Select	Strobe or Data	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)
C*B A	G**	2Y0	2Y1	2Y2	2Y3	1Y0	1Y1	1Y2	1Y3
ххх	н	н	н	H	н	н	н	н	н
LLL	L	\mathbf{L}	н	Η	Н	H	н	H	н
LLH	L	Н	\mathbf{L}	Н	H	н	Н	H	н
LHL	L	Н	н	\mathbf{L}	н	н	н	H	н
LHH	L	Н	H	Н	L	H	H	н	н
HLL	L	Н	н	Н	н	\mathbf{L}	н	н	н
HLH	L	H	н	Η	H	н	\mathbf{L}	н	н
HHL	L	н	н	н	н	\mathbf{H}	н	\mathbf{L}	Ή
ннн	L	H	н	н	н	Η	н	н	\mathbf{L}

Notes: *C = inputs 1C and 2C connected together. **G = inputs 1G and 2G connected together. H = high level, L = low level, X = irrelevant.


The 100000147 monolithic TTL circuit features dual 1-line-to-4-line demultiplexers with individual strobes and common binary-address inputs in a single 16-pin package. When both sections

Continued

100000147 Continued

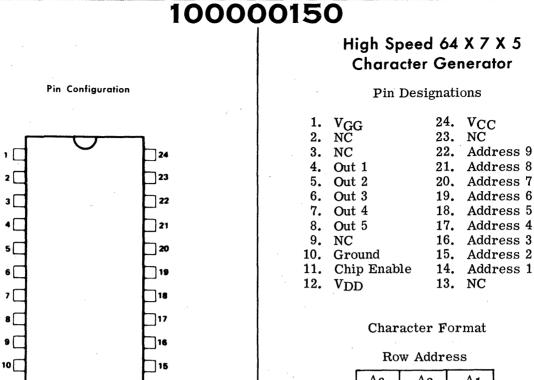
are enabled by the strobes, the common binaryaddress inputs sequentially select and route associated input data to the appropriate output of each section. The individual strobes permit activating or inhibiting each of the 4-bit sections as desired. Data applied to input 1C is inverted at its outputs and data applied at 2C is not inverted through its outputs. The inverter following the 1C data input permits use as a 3-to-8-line decoder or 1-to-8-line demultiplexer without external gating. Input clamping diodes are provided to minimize transmission-line effects and simplify system design.

100000140100000141100000142100000148100000149100000215100000216100000217100000218100000219100000219

610

Ö11

012 **0**13 **0**14


256-Bit Bipolar Read Only Memory

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

These high speed, electrically programmable, fully decoded TTL bipolar 256-bit read only memories are organized as 32 words by 8 bits.

Memory expansion is simple; three-state outputs are provided on the 100000215; uncommitted collector outputs are provided on all other devices. Each device has on-chip address decoding and chip enable. The memory is fabricated with all logic level zeroes(low); logic level ones (high) can be electrically programmed in the selected bit locations. The same address inputs are used for both programming and reading.

A3	A ₂	A1
0	0	0
0 0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

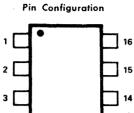
Character Address

	A4	A5	A ₆	A7	A8	Ag
ASCII Character	1	1	0	0	1	0

The 100000150 is a high speed 2560-bit static ROM. The 64x7x5 character organization is formed on a 64x8x5 field.

The product uses +5V, -5V and -12V power supplies, 5V TTL level input signals and tristate outputs.

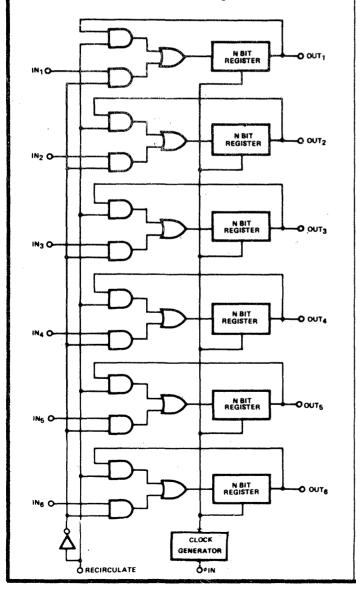
Block Diagram


11

CE	OUTPUT
0	DATA
1	OPEN

14

13

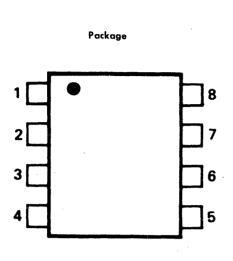


5

8

Functional Block Diagram

Hex 40-Bit Static Shift Register


Pin Designations

1.	IN4	16.	VCC
2.	IN5	15.	IN3
3.	IN6	14.	IN_2
4.	Recirculate	13.	IN_1
5.	V _{GG}	12.	OUT_1
	Clock	11.	OUT_2
7.	OUT_6		OUT_3
8.	OUT_5	9.	OUT4

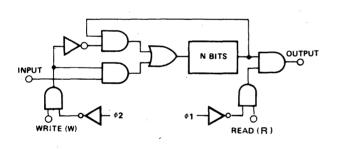
Truth Table

Recirculate	Input	Function
1	0	Recirculate
1	1	Recirculate
0	0	''0'' is Written
0	1	''1'' is Written

The Hex 40-bit recirculating static shift register consists of enhancement mode P-channel silicon gate MOS devices integrated on a single monolithic chip. Internal recirculation logic plus TTL/DTL level clock signals are provided for interfacing capability.

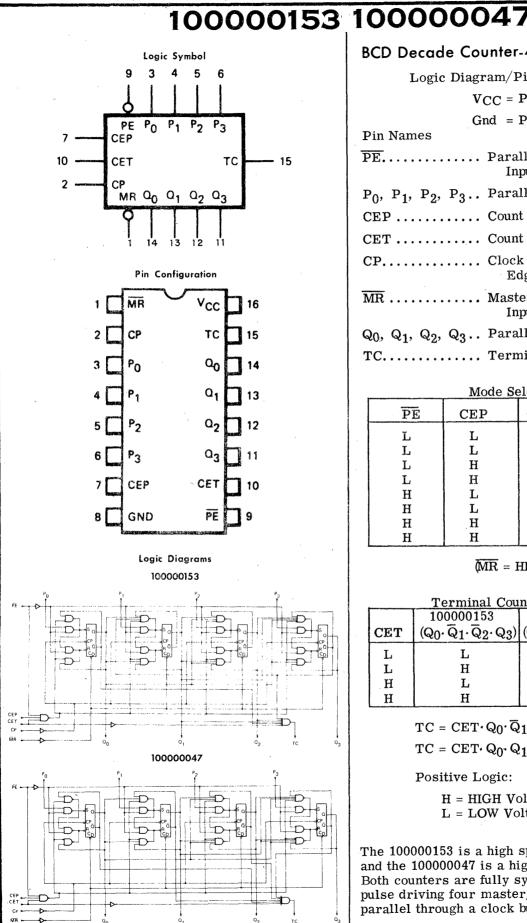
100000152

1024-Bit Recirculating Dynamic Shift Register


Pin Designations

1.	02 Input clock	8.	VCC
-	Output	7.	01 Output clock
3.	Read	6.	Input
4.	νσσ	5.	Write

Truth Table


Write	Read	Function	
0	0	Recirculate, Output is "0"	
0	1	Recirculate, Output is Data	
1	0	Write Mode, Output is "0"	
1	1	Read Mode, Output is Data	

The 1024 bit recirculating dynamic shift register consists of enhancement mode P-channel MOS devices integrated on a single monolithic chip. Internal recirculation logic plus write and read controls are included on the chip.

Block Diagram

NOTE: N = 1024 '0' = 0V, '1' = +5V

BCD Decade Counter-4 Bit Binary Counter				
Logic Diagram/Pin Designations				
$V_{CC} = Pin 16$				
Gnd = Pin 8				
Pin Names				
PEParallel Enable (Active LOW)Input				
P_0 , P_1 , P_2 , P_3 Parallel Inputs				
CEP Count Enable Parallel Input				
CET Count Enable Trickle Input				
CP Clock (Active HIGH Going Edge) Input				
MR Master Reset (Active LOW) Input				
Q_0, Q_1, Q_2, Q_3 Parallel Outputs				
TC Terminal Count Outputs				

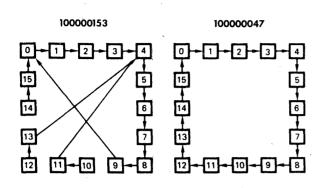
Mode Selection PE CEP CET Mode L \mathbf{L} Γ Preset Preset \mathbf{L} \mathbf{L} Η H Preset L \mathbf{L} \mathbf{L} Η Η Preset No Change Η L \mathbf{L} \mathbf{L} Η No Change Η Н \mathbf{L} No Change Η Н Count H Η

 $\overline{MR} = HIGH$

Terminal Count Generation					
	100000153 10000047				
CET	$(\mathbf{Q}_0 \cdot \overline{\mathbf{Q}}_1 \cdot \overline{\mathbf{Q}}_2 \cdot \mathbf{Q}_3)$	$(\mathbf{Q}_0\!\cdot\!\mathbf{Q}_1\!\cdot\!\mathbf{Q}_2\!\cdot\!\mathbf{Q}_3)$	ТĊ		
L	L	L	\mathbf{L}		
L	Н	Н	L		
H	\mathbf{L}	L	L		
Η	Н	H	H		

 $TC = CET \cdot Q_0 \cdot \overline{Q}_1 \cdot \overline{Q}_2 \cdot Q_3 \ (100000153)$ $TC = CET \cdot Q_0 \cdot Q_1 \cdot Q_2 \cdot Q_3 (10000047)$

Positive Logic:


H = HIGH Voltage Level L = LOW Voltage Level

The 100000153 is a high speed BCD decade counter, and the 100000047 is a high speed binary counter. Both counters are fully synchronous with the clock pulse driving four master/slave flip-flops in parallel through a clock buffer. During the

Continued ..

100000153 100000047

Continued

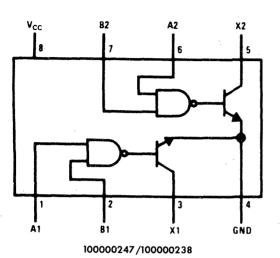
Logic Equations

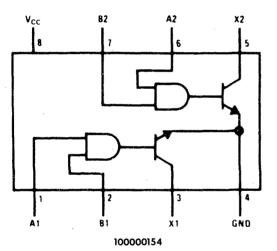
 $\begin{array}{l} \text{Count Enable} = \text{CEP} \cdot \text{CET} \cdot \text{PE} \\ \text{TC for 100000153} = \text{CET} \cdot \text{Q}_0 \cdot \overline{\text{Q}_1} \cdot \overline{\text{Q}_2} \cdot \text{Q}_3 \\ \text{TC for 100000047} = \text{CET} \cdot \text{Q}_0 \cdot \text{Q}_1 \cdot \text{Q}_2 \cdot \text{Q}_3 \\ \text{Preset} = \overline{\text{PE}} \cdot \text{CP} + (\text{rising clock edge}) \\ \text{Reset} = \overline{\text{MR}} \end{array}$

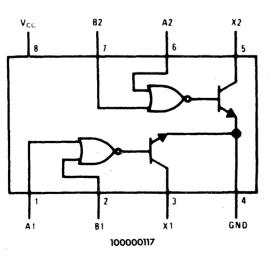
Note: The 100000153 can be preset to any state but will not count beyond 9. If preset to state 10, 11, 12, 13, 14 or 15, it will return to its normal sequence within two clock pulses. LOW to HIGH transition of the clock, the master is inhibited from further change. After the masters are locked out, data is transferred from the master to the slaves and reflected at the outputs. When the clock is HIGH, the masters are inhibited and the master/slave data path remains established. During the HIGH to LOW transition of the clock, the slave is inhibited from further change, followed by the enabling of the masters for the acceptance of data from the counting logic or the parallel entry logic.

The three control inputs, Parallel Enable (\overline{PE}) , Count Enable Parallel (CEP), and Count Enable Trickle (CET), select the mode of operation. When the conditions for counting are satisfied, the rising edge of a clock pulse will change the counters to the next state of the count sequence shown in the State Diagram. The Count Mode is enabled when CEP and CET inputs and \overline{PE} are HIGH.

These devices can be synchronously preset from the four Parallel inputs (P_{0-3}) when \overrightarrow{PE} is LOW. When the Parallel Enable and Clock are LOW, each master of the flip-flops is connected to the appropriate parallel input (P_{0-3}) and the slaves (outputs) are steady in their previous state. When the clock goes HIGH, the masters are inhibited and this information is transferred to the slaves and reflected at the outputs. The parallel enable input overrides both count enable inputs, presetting the counter when LOW.


Terminal count is HIGH when the counter is at terminal count (state 9 for 100000153 and state 15 for 100000047), and Count Enable Trickle is HIGH, as shown in the logic equations.


When LOW, the asynchronous master reset overrides all other inputs resetting the four outputs LOW.


Conventional operation, as shown in the Mode Selection table, requires that the mode control inputs (\overline{PE} , CEP, CET) are stable while the clock is LOW.

100000247 100000238 100000154 100000117

Dual Peripheral Drivers

Pin Designations

 $V_{CC} = Pin 8$ Gnd = Pin 4

Truth Tables

100000247 and 100000238

Positive logic: AB=X

Α	·B	Output X*
0	0	0
1	0	0
0	1	0
1	1	1

*''0'' Output \leq 0.7V ''1'' Output \leq 100 μ A

100000154

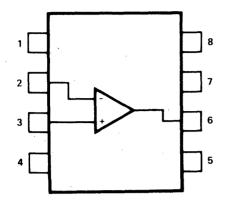
Positive logic: $\overline{AB}=X$

Α	B	Output X*
0	0	1
1	0	1
0	1	1
1	1	0

*''0'' Output \leq 0.7V ''1'' Output \leq 100 μ A

100000117

Positive logic: A + B = X


0					
Α	В	Output X*			
0	0	0			
1	0	1			
0	1	1			
1	1	1			

*''0'' Output $\leq 0.7V$ ''1'' Output $\leq 100\mu A$

These devices are general purpose dual peripheral drivers, each capable of sinking two independent 300 mA loads to ground. In the off state (or with $V_{CC} = 0V$) the outputs will withstand 30V. Inputs are fully DTL/TTL compatible.

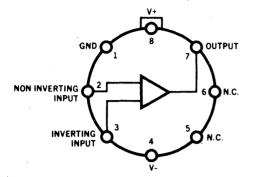
100000156

Pin Configuration

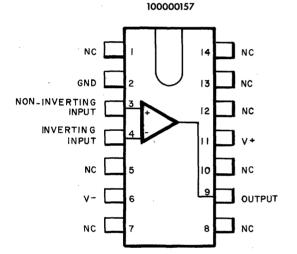
High Performance Operational Amplifier

Pin Designations

- 1. Offset Null 2. Inv. Input
- 5. Offset Null 6. Output
- 3. Non-Inv. Input
- 4. ·V-
- 7. V⁺
- 8. NC


The 100000156 is a high performance operational amplifier with high open loop gain, internal compensation, high common mode range and temperature stability.

The device is short-circuit protected and allows for nulling of offset voltage.


10000059 100000157

Pin Configurations

Note: Pin 4 connected to case.

High-Speed Differential Comparator

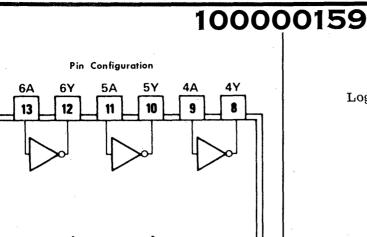
The 100000059 (Can) and 100000157 (DIP) are differential voltage comparators intended for applications requiring high accuracy and fast response times. Constructed on a single silicon chip, the devices are useful as a variable threshold Schmitt trigger, a pulse height discriminator, a voltage comparator in high-speed A/D converters, a memory sense amplifier or a high-noise immunity line receiver.

100000158

Pin Configuration <u>vcc</u> 4B 4A **4**Y 3B 3A 3Y 14 13 12 9 11 10 8 5 6 **1**A 1B 2A 2B 2Y GND 1Y

Quadruple 2-Input Positive-NAND Gate

Logic Diagram/Pin Designations


 $V_{CC} = Pin 14$ Gnd = Pin 7

Positive logic: $Y = \overline{AB}$

Note: The 100000158 is a Schottky device.

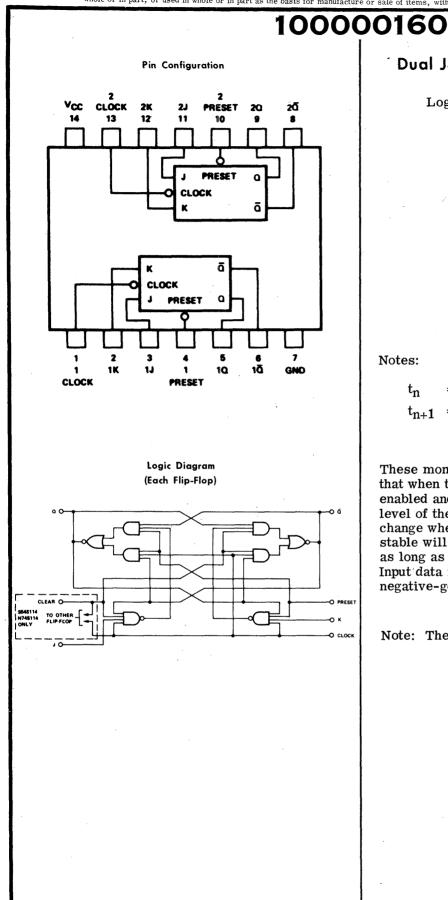
GND

3γ

3A

Vcc

14


Hex Inverter

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

Positive logic: $Y = \overline{A}$

Note: The 100000159 is a Schottky device.

Dual J-K Edge-Triggered Flip-Flops

Logic Diagram/Pin Designations

$$V_{CC} = Pin 14$$

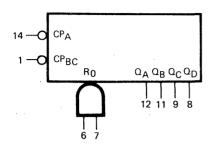
Gnd = Pin 7

Truth Table

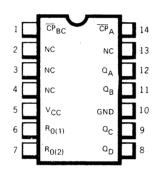
t _n		t_{n+1}
J K		Q
\mathbf{L}	L	Qn
\mathbf{L}	н	\mathbf{L}
H	L	н
Н	н	\overline{Q}_n

Notes:

= bit time before clock pulse. tn

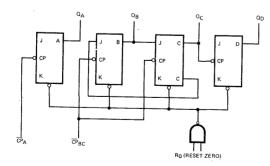

= bit time after clock pulse. t_{n+1}

These monolithic dual flip-flops are designed so that when the clock goes high, the inputs are enabled and data will be accepted. The logic level of the J and K inputs may be allowed to change when the clock pulse is high and the bistable will perform according to the truth table as long as minimum setup times are observed. Input data is transferred to the outputs on the negative-going edge of the clock pulse.


Note: The 100000160 is a Shottky device.

100000161

Logic Symbol



Divide-By-Twelve Counter (Divide-By-Two and Divide-By-Six)

Logic Diagram/Pin Designations

$V_{CC} = Pin 5$			
Gnd = Pin 10			
N.C. = Pins 2,	3,	4,	13

Pin Names

R ₀	Reset-Zero Inputs
$\overline{\mathtt{CP}}_A$	Clock Input
<u>CP</u> _{BC}	Clock Input
$Q_A, Q_B, Q_C, Q_D \dots$	Count Outputs

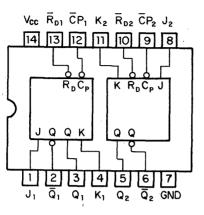
	Truth Table					
		Output				
Co	ount	Q_{D}	QC	Q_B	QA	
	0	L	L	L	L	
	1	\mathbf{L}	\mathbf{L}	\mathbf{L}	H	
	2	\mathbf{L}	\mathbf{L}	\mathbf{H}	\mathbf{L}	
	3	\mathbf{L}	\mathbf{L}	н	Н	
	4	\mathbf{L}	н	\mathbf{L}	\mathbf{L}	
	5	\mathbf{L}	н	\mathbf{L}	H	
	6	Н	\mathbf{L}	\mathbf{L}	\mathbf{L}	
	7	H	\mathbf{L}	\mathbf{L}	Н	
	8	H	\mathbf{L}	H	\mathbf{L}	
	9	н	\mathbf{L}	н	Н	
	10	H	н	\mathbf{L}	L	
	11	H	Н	\mathbf{L}	H	

Notes:

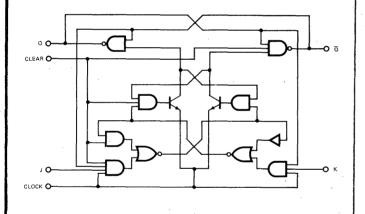
- 1. Output Q_A connected to input \overline{CP}_{BC} .
- 2. To reset all outputs to Low level both $R_{0(1)}$ and $R_{0(2)}$ inputs must be at High level state.
- 3. Either (or both) reset inputs $R_{0(1)}$ and $R_{0(2)}$ must be at a Low level to count.

The 100000161 is a 4-Bit Binary Counter consisting of four master slave flip-flops which are internally interconnected to provide a divide-bytwo counter and a divide-by-six counter. A grated direct reset line is provided which inhibits the count inputs and simultaneously returns the four flip-flop outputs to a Low level. As the output from flip-flop A is not internally connected to the succeeding flip-flops, the counter may be operated in two independent modes:

Continued


100000161 (Continued)

- A. When used as a divide-by-twelve counter, output Q_A must be externally connected to input \overline{CP}_{BC} . The input count pulses are applied to input \overline{CP}_A . Simultaneous divisions of 2, 6 and 12 are performed at the Q_A , Q_C and Q_D outputs as shown in the truth table.
- B. When used as a divide-by-six counter, the input count pulses are applied to input \overline{CP}_{BC} . Simultaneously, frequency divisions of 3 and 6 are available at the QC and QD outputs. Independent use of flip-flop A is available if the reset function coincides with reset of the divide-by-six counter.


These circuits are completely compatible with TTL and DTL logic families.

Pin Configuration

Logic Diagram (Each Flip-Flop)

Dual JK Master/Slave Flip-Flop With Separate Clears and Clocks

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

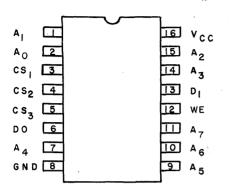
Positive logic:

LOW input to clear sets Q to LOW level. Clear is independent of clock.

Truth Table					
1	'n	t _{n+1}			
JK		Q			
LL		Q _n			
LH		L			
н г		н			
Н	H	\overline{Q}_{n}			

Notes:

 $t_n = Bit time before clock pulse.$


 t_{n+1} = Bit time after clock pulse.

These Dual JK Master/Slave flip-flops have a separate clear and a separate clock for each flip-flop. Inputs to the master section are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows: 1) Isolate slave from master; 2) enter information from J and K inputs to master; 3) disable J and K inputs; and 4) transfer information from master to slave.

100-158

100000164

Pin Configuration

256-Bit Bipolar Random Access Memory

Pin Designations

 $V_{\rm CC} = Pin \ 16$

Gnd = Pin 8

Memory Function Table

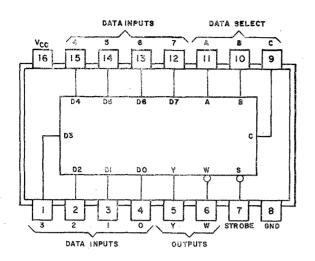
Chip Selects	Write Enable	Operation	Output
All ''0''	''0''	Write	Logical ''1'' State
A11 ''0''	''1''	Read	Complement of data written in memory
One or More "1"	x	Hold	Logical "1" State

The 100000164 integrated circuit is a high speed, fully decoded, static bipolar 256-bit random access memory in a 256x1 organization. This device provides uncommitted collector output and three chip selects.

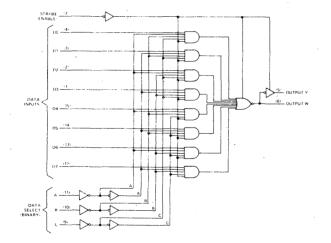
Operation

Read

The memory is addressed through the A_0 - A_7 inputs which select one of the 256 words. The chip is enabled by placing all chip selects (CS) to logic "0". If any or all CS inputs are logic "1", then the device will be disabled. If the write enable (WE) is at logic "1" the stored bit is read out of DO.


Write

The memory is addressed through the A_0 - A_7 inputs which select one of the 256 words. The chip is enabled by placing all the CS inputs to logic "0". If the WE input is at logic "0", the data on terminal DI is written into the addressed word.


When WE returns to logic "1", the information that was written in is now read out; however, each word read out is the complement of what was written in.

100000165

Pin Configuration

Logic Diagram

Data Selector/Multiplexer With 3-State Outputs

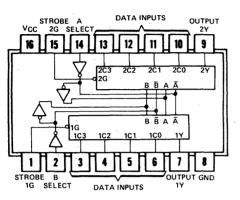
Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

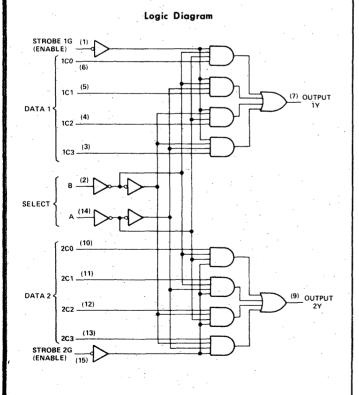
F٦	unction	Table

Constants		I	Outp	outs		
	Se	elect	t	Strobe		
	2	В	A	S .	Y.	W
Σ	ζ	Х	Х	Н	Z	Z
I		L	\mathbf{L}	\mathbf{L}	D0	$\overline{\text{D0}}$
I		\mathbf{L}	н	$\mathbf L$	D1	D1
I		H	L	\mathbf{L}	D2	$\overline{\mathrm{D2}}$
I		н	н	\mathbf{L}	D3	D3
H	ł	\mathbf{L}	L	\mathbf{L}	D4	D4
F	ł	L	н	L	D5	D5
F	ł	H	L	$\mathbf L$	D6	D6
I	I	H	н	L	D7	$\overline{\mathrm{D7}}$

H = high logic level, L = low logic level X = irrelevant, Z = high impedance (off). D0, D1.... D7 = the level of the respective D input.


This monolithic data selector/multiplexer contains full on-chip binary decoding to select one-ofeight data sources and a strobe-controlled threestate output. The strobe must be at a low logic level to enable these devices. The three-state outputs permit a number of outputs to be connected to a common bus. When the strobe input is high, both outputs are in a high-impedance state in which both the upper and lower transistors of each totem-pole output are off, and the output neither drives nor loads the bus significantly. When the strobe is low, the outputs are activated and operate as standard TTL totempole outputs.

Note: The 100000165 is a Schottky device.


100-160

100000166

Pin Configuration

Positive Logic: See Function Table

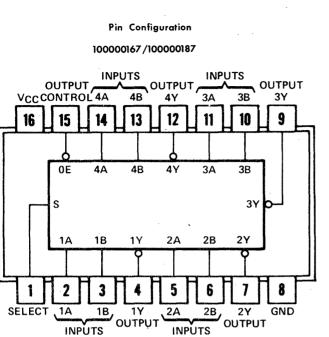
Dual 4-Line-To-1-Line Data Selector - Multiplexer

Logic Diagram/Pin Designations

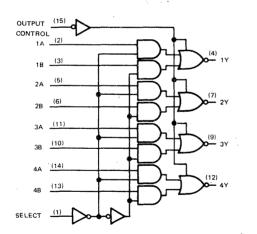
 $V_{CC} = Pin 16$ Gnd = Pin 8

Function Table							
Sel Inp	ect uts		Data I	nputs		Strobe	Output
В	Α	C0	C1	C2	C3	G	Y
x	х	x	х	x	х	Н	L
L	\mathbf{L}	\mathbf{L}	\mathbf{X}	х	Х	L	L
Ľ	\mathbf{L}	\mathbf{H}	Х	Х	Х	Ĺ	Н
L	H	X	\mathbf{L}	х	Х	\mathbf{L}	\mathbf{L}^{*}
L	H	х	н	X	Х	\mathbf{L}	Н
H	L	$\cdot \mathbf{X}$	х	\mathbf{L}	X	\mathbf{L}	\mathbf{L}
H	\mathbf{L}	X	Х	н	Х	\mathbf{L}	н
H	H	X	х	х	\mathbf{L}	\mathbf{L}	\mathbf{L}_{i}
Н	H	X	X	<u>X</u>	H	L	H

Select Inputs A and B are common to both sections.


H = high level; L = low level; X = irrelevant.

This monolithic, data selector-multiplexer contains inverters and drivers to supply fully complementary, on-chip, binary decoding data selection to the AND-OR-invert gates.


Separate strobe inputs are provided for each of the two four-line sections.

Note: The 100000166 is a Shottky device.

100000167 100000187

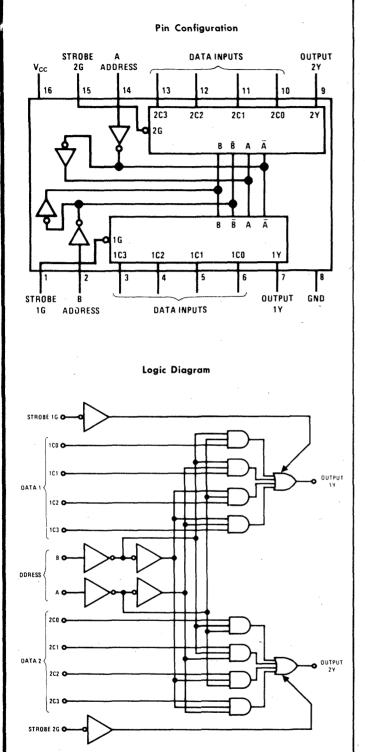
Logic Diagram 100000167/100000187

Quadruple 2-Line-To-1-Line Data Selectors/Multiplexers

Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Function Table


	Inputs	Outp	ut Y	
Output Control	Select	AB	'167	'187
Н	x	хх	Z	Z
\mathbf{L}	\mathbf{L}	LΧ	L	H
L	$^{\circ}$ L	нх	H	L
L	н	ХL	L	Н
L	н	хн	H	\mathbf{L}

H = high level, L = low level, X = irrelevant, Z = high impedance (off).

These Schottky-clamped multiplexers have threestate outputs which can interface directly with and drive data lines of bus-organized systems. With all but one of the common outputs disabled (at a high-impedance state), the low impedance of the single enabled output will drive the bus line to a high or low logic level.

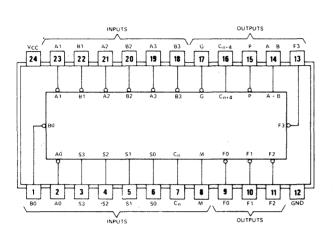
This three-state output means that n-bit (paralleled) data selectors with up to 258 sources can be implemented for data buses. It also permits the use of standard TTL registers for data retention throughout the system.

100000168

Dual 4-Line-To-1-Line Multiplexer

Logic Diagram/Pin Designations

$V_{CC} = Pin 16$ Gnd = Pin 8


	ress outs	E	ata 1	[nput	s	Strobe	Output
В	Α	C0	C1	C2	C3	G	Y
x	х	х	Х	Х	Х	1	Hi-Z
0	0	0	Х	х	х	0	0
0	0	1	X	х	х	0	1
0	1	х	0	X	x	0	0
0	1	х	1	х	x	0	1
1	0	x	х	0	х	0	0
1	0	х	х	1	x	0	1
1	1	х	х	X	0	0	0
1	1	x	x	x	1	0	1

X = Don't care.

This device acts as a double-pole four-throw switch. One data line is selected from each of two four-line inputs. Two select lines determine which of the four inputs is chosen; however, the same input of both four-line selections will be selected. The logic allows outputs of the device to be tied to outputs of similar devices and connected to a common bus-line. Nominal TTL outputs cannot be connected due to the lowimpedance logical "1" output current which one device would have to sink from the other. If, however, on all but one of the connected devices both the upper and lower output transistors are turned off, then the one remaining device in the normal low-impedance state will have to supply to or sink from the other devices only a small amount of leakage current. The strobe input is used to place the output in the high-impedance state.

100000084

Pin Configuration

100000169

Arithmetic Logic Units/Function Generators

Pin Designati	ons
Pin Nos.	Func

Designation	Pin Nos.	Function
A3, A2, A1, A0	19, 21, 23, 2	Word A Inputs
B3, B2, B1, B0	18, 20, 22, 1	Word B Inputs
S3, S2, S1, S0	3, 4, 5, 6	Function-Select Inputs
C _n	7	Inv. Carry Input
Μ	8	Mode Control Input
F3, F2, F1, F0	13, 11, 10, 9	Function Outputs
A=B	14	Comparator Output
Р	15	Carry Propa- gate Output
C _{n+4}	16	Inv. Carry Output
G	17	Carry Gen- erate Output
v _{cc}	24	Supply Voltage
Gnd	12	Ground

These arithmetic logic units (ALU)/function generators have a complexity of 75 equivalent gates on a monolithic chip, and perform 16 binary arithmetic operations on two 4-bit words as shown in Tables 1 and 2. These operations are selected by the four function-select lines (S0, S1, S2, S3) and include addition, subtraction, decrement and straight transfer. When performing arithmetic manipulations, the internal carries must be enabled by applying a low-level voltage to the mode control input (M). A full carry look-ahead scheme is made available for fast, simultaneous carry generation by means of two cascade-outputs (pins 15 and 17) for the four bits in the package. When used in conjunction with 100000100 or 100000170, full carry look-ahead circuits, highspeed arithmetic operations can be performed. If high speed is not of importance, a ripple-carry input (C_n) and a ripple-carry output (C_{n+4}) are available. However, the ripple-carry delay is minimized so that arithmetic manipulations for small word lengths can be performed without external circuitry.

These devices will accommodate active-high or active-low data if the pin designations are interpreted as follows:

Continued....

10000084 10000169

Continued

1 : 1	tare in a	- U. I.	· / ·	Table 1	

. 4.

, 4. 1. -6

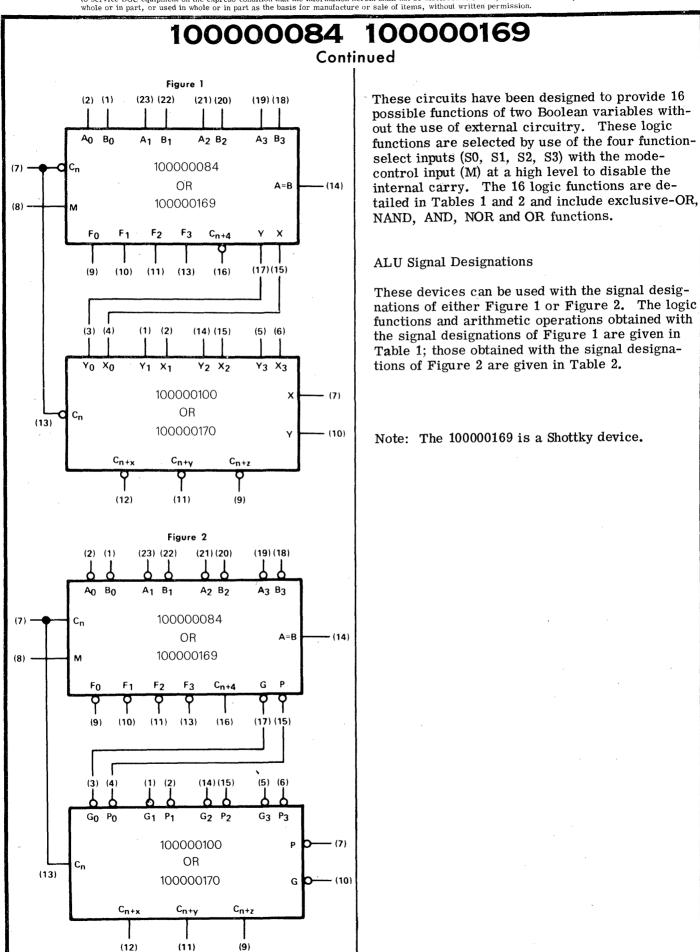
	-		
Selection	M = H Logic	Active-High I M = L; Arithr	Data netic Operations
S3 S2 S1 S0		C _n = H (no carry)	Cn = L (with carry)
LLLL	$F = \overline{A}$	$\mathbf{F} = \mathbf{A}$	F = A Plus 1
LLLH	$F = \overline{A + B}$	$\mathbf{F} = \mathbf{A} + \mathbf{B}$	$\mathbf{F} = (\mathbf{A} + \mathbf{B})$ Plus 1
LLHL	$F = \overline{A}B$	$\mathbf{F} = \mathbf{A} + \mathbf{\overline{B}}$	$\mathbf{F} = (\mathbf{A} + \mathbf{\overline{B}})$ Plus 1
LLHH	$\mathbf{F} = 0$	F = Minus 1(2's Compl)	F = Zero
LHLL	$\mathbf{F} = \overline{\mathbf{AB}}$	$F = A Plus A\overline{B}$	$F = A Plus A\overline{B} Plus 1$
LHLH	$\mathbf{F} = \mathbf{\overline{B}}$	$F = (A + B) Plus A\overline{B}$	$F = (A + B)$ Plus $A\overline{B}$ Plus 1
LHHL	$F = A \oplus B$	F = A Minus B Minus 1	F = A Minus B
гннн	$F = A\overline{B}$	$F = A\overline{B}$ Minus 1	$\mathbf{F} = \mathbf{A}\overline{\mathbf{B}}$
HLLL	$\mathbf{F} = \mathbf{\overline{A}} + \mathbf{B}$	F = A Plus AB	F = A Plus AB Plus 1
HLLH	$F = \overline{A \oplus B}$	F = A Plus B	F = A Plus B Plus 1
нгнг	F = B	$F = (A + \overline{B})$ Plus AB	$\mathbf{F} = (\mathbf{A} + \mathbf{\overline{B}})$ Plus AB Plus 1
нгнн	F = AB	F = AB Minus 1	$\mathbf{F} = \mathbf{A}\mathbf{B}$
HHLL	F = 1	$F = A Plus A^*$	F = A Plus A Plus 1
ннгн	$\mathbf{F} = \mathbf{A} + \mathbf{\overline{B}}$	F = (A + B) Plus A	F = (A + B) Plus A Plus 1
нннг	$\mathbf{F} = \mathbf{A} + \mathbf{B}$	$F = (A + \overline{B})$ Plus A	$F = (A + \overline{B})$ Plus A Plus 1
нннн	F = A	F = A Minus 1	F = A

* Each bit is shifted to the next more significant position.

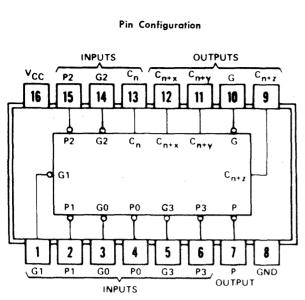
Table 2

Selection S3 S2 S1 S0	M = H Logic Functions	Active-Low D M = L; Arithr	oata netic Operations
	Functions		
LLLL		$C_n = L$ (no carry)	C _n = H (with carry)
	$\mathbf{F} = \overline{\mathbf{A}}$	F = A Minus 1	F = A
LLLH	$F = \overline{AB}$	F = AB Minus 1	F = AB
LLHL	$\mathbf{F} = \mathbf{A} + \mathbf{B}$	$F = A\overline{B}$ Minus 1	$F = A\overline{B}$
LLHH	$\mathbf{F} = 1$	F = Minus 1(2's Comp)	F = Zero
LHLL	$\mathbf{F} = \overline{\mathbf{A} + \mathbf{B}}$	$F = A Plus (A + \overline{B})$.	F = A Plus (A + B) Plus 1
LHLH	$F = \overline{B}$	$F = AB Plus (A + \overline{B})$	$F = AB Plus (A + \overline{B}) Plus 1$
LHHL	$F = \overline{A \oplus B}$	F = A Minus B Minus 1	F = A Minus B
L H H H	$\mathbf{F} = \mathbf{A} + \mathbf{\overline{B}}$	$\mathbf{F} = \mathbf{A} + \mathbf{\overline{B}}$	$F = (A + \overline{B})$ Plus 1
HLLL	$\mathbf{F} = \overline{\mathbf{A}}\mathbf{B}$	F = A Plus (A + B)	F = A Plus (A + B) Plus 1
HLLH	$F = A \oplus B$	F = A Plus B	F = A Plus B Plus 1
HLHL	$\mathbf{F} = \mathbf{B}$	$F = A\overline{B} Plus (A + B)$	$F = A\overline{B} Plus (A + B) Plus 1$
нгнн	$\mathbf{F} = \mathbf{A} + \mathbf{B}$	$\mathbf{F} = \mathbf{A} + \mathbf{B}$	$\mathbf{F} = (\mathbf{A} + \mathbf{B}) \operatorname{Plus} 1$
HHLL	$\mathbf{F} = 0$	$F = A Plus A^*$	F = A Plus A Plus 1
ннгн	$\mathbf{F} = \mathbf{A}\mathbf{\overline{B}}$	F = AB Plus A	F = AB Plus A Plus 1
нннг	$\mathbf{F} = \mathbf{A}\mathbf{B}$	$F = A\overline{B}$ Plus A	$F = A\overline{B}$ Plus A Plus 1
нннн	$\mathbf{F} = \mathbf{A}$	$\mathbf{F} = \mathbf{A}$	F = A Plus 1
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L H H H H F = $A + \overline{B}$ H L L L F = $\overline{A}B$ H L H H F = $A \oplus B$ H L H L F = B H L H H F = $A + B$ H H L L F = 0 H H L H F = $A\overline{B}$ H H L H F = $A\overline{B}$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$

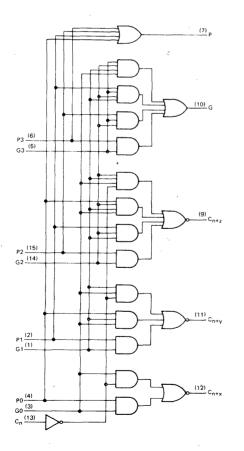
* Each bit is shifted to the next more significant position.


Pin No.	Active-high data	Active-low data
	Table 1	Table 2
2	A ₀	\overline{A}_0
1	B ₀	· B ₀
23	A1	\overline{A}_1
22	В ₁	B ₁
21	A ₂	\overline{A}_2
20	B ₂	\overline{B}_2
19	• A ₃	\overline{A}_3
18	B ₃	\overline{B}_3
9	F ₀	\overline{F}_0
10	F ₁	\overline{F}_1
11	F ₂	$\overline{\mathbf{F}}_2$
13	F ₃	\overline{F}_3
- 7	\overline{C}_n	Cn
16	\overline{C}_n \overline{C}_{n+4}	C _{n+4}
15	x	P
17	Y	G

Subtraction is accomplished by 1's complement addition where the 1's complement of the subtrahend is generated internally. The resultant output is A-B-1, which requires an end-around or forced carry to provide A-B.


These devices can also be utilized as comparators. The A=B output is internally decoded from the function outputs (F0, F1, F2, F3) so that when two words of equal magnitude are applied at the A and B inputs, it will assume a high level to indicate equality (A = B). The ALU should be in the subtract mode with $C_n = H$ when performing this comparison. The A = B output is opencollector so that it can be wire-AND connected to give a comparison for more than four bits. The carry output (C_{n+4}) can also be used to supply relative magnitude information. Again, the ALU should be placed in the subtract mode by placing the function select inputs S3, S2, S1, S0 at L, H, H, L, respectively.

Input Cn	Output C _{n+4}	(Figure 1) Active-high Data	(Figure 2) Active-low Data
H H L L	H L H L	$A \leqslant B$ $A > B$ $A < B$ $A \leqslant B$ $A \geqslant B$	$ \begin{array}{c} \mathbf{A} \geqslant \mathbf{B} \\ \mathbf{A} < \mathbf{B} \\ \mathbf{A} > \mathbf{B} \\ \mathbf{A} \leqslant \mathbf{B} \end{array} $

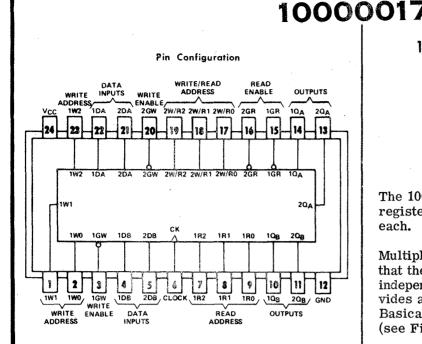

Continued....

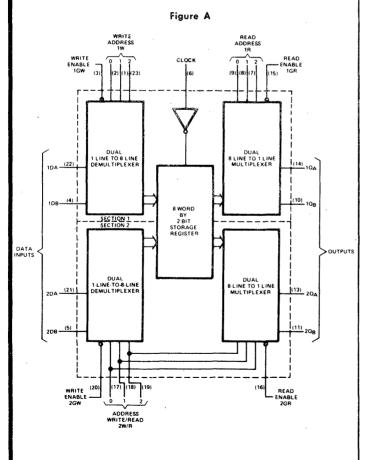
100000100 100000170

Logic Diagram

Look-Ahead Carry Generators

Pin Designations								
Designation	Pin Nos.	Function						
G0, G1, G2, G3	3, 1, 14, 5	Active-Low Carry Generate Inputs						
P0, P1, P2, P3	4, 2, 15, 6	Active-Low Carry Propagate Inputs						
C _n	13	Carry Input						
$\begin{bmatrix} C_{n+x}, & C_{n+y}, \\ & C_{n+z} \end{bmatrix}$	12, 11, 9	Carry Outputs						
G	10	Active-Low Carry Generate Output						
P ,	7	Active-Low Carry Propagate Output						
v _{cc}	16	Supply Voltage						
Gnd	8	Ground						


Positive Logic:


These devices are high-speed, look-ahead carry generators capable of anticipating a carry across four binary adders or group of adders. They are cascadable to perform full look-ahead across n-bit adders. Carry, generate-carry and propagate-carry functions are provided as enumerated in the pin designation table above.

When used in conjunction with arithmetic logic units, 100000084 or 100000169, these generators provide high-speed carry look-ahead capability for any word length.

Carry input and output of the 100000084 or 100000169 are in their true form and the carry propagate (P) and carry generate (G) are in negated form; therefore, the carry functions (inputs, outputs, generate and propagate) of the look-ahead generators are implemented in the compatible forms for direct connection to the ALU.

Note: The 100000170 is a Shottky device.

16-Bit Multiple-Port Register File With 3-State Outputs

Pin Designations

 $V_{CC} = Pin 24$ Gnd = Pin 12

The 100000171 is a high-performance 16-bit register file organized as eight words of two bits each.

Multiple address decoding circuitry is used so that the read and write operation can be performed independently on two word locations. This provides a true simultaneous read/write capability. Basically, the file consists of two distinct sections (see Figure A).

Section 1 permits the writing of data into any twobit word location while reading two bits of data from another location simultaneously. To provide this flexibility, independent decoding is incorporated.

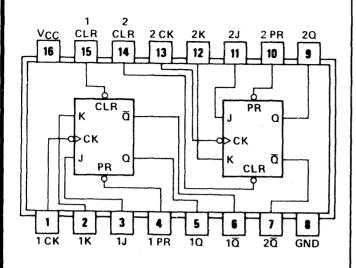
Section 2 of the register file is similar to section 1 with the exception that common read/write address circuitry is employed. This means that section 2 can be utilized in one of three modes:

- 1) Writing new data into two bits.
- 2) Reading from two bits.
- 3) Writing into and simultaneously reading from the same two bits.

Regardless of the mode, the operation of section 2 is entirely independent of section 1.

The three-state outputs of this register file permit connection of up to 129 compatible outputs to a common system bus. The outputs are controlled by the read-enable circuitry so that they operate as standard TTL totem-pole outputs when the appropriate read-enable input is low or they are placed in a high-impedance state when the associated read-enable input is at a high logic level.

Functions of the inputs and outputs are as shown in the following table:


Continued

100000171 Continued

		• - · · · · · · ·	
Function	Section 1	Section 2	Description
Write Address	1W0, 1W1, 1W2	2W/R0, 2W/R1, 2W/R2	Binary write address selects one of eight two-bit word locations.
Write Enable	1GW	2GW	When low, permits the writing of new data into the selected word location on 'a positive transition of the clock input.
Data Inputs -	1DA, 1DB	2DA, 2DB	Data at these inputs is entered on a positive transition of the clock input into the location selected by the write address inputs if the write enable input is low. Since the two sections are independent, it is possible for both write functions to be activated with both write addresses selecting the same word location. If this occurs and the information at the data inputs is not the same for both sections (i. e., $1DA \neq 2DA$ and/or $1DB \neq 2DB$) the low-level data will predominate in each bit and be stored.
Read Address	1R0, 1R1, 1R2	Common with write address	Binary write address selects one of eight two-bit word locations.
Read Enable	1GR	2GR	When read enable is low, the outputs assume the levels of the data stored in the location selected by read ad- dress inputs. When read enable is
Data Outputs	1Q _A , 1Q _B	2Q _A , 2Q _B	high, the associated outputs remain in the high-impedance state and neither significantly load nor drive the lines to which they are connected.
Clock		СК	The positive-going transition of the clock input will enter new data into the addressed location if the write enable input is low. The clock is common to both sections.

100000172

Pin Configuration

Dual J-K Negative-Edge-Triggered Flip-Flops with Preset and Clear

Logic Diagram/Pin Designations

$V_{CC} = Pin 16$ Gnd = Pin 8

Function	Table
----------	-------

	Outputs					
Preset	Clear	Clock	J	K	Q.	\overline{Q}
L	Н	Х	х	Х	H	L
H	\mathbf{L}	Х	Х	Х	L	H
L	\mathbf{L}	Х	Х	Х	H*	H*
Н	н	ţ	\mathbf{L}	\mathbf{L}	Q_0	$rac{\mathrm{H}^{*}}{\mathrm{Q}_{0}}$ L
н	H	ţ	H	\mathbf{L}	Н	L
н	H	ţ	\mathbf{L}	H	L	н
н	\mathbf{H}	ţ	H	H	TOG	GLE
Н	н	Н	х	Х	Q_0	\overline{Q}_0

Notes:

H = high level (steady state).

L = low level (steady state).

X = irrelevant.

= transition from high to low level.

 Q_0 = the level of Q before the indicated input conditions were established.

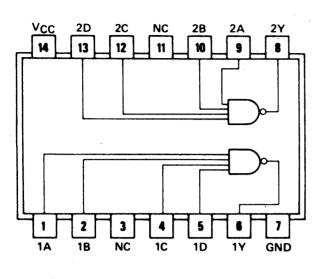
TOGGLE = Each output changes to the complement of its previous level on each active transition of the clock.

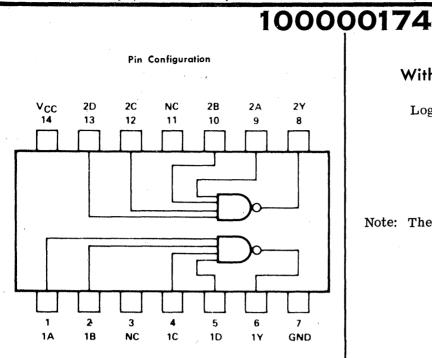
= This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

Note: The 100000172 is a Shottky device.

Dual 4-Input Positive-NAND 50 Ohm Line Driver

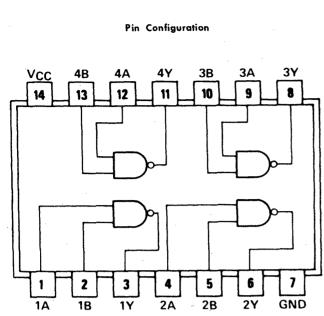
Logic Diagram/Pin Designations


 V_{CC} = Pin 14 Gnd = Pin 7


NC = No internal connection

Positive logic: $Y = \overline{ABCD}$

Note: The 100000173 is a Shottky device.


Positive-NAND Gate With Open-Collector Outputs

Logic Diagram/Pin Designations

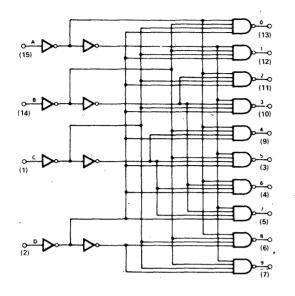
 $V_{CC} = Pin 14$ Gnd = Pin 7

Note: The 100000174 is a Shottky device.

100000175

Quadruple 2-Input Positive-NAND Gate With Open-Collector Outputs

Logic Diagram/Pin Designations


 $V_{CC} = Pin 14$ Gnd = Pin 7

Positive logic: $Y = \overline{AB}$

Note: The 100000175 is a Schottky device.

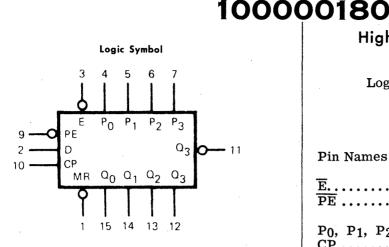
100000178

Logic Diagram

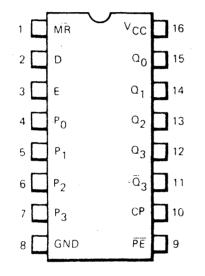
BCD-To-Decimal Decoder

Logic Diagram/Pin Designations

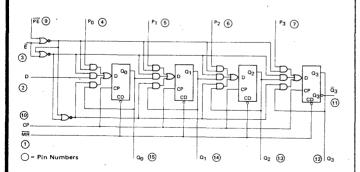
 $V_{CC} = Pin 16$ Gnd = Pin 8


Truth Table

				-								
Input State		Output States										
ΑΒ	С	D	0	1	2	3	4	5	6	7	8	9
0 0	0	0	0	1	1	1	1	1	1	1	1	1
10	0	0	1	0	1	1	1	1	1	1	1	1
01	0	0	1	1	0	1	1	1	1	1	1	1
1 1	0	0	1	1	1	0	1	1	1	1	1	1
0 0	1	0	1	1	1	1	0	1	1	1	1	1
10	1	0	1	1	1	1	1	0	1	1	1	1
01	1	0	1	1	1	1	1	1	0	1	1	1
1 1	1	0	1	1	1	1	1	1	1	0	1	1
0 0	0	1	1	1	1	1	1	1	1	1	0	1
10	0	1	1	1	1	1	1	1	1	1	1	0
01	0	1	1	1	1	1	1	1	1	1	1	1
1 1	0	1	1	1	1	1	1	1	1	1	1	1
0 0	1	1	1	1	1	1	1	1	1	1	1	1
10	1	1	1	1	1	1	1	1	1	1	1	1
01	1	1	1	1	1	1	1	1	1	1	1	1
1 1	1	1	1	1	1	1	1	1	1	1	1	1


The 100000178 is a gate array for decoding and logic conversion.

This device converts a 4-line input code (with 1-2-4-8 weighting) to a one-of-ten output, as shown in the Truth Table.


Note: The 100000178 is a Shottky device.

Pin Configuration

Logic Diagram

High Speed 4-Bit Shift Register With Enable

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Pin Names

Ē	Active LOW Enable Input
<u>PE</u>	Active LOW Parallel Enable
	Input
	Parallel Data Inputs
<u>CP</u>	
<u>MR</u>	Active LOW Master ResetInput
Q_0 to Q_3	Parallel Outputs
\overline{Q}_3	Last Stage Complementary
	Output
D	Serial Data Input

The 100000180 High Speed 4-Bit Shift Register is a multifunctional sequential logic block which is useful in a wide variety of register applications. It may be used in serial-serial, shift left, shift right, serial-parallel, parallel-serial and parallel-parallel data transfers.

This device has three synchronous modes of operation: shift, parallel load and hold (do nothing). The hold capability permits information storage in the register independent of the clock.

The register is fully synchronous with any output change occurring after the rising clock edge. It features edge triggered type characteristics on all inputs (except \overline{MR}), which means there are no restrictions on the activity of these inputs (\overline{PE} , \overline{E} , P₀, P₁, P₂, P₃, D) for logic operation except for the set up requirements prior to the LOW to HIGH clock transition.

The mode of operation is determined by the two inputs, parallel enable (\overline{PE}) and enable (\overline{E}) , as shown in Table 1. The active LOW enable when HIGH places the register in the hold mode with the register flip-flops retaining their information. When the enable is activated (LOW) the parallel enable (\overline{PE}) determines whether the register operates in a shift or parallel data entry mode.

When the enable is LOW and the parallel enable input is LOW, the parallel inputs are selected and will determine the next condition of the register synchronously with the clock as shown in Table 2. In this mode the element appears as four common clocked D flip-flops. With \overline{E} LOW and the \overline{PE}

Continued....

10000180 Continued

input HIGH the device acts as a 4-bit shift register with serial data entry through the D input shown in Table 3. In both cases the next state of the flipflops occurs after the LOW to HIGH transition of the clock input.

The asynchronous active LOW master reset overrides all inputs and clears the register forcing outputs Q_{0-3} LOW and \overline{Q}_3 HIGH.

To provide for left shift operation, P3 is used as the serial data input and Q_0 is the serial data output. The other outputs are tied back to the previous parallel inputs, with Q_3 tied to P_2 , Q_2 tied to P_1 and Q_1 tied to P_0 .

Table 1 Mode Selection

	1	VIOC	le	Ser	ec	uo	11			
M	ode	MR	Ē	PE	Р) Р	1	P2	P3	D
	Parallel Load	H	L	L	P	arall	lel	Dat	a Entry	х
	Serial Shift	Н	L	H	х	Х		х	х	Serial Data Entry
Synchronous	Hold	H	Н	L	х	х		х	х	х
	Hold	н	н	Н	x	х		х	x	x
Asynchronous	Reset	L	x	х	A	1 Ou	tpu	ıts	set LOW	

Table 2 Parallel Data Entry

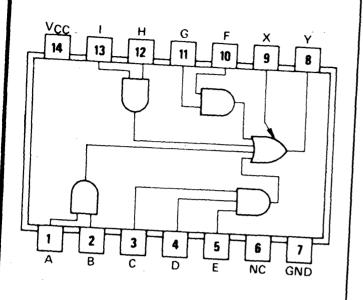
Table 3 Serial Data Entry

P ₀ , P ₁ , P ₂ or P ₃ Input at t _n	Q at tn+1
L	L
TT	1 11

D Input at tn	Q_0 at t_{n+1}
L	L H
	**

L = LOW Voltage Level

H = HIGH Voltage Level


X = Don't Care

 $t_n = Present State$

 t_n+1 = State after Next Clock

100000181

Pin Configuration

Expandable 4-Wide AND-OR Gates

Logic Diagram/Pin Designations

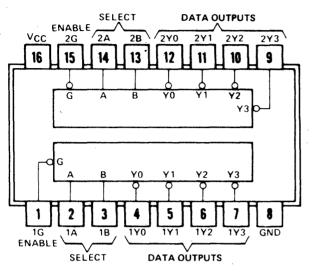
 $V_{CC} = Pin 14$ Gnd = Pin 7

Positive logic: Y = AB+CDE+FG+HI+X

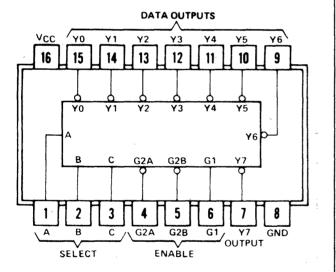
4-2-3-2-Input AND-OR-INVERT Gates

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7


Positive logic: $Y = \overline{ABCD+EF+GHI+JK}$

Note: The 100000182 is a Shottky device.


100000185 100000223

Pin Configurations

100000185

100000223

Decoders-Demultiplexers

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Function	Table -	· 100000223
----------	---------	-------------

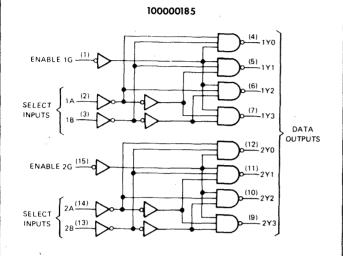
	Inp	uts						Out	puts			
Ena	able	S	elec	t				<u> </u>				
G1	$G2^*$	С	В	Α	¥0	Y1	Y2	¥3	¥4	¥5	¥6	¥7
x	H	х	Х	Х	Н	Н	H	H	Н	Н	Н	н
L	Х	Х	Х	Х	H	Η	н	Η	Η	Η	Η	Η
H	\mathbf{L}	\mathbf{L}	\mathbf{L}	\mathbf{L}	L	н	Η	н	Н	Н	Н	H
H	\mathbf{L}	\mathbf{L}	\mathbf{L}	н	H	\mathbf{L}	Н	Н	Н	Н	Н	H
H	\mathbf{L}	\mathbf{L}	Н	\mathbf{L}	H	н	\mathbf{L}	н	Η	Н	Н	H
H	\mathbf{L}	\mathbf{L}	Η	Η	Н	\mathbf{H}	н	\mathbf{L}	H	н	\mathbb{H}	H
H	\mathbf{L}	н	\mathbf{L}	\mathbf{L}	H	Η	Η	Η	\mathbf{L}	Η	Ħ	Η
H	\mathbf{L}	н	\mathbf{L}	Η	H	Н	Η	Η	Η	\mathbf{L}	н	H
H	\mathbf{L}	н	Η	\mathbf{L}	Н	\mathbf{H}	н	н	Н	н	\mathbf{L}	H
H	L	H	H	H	H	H	H	H	H	H	H	L

*G2 = G2A + G2B

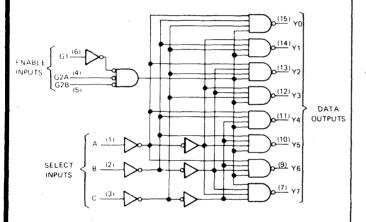
H = high level; L = low level; X = irrelevant

Function Table - 100000185 (Each Decoder/Demultiplexer)

Inp	uts			Out	outs			
Enable	Sel	ect						
G	В	A	Y0	<u>Y1</u>	Y2	¥3		
Н	х	X	Н	Н	Н	Н		
L	\mathbf{L}	\mathbf{L}		H ·	H	H		
L	\mathbf{L}	н	H	\mathbf{L}	H	н		
	Η	\mathbf{L}	H	\mathbf{H}	\mathbf{L}	н		
L	H	H	H	H	H			


H = high level; L = low level; X = irrelevant

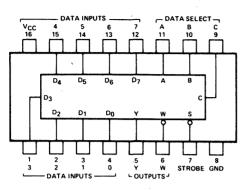
These Schottky-clamped TTL MSI circuits are designed to be used in high-performance memorydecoding or data-routing applications requiring very short propagation delay times. In high performance memory systems these decoders can be used to minimize the effects of system decoding. When employed with high-speed memories utilizing a fast enable circuit, the delay times of these decoders and the enable time of the memory are usually less than the typical access time of the memory. This means that the effective system delay introduced by the Schottky-clamped system decoder is negligible.


Continued....

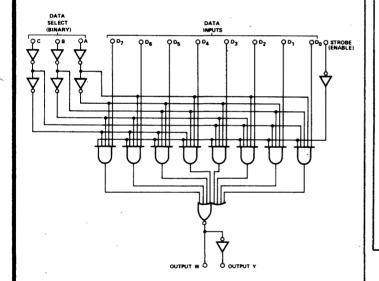
10000185 10000223 Continued

Logic Diagrams

100000223



The 100000223 decodes one-of-eight lines, depending on the conditions at the three binary select inputs and the three enable inputs. Two active-low and one active-high enable inputs reduce the need for external gates or inverters when expanding. A 24-line decoder can be implemented without external inverters and a 32-line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.


The 100000185 is comprised of two individual two-line-to-four-line decoders in a single package. The active-low enable input can be used as a data line in demultiplexing applications.

100000186

Pin Configuration

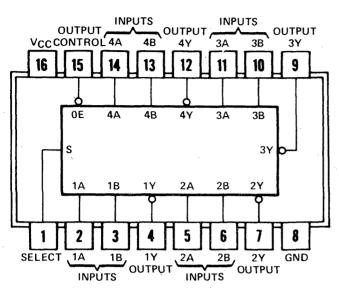
Logic Symbol

8-Line-to-1-Line Data Selector/Multiplexer

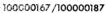
Pin Designations

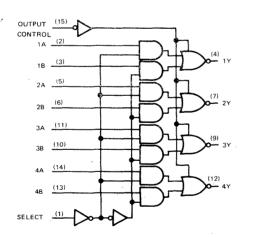
 $V_{CC} = Pin 16$ Gnd = Pin 8

	Truth Table								_					
					In	puts	5 .					Out	puts	
С	В	A	Strobe	D ₀	D ₁	D_2	D_3	D_4	D_5	D ₆	D7	Y	W]
X	Х	Х	1	x	x	Х	х	х	Х	X	Х	0	1	
0	0	0	0	0	х	х	х	х	х	X	Х	0	1	
0	0	0	0	1	х	х	х	х	х	Х	Х	1	0	
0	0	1	0	x	0	х	х	х	х	Х	Х	0	1	ŀ
0	0	1	0	x	1	x	х	х	х	Х	Х	1	0	
0	1	0	0	x	Х	0	х	х	х	X	X	0	1	
0	1	0	0	x	х	1	х	х	х	Х	Х	1	0	
0	1	1	0	x	х	х	0	X	х	Х	х	0	1	
0	1	1	0	x	x	X	1	х	х	Х	х	1	0	
1	0	0	0	x	х	х	х	0	х	X	Х	0	1	
1	0	0	0	x	х	х	х	1	х	х	х	1	0	
1	0	1	0	x	х	X	x	x	0	Х	X	0	1	
1	0	1	0	x	х	х	х	х	1	Х	х	1	0	
1	1	0	0	x	х	х	х	x	x	0	x	0	์ 1	
1	1	0	0	x	X	х	х	х	х	1	x	1	0	
1	1	1	0	x	х	Х	x	х	х	х	0	0	1	
1	1	1	0	x	Х	X	х	х	Х	X	1	1	0	


Note: When used to indicate an input, X = irrelevant.

The 100000186 is a one-of-eight data selector which performs parallel-to-serial data conversion. The unit incorporates an enable circuit for chip select. This allows multiplexing from N-lines to one-line.


00000167 100000187



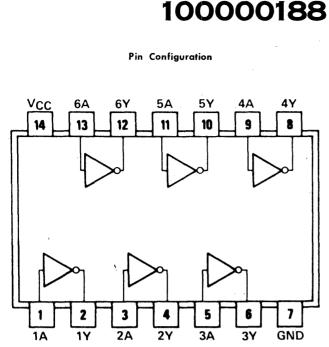
100000167/100000187

Logic Diagram

Quadruple 2-Line-To-1-Line Data Selectors/Multiplexers

Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8


Function Table

	Inputs	Output Y		
Output Control	Select	AB	'167	'187
Н	х	хх	Z	\mathbf{Z}
L	\mathbf{L}	LΧ	L	н
L	L	нх	н	\mathbf{L}
L	Н	ХL	. L	H
L	н	хн	Н	\mathbf{L}

H = high level, L = low level, X = irrelevant, Z = high impedance (off).

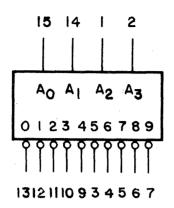
These Schottky-clamped multiplexers have threestate outputs which can interface directly with and drive data lines of bus-organized systems. With all but one of the common outputs disabled (at a high-impedance state), the low impedance of the single enabled output will drive the bus line to a high or low logic level.

This three-state output means that n-bit (paralleled) data selectors with up to 258 sources can be implemented for data buses. It also permits the use of standard TTL registers for data retention throughout the system.

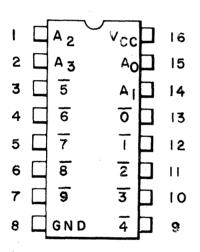
100000284

Hex Inverter With Open-Collector Outputs

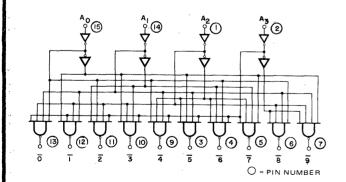
Logic Diagram/Pin Designations


 $V_{CC} = Pin 14$ Gnd = Pin 7

Positive logic: $Y = \overline{A}$


Note: The 100000188 is a Shottky device.

100000189



Pin Configuration

Logic Diagram

One-Of-Ten Decoder With Open Collector Output

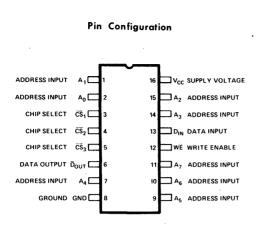
Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

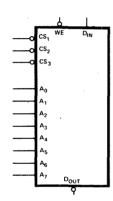
Pin Names

 $A_0, A_1, A_2, A_3 = Address Inputs$ $\overline{0} \text{ to } \overline{9} = Outputs, Active LOW*$

* An external pull-up resistor is needed to provide HIGH level drive capability.


	Truth Table												
Ac	A1	A2	A3	ō	1	$\overline{2}$	3	4	5	6	7	8	9
L	L	L	L	\mathbf{L}	H	н	H	H	H	H	H	H	H
н	\mathbf{L}	\mathbf{L}	L	н	\mathbf{L}	H	H	H	H	H	H	H	H
L	H	\mathbf{L}	\mathbf{L}	н	H	\mathbf{L}	H	H	H	H	H	H	H
н	H	\mathbf{L}	\mathbf{L}	н	H	H	\mathbf{L}	H	H	H	н	H	H
L	\mathbf{L}	H	L	H	H	H	н	\mathbf{L}	H	н	н	H	Ħ
н	\mathbf{L}	H	L	н	Ή	H	Н	H	\mathbf{L}	H	Н	H	H
L	H	H	\mathbf{L}	н	H	H	H	H	H	\mathbf{L}	H	H	H
н	н	H	L	H	H	Η	н	H	H	H	\mathbf{L}	H	H
L	\mathbf{L}	\mathbf{L}	н	н	H	H	н	H	H	H	H	\mathbf{L}	H
н	\mathbf{L}	\mathbf{L}	H	н	H	H	Η	H	H	H	н	H	\mathbf{L}
L	н	\mathbf{L}	н	н	H	H	н	H	H	H	н	H	H
н	H	\mathbf{L}	н	H	H	H	\mathbf{H}	H	H	H	н	H	H
L	L	H	н	H	H	H	H	H	H	H	H	H	H
Н	\mathbf{L}	H	н	H	H	H	H	H	H	H	H	H	H
L	Η	H	н	H	H	H	H	H	H	H	H	H	H
н	Н	H	H	H	H	H	H	H	Н	H	Н	H	H

H = HIGH Voltage Level L = LOW Voltage Level


The 100000189 is a multipurpose decoder which accepts four active HIGH BCD inputs and provides ten mutually exclusive active LOW outputs. The open collector outputs provide summing of input terms. This device provides the capability in one package to generate and sum any or all of the minterms of three variables, or the first 10-of-16 minterms of four variables.

The logic design ensures that all outputs are HIGH when binary codes greater than nine are applied to the inputs.

100000190

Logic Symbol

Functional Block Diagram

BUFFERS D WE	$ \begin{array}{c} \overline{cs}_{1} & \textcircled{3} & \textcircled{0} \\ \overline{cs}_{2} & \textcircled{0} \\ \overline{cs}_{3} & \textcircled{0} \\ \overline{cs}_{3} & \textcircled{0} \\ \overline{cs}_{3} & \textcircled{0} \\ \overline{cs}_{0} & \overbrace{0} \\ \overline{cs}_{0} $	A ₀ A ₁ A ₂ A ₃ (2) (1) (5) (9) 1/16 DECODER ADDRESS BUFFERS AND INVERTERS WRITE AND SENSE AMPLIFIERS	– DATA INPUT AND WRITE	
16 × 16 MEMORY ARRAY				0-12 WE
			1/16 DECODER 1/16 DECODER ADDRESS BUFFERS & INVERTERS	9 A5 0 A6

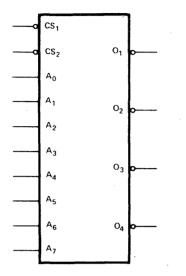
High Speed Fully Decoded 256-Bit RAM

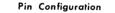
Pin Designations

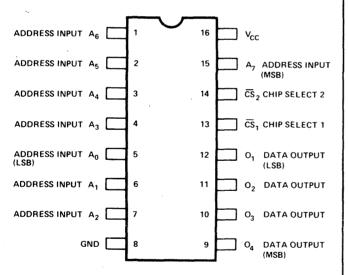
 $V_{CC} = Pin 16$ Gnd = Pin 8

Pin Names:

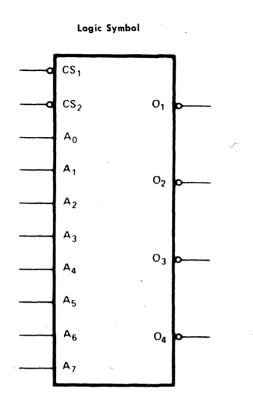
D _{IN}	Data Input					
A ₀ -A ₇	Address Inputs					
WE	Write Enable Input					
$\overline{\mathrm{CS}}_1 - \overline{\mathrm{CS}}_3$	Chip Select					
D _{OUT}	Data Output					


Truth Table


Chip Select	Write Enable	Operation	Output
All Low	Low	Write	Complement of data input
All Low	High	Read	Complement of written data
One or more High	Don't Care	Hold	High Impedance State


The 100000190 is a high speed, fully decoded, 256 bit read/write random access memory. The device features three chip-select inputs and a three-state output.

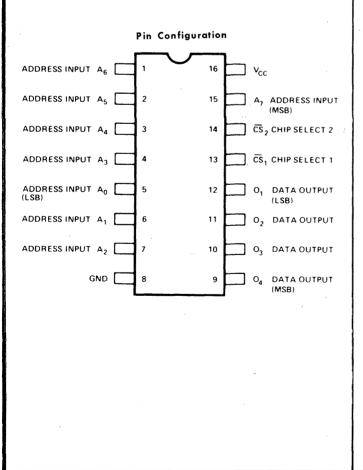
100000191


High Speed Fully Decoded 1024-Bit Read Only Memory

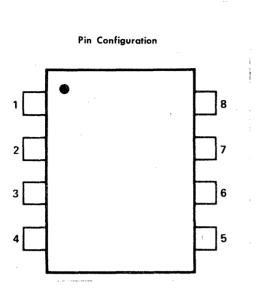
Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

The 100000191 is a fully decoded 1024-bit read only memory organized as 256 words by 4 bits.

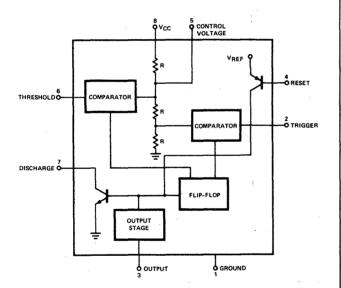

High Speed Electrically Programmable 1024-Bit Read Only Memory

Pin Designations


$$V_{CC} = Pin 16$$

Gnd = Pin 8

The 100000192 is a 1024-bit (256 word by 4 bit) electrically programmable ROM. All outputs are low; logic output high levels can be electrically programmed in selected bit locations.


The same address inputs are used for both programming and reading.

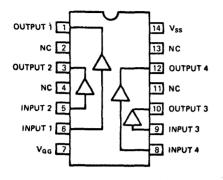
100000193

Functional Block Diagram

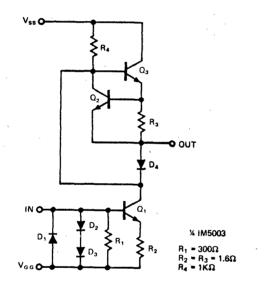
Timer

Pin Designations

1.	Ground	5.	Control Voltage
2.	Trigger	6.	Threshold
3.	Output	7.	Discharge
4.	Reset	8.	V _{CC}


The 100000193 monolithic timing circuit is a highly stable controller capable of producing accurate time delays or oscillation. Additional terminals are provided for triggering or resetting, if desired.

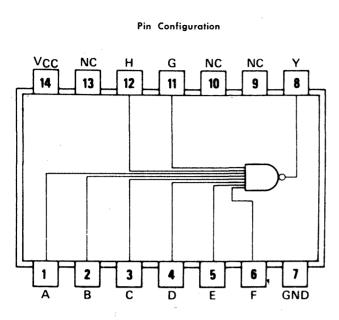
In the time delay mode of operation, the time is precisely controlled by one external resistor and one capacitor. For a stable operation as an oscillator, the free-running frequency and the duty cycle are both accurately controlled with two external resistors and one capacitor.


The circuit may be triggered and reset on falling waveforms, and the output structure can source or sink up to 200mA or drive TTL circuits.

100000194

Pin Configuration

Schematic Diagram

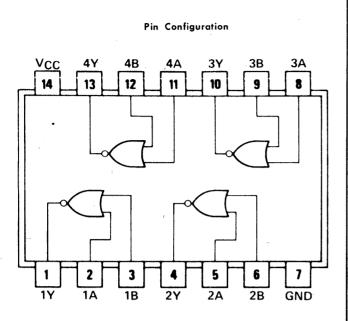

Quad MOS Clock Driver

Logic Diagram/Pin Designations

 $V_{SS} = Pin 14$ $V_{GG} = Pin 7$

The 100000194 is a monolithic quad driver designed primarily for use as a 1 MOS clock driver. It can be driven by high current TTL buffers or drivers, either directly or through input coupling capacitors, if level shifting is required.

100000195


8-Input Positive-NAND Gate

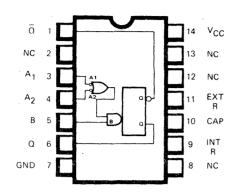
Logic Diagram/Pin Designations

V_{CC} = Pin 14 Gnd = Pin 7 NC = No internal connection

Positive logic: $Y = \overline{ABCDEFGH}$

100000196

Quadruple 2-Input Positive-NOR Buffers With Open-Collector Outputs


Logic Diagram/Pin Designations

V_{CC} = Pin 14 Gnd = Pin 7

Positive logic: $Y = \overline{A+B}$

100000197

Pin Configuration

Monostable Multivibrator

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$

Gnd = Pin 7

Truth Table

tn	Inpu	ıt	t _{n+}	1 Inp	out	Output
A1	A ₂	В	A ₁	A2	В	
H	H	L ·	H	н	H	Inhibit
L	Х	н	L	Х	\mathbf{L}	Inhibit
X	\mathbf{L}	Η	Х	\mathbf{L}	\mathbf{L}	Inhibit
L	Х	\mathbf{L}	L	Х	H	One Shot
X	\mathbf{L}	\mathbf{L}	X	\mathbf{L}	H	One Shot
H	H	Н	Х	\mathbf{L}	H	One Shot
H	Η	H	L	Х	H	One Shot
X	\mathbf{L}	\mathbf{L}	X	H	\mathbf{L}	Inhibit
L	Х	L	H	X	L	Inhibit
X	\mathbf{L}	Η	H	Η	H	Inhibit
L	Х	H	H	H	H	Inhibit
н	H	\mathbf{L}	X	\mathbf{L}	L	Inhibit
H	H	L	L	X	L.	Inhibit

$$H = V_{IH} \ge 2V$$
$$L = V_{IT} < 0.8V$$

Notes:

- 1. $t_n = time before input transition.$
- 2. t_{n+1} = time after input transition.
- 3. X indicates that either a High or Low may be present.
- 4. NC = No internal connection.
- 5. A₁ and A₂ are negative edge triggered-logic inputs and will trigger the one shot when either or both go to Low level with B at High level.

6. B is a positive Schmitt-trigger input for slow edges or level detection and will trigger the one shot when B goes to High level with either A_1 or A_2 at Low level. (See Truth Table.)

7. External timing capacitor may be connected between pin 10 (positive) and pin 11. With no external capacitance, an output pulse width of typically 30ns is obtained.

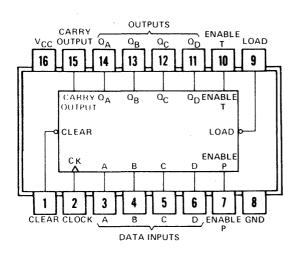
- 8. To use the internal timing resistor $(2k\Omega nominal)$, connect pin 9 to pin 14.
- 9. To obtain variable pulse width, connect external variable resistance between pin 9 and pin 14. No external current limiting is needed.

10. For accurate repeatable pulse widths, connect an external resistor between pin 11 and pin 14 with pin 9 open-circuit.

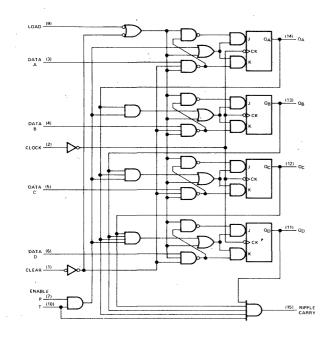
Continued....

100000197 Continued

The 100000197 is a TTL Monostable Multivibrator with dc triggering from positive or gated negative going inputs and with inhibit facility. Both positive and negative going output pulses are provided with full fan out to 10 normalized loads.


Pulse triggering occurs at a particular voltage level and is not directly related to the transition time of the input pulse. Schmitt-trigger input circuitry for the B input allows jitter-free triggering from inputs with transition times as slow as 1.0 V/s, providing the circuit with noise immunity of typically 1.2V. A high immunity to V_{CC} noise of typically 1.5V is also provided by internal latching circuitry.

Once fired, the outputs are independent of further transitions on the inputs and are a function only of the timing components. Input pulses may be of any duration relative to the output pulse. Output pulse lengths may be varied from 40ns to 40s by choosing appropriate timing components. With no external timing components (i. e., pin 9 connected to pin 14, pins 10, 11 open) an output pulse of typically 30ns is achieved which may be used as a dc triggered reset signal. Output rise and fall times are TTL compatible and independent of pulse length.


Jitter-free operation is maintained over the full temperature and V_{CC} range for more than six decades of timing capacitance (10pF to 10μ F) and more than one decade of timing resistance ($2k\Omega$ to $40k\Omega$). Throughout these ranges, pulse width is defined by the relationship $t_{p(out)} = C_T$, $R_T \log_e 2$. Duty cycles as high as 90% are achieved when using $R_T = 40k\Omega$. Higher duty cycles are achievable if a certain amount of pulse-width jitter is allowed.

100000198

Pin Configuration

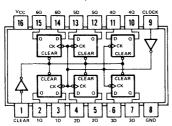
Synchronous 4-Bit Counter

Pin Designations

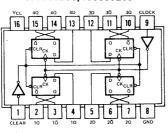
 $V_{CC} = Pin 16$ Gnd = Pin 8

This synchronous, presettable 4-bit binary counter features an internal carry look-ahead for application in high-speed counting schemes.

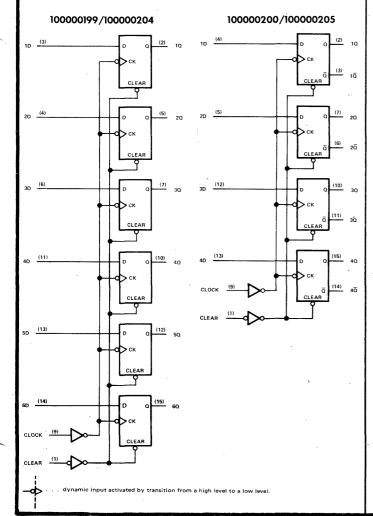
Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation eliminates the output counting spikes which are normally associated with asynchronous (ripple clock) counters. A buffered clock input triggers the four J-K master-slave flip-flops on the rising (positivegoing) edge of the clock input waveform.


This counter is fully programmable; that is, the outputs may be preset to either level. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse regardless of the levels of the enable inputs. Low-to-high transitions at the load input should be avoided when the clock is low if the enable inputs are high at or before the transition. The clear function is synchronous and a low level at the clear input sets all four of the flip-flop outputs low after the next clock pulse, regardless of the levels of the enable inputs. This synchronous clear allows the count length to be modified easily as decoding the maximum count desired can be accomplished with one external NAND gate. The gate output is connected to the clear input to synchronously clear the counter to 0000(LLLL).

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a carry output. Both count-enable inputs (P and T) must be high to count, and input T is fed forward to enable the carry output. The carry output thus enabled will produce a positive output pulse with a duration approximately equal to the positive portion of the Q_A output. This positive overflow carry pulse can be used to enable successive cascaded stages. High-to-low transitions at the enable P or T inputs should occur only when the clock input is high.


> 100000199 100000204

Pin Configurations


100000199/100000204

100000200/100000205

Functional Block Diagrams

100000200 100000205

> Hex-Quadruple D-Type Flip-Flops with Clear

Note: 100000199 and 100000204 - Hex 100000200 and 100000205 - Quadruple

Pin Designations

100000199 and 100000204

 $V_{CC} = Pin 16$ Gnd = Pin 8

100000200 and 100000205

 $V_{CC} = Pin 16$

Gnd = Pin 8

Function Tabl**e** (Each Flip-Flop)

Iı	Outr	outs		
Clear	Clock	D	Q	Q *
L	х	х	L	H
н	1	H	H	\mathbf{L}
H	1	\mathbf{L}	L	$\mathbf{H}^{\mathbf{H}}$
H	\mathbf{L}	Х	Q_0	\overline{Q}_0

Notes:

H = high level (steady state)

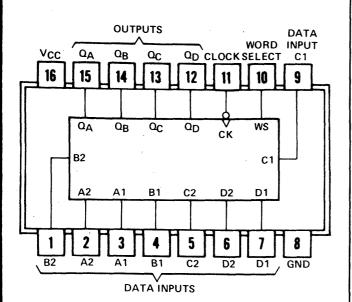
L = low level (steady state)

X = irrelevant

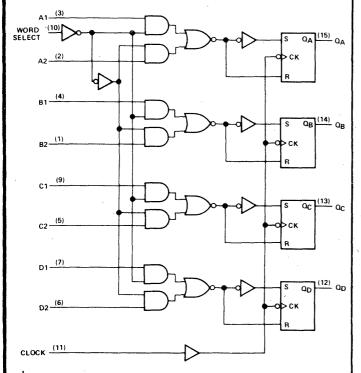
 \dagger = transition from low to high level

Q₀ = the level of Q before the indicated steady state input conditions were established.

= Type 100000200 and 100000205 only.


These monolithic, positive-edge-triggered flipflops utilize TTL circuitry to implement D-type flip-flop logic. All have a direct clear input, and the Quadruple devices feature complementary outputs from each flip-flop.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D input signal has no effect at the-output.


Note: The 100000204 and 100000205 are Shottky devices.

100000201

. Dynamic input activated by a transit on from a high level to a low level

Þ

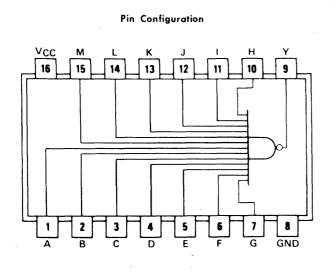
Quadruple 2-Input Multiplexer With Storage

Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Function Table

Inp	uts	Outputs				
Word Select	Clock	QA	Q_B	ବ _C	QD	
L	Ļ	a1	b1	c1	d1	
н	ŧ	a2	b2	c2	d2	
х	H	Q _{A0}	Q_{B0}	Q_{C0}	$\mathbf{Q}_{\mathbf{D0}}$	


Notes:

- H = high level (steady state).
- L = low level (steady state).
- X = irrelevant (any input, including transitions). = transition from high to low level.
- a1, a2, etc. = the level of steady-state input at A1, A2, etc.
- Q_{A0} , Q_{B0} , etc. = the level of Q_A , Q_B , etc., entered on the most recent \downarrow transition of the clock input.

This monolithic quadruple two-input multiplexer with storage provides essentially the equivalent functional capabilities of two separate MSI functions (100000240 and 100000200) in a single 16-pin package.

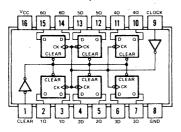
When the word-select input is low, word 1 (A1, B1, C1, D1) is applied to the flip-flops. A high input to word select will cause the selection of word 2 (A2, B2, C2, D2). The selected word is clocked to the output terminals on the negative-going edge of the clock pulse.

10000203

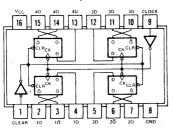
13-Input Positive-NAND Gate

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8


Positive logic: $Y = \overline{ABCDEFGHIJKLM}$

Note: The 100000203 is a Shottky device.


100000199 100000204

Pin Configurations

100000199/100000204

100000200/100000205

100000200 100000205

Hex-Quadruple D-Type Flip-Flops with Clear

Note: 100000199 and 100000204 - Hex 100000200 and 100000205 - Quadruple

Pin Designations

100000199 and 100000204

 $V_{CC} = Pin 16$ Gnd = Pin 8

100000200 and 100000205

 $V_{CC} = Pin 16$ Gnd = Pin 8

Function Table (Each Flip-Flop)

Γ	I	Outp	outs		
	Clear	Clock	D	Q	₹ Q
Γ	L	x	х	L	H
	H	ţ.	н	H	L
ļ	H	t .	\mathbf{L}	L	Ή
	H	\mathbf{L}	Х	Q ₀	\overline{Q}_0

Notes:

t

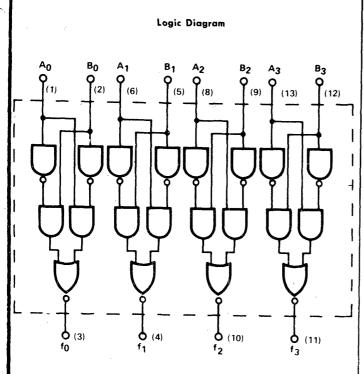
H = high level (steady state)

L = low level (steady state)

X = irrelevant

= transition from low to high level

Q₀ = the level of Q before the indicated steady state input conditions were established.


= Type 100000200 and 100000205 only.

These monolithic, positive-edge-triggered flipflops utilize TTL circuitry to implement D-type flip-flop logic. All have a direct clear input, and the Quadruple devices feature complementary outputs from each flip-flop.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output.

Note: The 100000204 and 100000205 are Shottky devices.

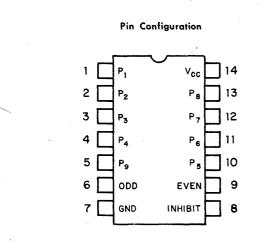
100000206

4-Bit Quad Exclusive-NOR

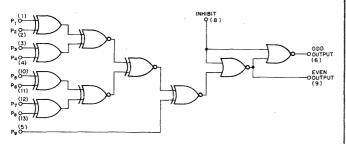
Logic Diagram/Pin Designations

$$V_{CC} = Pin 14$$

Gnd = Pin 7


Truth Table

A	В	f
0	0	1
1 Í	0	0
0	1	0
1	1	1


The 100000206 contains four independent Exclusive-NOR gates which may be used to implement digital comparison functions. The device outputs are open collector to facilitate implementation of multiple-bit comparisons; a 4-bit comparison is made by connecting the outputs of the four independent gates together.

Note: The 100000206 is a Shottky device.

100000207

Logic Diagram

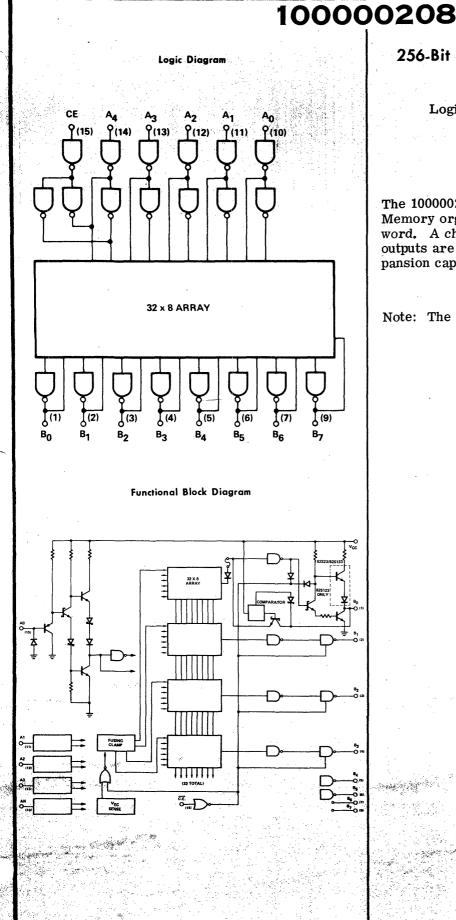
()=Denotes Pin Number

9-Bit Parity Generator and Checker

Logic Diagram/Pin Designations

$$V_{CC} = Pin 14$$

Gnd = Pin 7


Logic Equations:

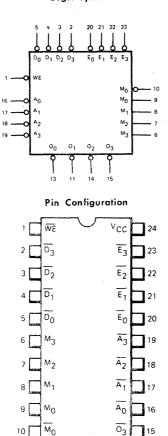
 $\begin{array}{l} \text{Odd} = \\ P_1 \oplus P_2 \oplus P_3 \oplus P_4 \oplus P_5 \oplus P_6 \oplus P_7 \oplus P_8 \oplus P_9 \\ \text{Even} = \\ \hline P_1 \oplus P_2 \oplus P_3 \oplus P_4 \oplus P_5 \oplus P_6 \oplus P_7 \oplus P_8 \oplus P_9 \end{array}$

The 100000207 9-Input Parity Generator/Parity Checker is an ultra high speed Schottky MSI device commonly used to detect errors in data transmission or in data retrieval. Two outputs (EVEN and ODD) are provided. An INHIBIT input is provided to disable both outputs of the device. (A logic 1 on the INHIBIT input forces both outputs to a logic 0).

When used as a Parity Generator, the 100000207 supplies a parity bit which is transmitted together with the data word.

At the receiving end, the device acts as a Parity Checker and indicates that data has been received correctly or that an error has been detected.

256-Bit Bipolar Programmable ROM (32 × 8 PROM)


Logic Diagram/Pin Designations

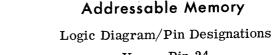
 $V_{CC} = Pin 16$ Gnd = Pin 8

The 100000208 is a Bipolar 256-Bit Read Only Memory organized as 32 words by 8 bits per word. A chip enable line is provided, and the outputs are Tristate to allow for memory expansion capability.

Note: The 100000208 is a Shottky device.

ころうちょう いっかいとうないのないないないないない

0,


Ōc

Logic Diagram

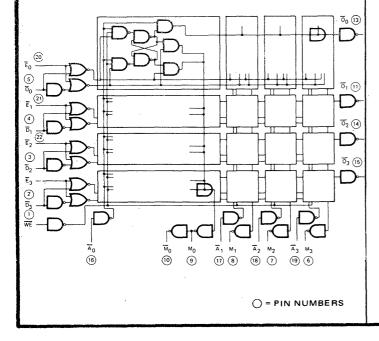
GND

100000211

Logic Symbol

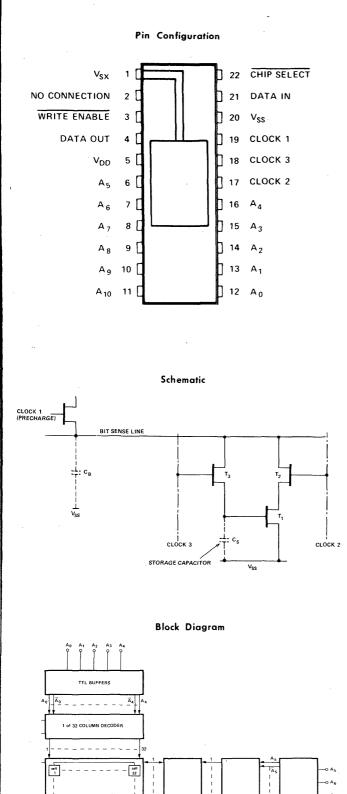
16-Bit Associative-Content

The 100000211 is a high speed 16-bit associative random access memory. It is a linear select 4-word by 4-bit array which performs the equality search on all bits in parallel.


With the bit enable lines $(\overline{E}_0 - \overline{E}_3)$ LOW, the outputs $(M_0 - M_3)$ go HIGH if associated stored data matches the descriptor bits $(\overline{D}_0 - \overline{D}_3)$. If a bit enable line is held HIGH, a match is forced on the corresponding bit in all the words regardless of the state of the descriptor bit $(\overline{D}_0 - \overline{D}_3)$. An inverter is connected to the match output M_0 to give its negation \overline{M}_0 .

A word is addressed by having an active LOW on the appropriate address line $(\overline{A_0} - \overline{A_3})$. Any number of words may be addressed simultaneously.

Data can be written into the memory through the data inputs $(\overline{D}_0 - \overline{D}_3)$ under control of the address inputs and the appropriate bit enable $(\overline{E}_0 - \overline{E}_3)$ when the write enable $(\overline{W}E)$ is LOW.


Reading can occur either during an equality search or a write operation. If a single word is addressed that word will appear at the data outputs $(\overline{O}_0 - \overline{O}_3)$. If multiple addressing is used, the word appearing at the data output is the AND (positive logic) or the OR (negative logic) of the addressed words.

All outputs are uncommitted collectors allowing maximum flexibility in output connection. In many applications, such as memory expansion, the outputs of many of these devices can be tied together. In other applications the wired-OR is not used. In either case, an external pull up resistor must be used to attain a HIGH at an output.

100-202

100000214

2048-Bit MOS LSI Random Access Memory

The 100000214 is a dynamic MOS random access memory device which utilizes the gate capacitance of a MOS device as a storage medium. The storage cell consists of the storage device T_1 , the read select device T_2 and the write select device T_3 .

The cycle begins with the negative transition of clock 1. During this time precharge is taking place. In addition, the address inputs, which must be stable during the last 65ns of clock 1 are inverted and amplified. At the end of clock 1 the internal address lines become stable. One of 64 row decoders and one of 32 column decoders are activated during t_{12} , the clock 1 to clock 2 delay time.

Clock 2, the read clock, is channeled by the decoders to the addressed column where T_2 , the read select device, is turned on. The condition of the storage device T_1 , (on or off) can now be sensed by the bit sense line. The addressed bit sense line is multiplexed to the I/O control circuit which then generates the Data Out. Data In, which must be valid 50ns before clock 3, is conditioned and amplified in the I/O control circuit. During clock 3, the write driver transmits the input data through the multiplexer to the addressed bit sense line.

Clock 3, the write clock, is channeled by the decoders to the addressed column where T_3 , the write select device, is turned on. Any information on the bit sense line is, therefore, transferred to the C_S , the gate capacitance of the storage device.

The refresh cycle consists of clock 1, clock 2 and clock 3. Clock 1 precharges the bit sense line. Clock 2 senses the status of the storage device T_1 , which is operating in the inverter mode, and places the inverted state of the storage device on the bit sense line. Clock 3, by turning on T_3 , transfers the information from the bit sense line to the storage device. Note, each refresh cycle will result in the inversion of the stored data. To refresh all 2048 cells, each of the 32 columns must be selected for a refresh cycle by exercising all 32 combinations of the low order addresses $(A_0 - A_4)$.

The read cycle may consist only of clock 1 and clock 2. Since each refresh cycle inverts the data in the storage cells in an accessed column, a control circuit, the Data Control Register, is used. The Data Control Register, which is basically another set of memory cells, is slaved

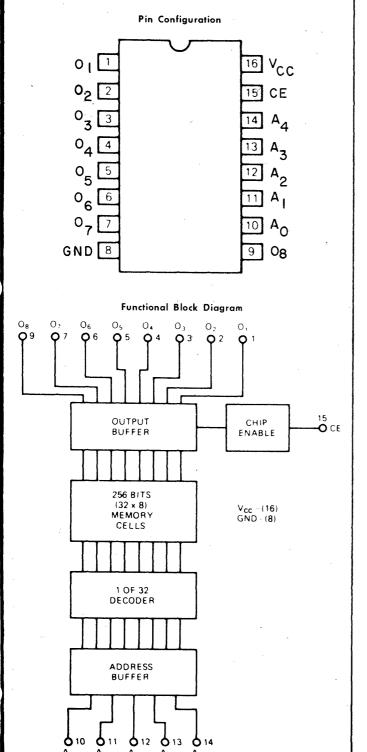
Continued

WRITE ENABLE

CHIP SELECT

I/O CONTRO

DATA CONTROL REGISTER


10000214 Continued

to the memory array. The state of the Data Control Register will provide information as to whether a column of storage cells is in a noninverting or inverting state.

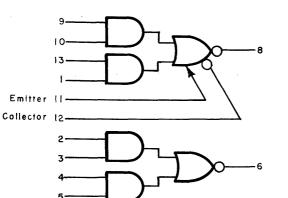
Clock 1 of the read cycle precharges the device. Clock 2 is transmitted by the column decoders to the addressed column. At this time, data from both the storage cell and the Data Control Register is sensed. The row multiplexer transfers the data from the addressed row to the I/O Control circuit. In the I/O Control circuit, an exclusive-OR function of the data from the memory array and the Data Control Register is performed. The output of the exclusive-OR is then amplified and presented to the Data Out pin. The output data is held in a register until the initiation of the next memory cycle. A new memory cycle may begin 20ns after clock 2 has returned to a positive state. The 100000214 is a non-inverting device; i.e., TTL "high" Data-In will result in an output high current.

The write cycle consists of clock 1, clock 2 and clock 3. During clock 1 the precharge operation takes place. During clock 2 the Data Control Register is read to determine whether the accessed column is in a true or inverted state. At the beginning of clock 3 the exclusive-OR function of Data-In and the content of the Data Control Register is performed in the I/O Control circuit. The output of the input exclusive-OR is then amplified and transmitted to the addressed cell by the write-driver. A new memory cycle may begin 20ns after clock 3 has returned to the positive state.

100000140100000141100000142100000148100000149100000215100000216100000217100000218100000219100000219

256-Bit Bipolar Read Only Memory

Logic Diagram/Pin Designations


 $V_{CC} = Pin 16$ Gnd = Pin 8

These high speed, electrically programmable, fully decoded TTL bipolar 256-bit read only memories are organized as 32 words by 8 bits.

Memory expansion is simple; three-state outputs are provided on the 100000215; uncommitted collector outputs are provided on all other devices. Each device has on-chip address decoding and chip enable. The memory is fabricated with all logic level zeroes(low); logic level ones (high) can be electrically programmed in the selected bit locations. The same address inputs are used for both programming and reading.

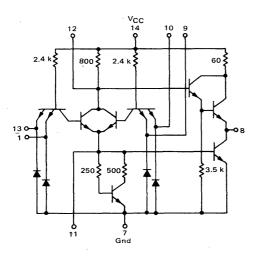
100000221

Expandable Dual 2-Wide 2-Input AND-OR-Invert Gate

Logic Diagram

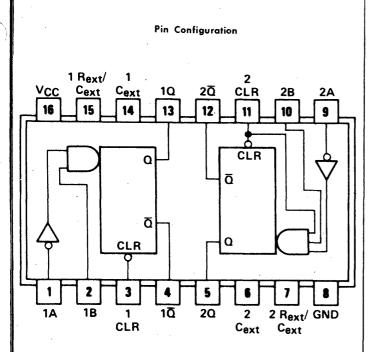
Positive Logic:

$$8 = (9 \cdot 10) + (13 \cdot 1) + (Expanders)$$


Negative Logic:

$$8 = (9 + 10) \cdot (13 + 1) \cdot (\text{Expanders})$$

One side of this dual device consists of two 2-input AND gates ORed together and driving an output inverter. The other side consists of two 2-input gates ORed together, driving an output inverter, and the ORing nodes are available for expansion.


Circuit Schematic

1/2 OF CIRCUIT SHOWN[†]

[†]Other half of circuit omits expander inputs.

100000222

Dual Retriggerable Monostable Multivibrator with Clear

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

	Truth Table									
ſ	Inp	outs		Out	puts					
	Clear	A	В	Q	\overline{Q}					
	\mathbf{L}	Х	Х	L	H					
	х	H	х	L	н					
ľ	х	х	\mathbf{L}	L	Н					
	н	\mathbf{L}	t		U					
	н	ţ	н	л	J					
	1	L	H	<u>_</u>	. T					

Notes:

H = high level (steady state).

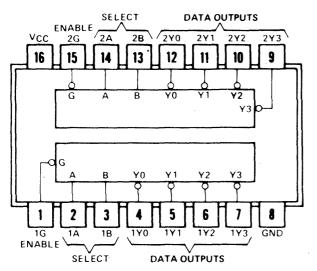
L = low level (steady state).

 \dagger = transition from low to high level.

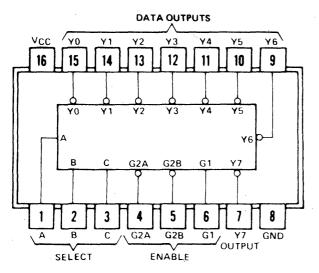
 \downarrow = transition from high to low level.

 $\int =$ one high-level pulse.

 $\Box \Gamma$ = one low-level pulse.


X = irrelevant (any input, including transitions).

An external timing capacitor may be connected between C_{ext} and R_{ext}/C_{ext} (positive).


100000185 100000223

Pin Configurations

100000185

100000223

Decoders-Demultiplexers

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Function Table - 100000223

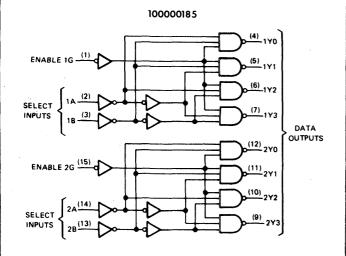
	Inp	ıts						Out	puts			
En	able	S	elec	et					pute			
G1	G2*	С	в	Α	Y0	Y1	Y2	Y 3	¥4	¥5	¥6	Y7
X	н	x	Х	X	Н	Н	H	Н	Н	H	H	H
L	Х	Х	Х	х	Н	н	Н	н	Н	Н	н	H
Н	\mathbf{L}	\mathbf{L}	\mathbf{L}	\mathbf{L}	L	Η	Η	Н	Η	Η	Н	H
H	\mathbf{L}	\mathbf{L}	\mathbf{L}	Н	Н	\mathbf{L}	Н	Н	Н	Н	Η	H
H	\mathbf{L}	\mathbf{L}	Η	L	Н	Η	$\cdot \mathbf{L}$	Н	Η	Η	Н	H
H	\mathbf{L}	$\mathbf{\Gamma}$	Η	Η	Ħ	н	H	\mathbf{L}	Н	н	н	H
Н	\mathbf{L}	н	\mathbf{L}	\mathbf{L}	Н	н	Η	Η	\mathbf{L}	н	н	H
Н	\mathbf{L}	Η	\mathbf{L}	Н	Н	Η	H	н	Н	\mathbf{L}	Н	H
H	\mathbf{L}	Η	Н	\mathbf{L}	н	Н	Н	н	Η	н	\mathbf{L}	H
H	\mathbf{L}	Η	Η	Η	Н	Η	Η	Η	Η	Η	Η	L

*G2 = G2A + G2B

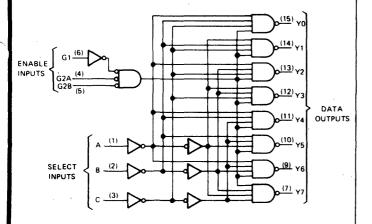
H = high level; L = low level; X = irrelevant

Function Table - 100000185 (Each Decoder/Demultiplexer)

Inpu	Inputs				Outputs		
Enable	Sel	ect					
G	в	Α	Y0	Y1	Y2	¥3	
Н	х	X	Н	Н	Н	H	
L	\mathbf{L}	\mathbf{L}	L	H	н	H	
L	\mathbf{L}	Н	Н	\mathbf{L}	н	H	
L	Η	\mathbf{L}	Н	н	\mathbf{L}	H	
L	H	<u>H</u>	H	H	<u> </u>	L	

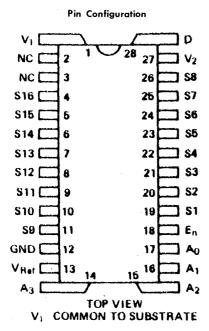

H = high level; L = low level; X = irrelevant

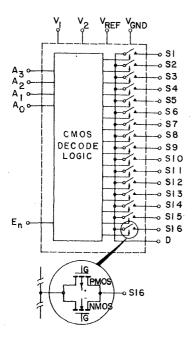
These Schottky-clamped TTL MSI circuits are designed to be used in high-performance memorydecoding or data-routing applications requiring very short propagation delay times. In high performance memory systems these decoders can be used to minimize the effects of system decoding. When employed with high-speed memories utilizing a fast enable circuit, the delay times of these decoders and the enable time of the memory are usually less than the typical access time of the memory. This means that the effective system delay introduced by the Schottky-clamped system decoder is negligible.


Continued....

10000185 10000223 Continued

Logic Diagrams



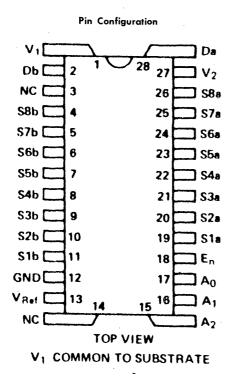

The 100000223 decodes one-of-eight lines, depending on the conditions at the three binary select inputs and the three enable inputs. Two active-low and one active-high enable inputs reduce the need for external gates or inverters when expanding. A 24-line decoder can be implemented without external inverters and a 32-line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.

The 100000185 is comprised of two individual two-line-to-four-line decoders in a single package. The active-low enable input can be used as a data line in demultiplexing applications.

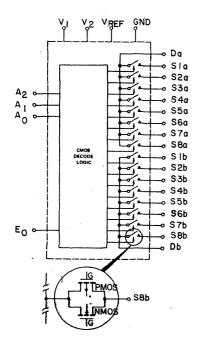
10000224

Functional Diagram

16-Channel Ar	nalog i	Multiple	exer
Complementa	ry MO	S (CMC	DS)


Decode Truth Table

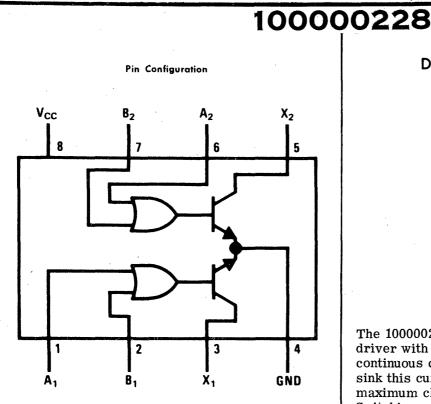
Decode Truth Table								
A3	A2	A1	A0	En	On Switch			
x	x	x	x	0	None			
0	0	.0	0	1	1			
0	0	0	1	1	2			
0	0	1	0	1	3			
0	0	1	1	1	4			
0	1	0	0	1	5			
0	1	0	1	1	6			
0	1	1	0	1	7			
0	1	1	1	1	8			
1	0	0	0	1	9			
1	0	0	1	1	10			
1	0	1	0	1	11			
1	0	1	1	1	12			
1	1	0	0	1	13			
1	1	0	1	1	14			
1	1	1	0	1	15			
1	1	1	1	1	16			


 $Logic "1" = V_{AH} > 2.4V \\ Logic "0" = V_{AL} < 0.8V$

The 100000224 is a single-pole 16-position (plus OFF) electronic switch array which employs 16 pairs of complementary MOS (CMOS) field-effect transistors designed to function as analog switches. In the ON condition each switch will conduct current in either direction; in the OFF condition each switch will block voltages up to 30V peak-to-peak. The ON-OFF state of each switch is controlled by drivers, which are in turn controlled by a 4-bit binary word input plus an Enable-Inhibit input. The truth table shows the binary word required to select any one of the 16 switch positions, provided a positive logic "1" is present at the Enable input. With logic "O" at the Enable input all switches will be OFF. The logic decoder and the Enable inputs will recognize voltages between -0.3 and 0.8V as logic "0" voltages, and voltages between 2 and 15V as logic "1" voltages. The input can thus be directly interfaced with TTL, DTL, RTL, CMOS and certain special P-MOS circuits. Switch action is break-before-make.

100000225

Functional Diagram



8-Channel Differential Analog Multiplexer Complementary MOS (CMOS)

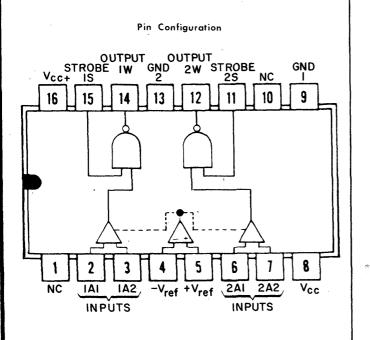
Decode Truth Table							
A2	A1	A ₀	En	On Switch Pair			
x	x	х	0	None			
0	0	0	1	1			
0	0	1.	1	2			
0	1	0	1	3			
0	1	1	1	4			
1	0	0	1	5			
1	0	1	1	6			
1	1	0	1 .	7			
1	1	1	1	8			

Logic ''1'' = $V_{AH} > 2.4V$ Logic ''0'' = $V_{AL} < 0.8V$

The 100000225 is a double-pole 8-position (plus OFF) electronic switch array which employs 16 pairs of complementary MOS (CMOS) field-effect transistors designed to function as analog switches. In the ON condition each switch will conduct current in either direction; in the OFF condition each switch will block voltages up to 30V peak-to-peak. The ON-OFF state of each switch is controlled by drivers, which are in turn controlled by a 3-bit binary word input plus an Enable-Inhibit input. The truth table shows the binary word required to select any one of the eight switch positions, provided a positive logic "1" is present at the Enable input. With logic "0" at the Enable input all switches will be OFF. The logic decoder and the Enable inputs will recognize voltages between -0.3 and 0.8V as logic "O" voltages, and voltages between 2 and 15V as logic "1" voltages. The input can thus be directly interfaced with TTL, DTL, RTL, CMOS and certain special P-MOS circuits. Switch action is break-before-make.

Dual Peripheral Driver

Pin Designations


 $V_{CC} = Pin 8$ Gnd = Pin 4

Truth Table						
Α	Х					
0	0	1				
 0	1	0				
1	0	0				
1	1	0				

The 100000228 is a dual NOR peripheral line driver with output transistors rated up to 300mA continuous current. Both output transistors can sink this current time at the same time, bringing maximum chip power dissipation to 820mW. Switching speeds are compatible with standard TTL and logic levels interface directly with TTL, DTL and LPTTL logic families.

100-214

100000229 100000299 100000118 100000298

Dual Sense Amplifiers

Logic Diagram/Pin Designations

 $V_{CC+} = Pin \ 16$ $V_{CC} = Pin 8$ Gnd 1 = Pin 9Gnd 2 = Pin 13NC = No internal connection

Η

Η

Positive logic: $W = \overline{AS}$

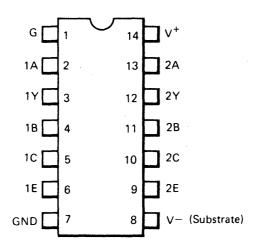
	Truth Table					
Inp	uts	Output				
A	S	W				
Н	Н	L				

Х

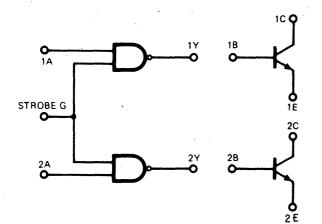
 \mathbf{L}

Definition of logic levels:

 \mathbf{L}

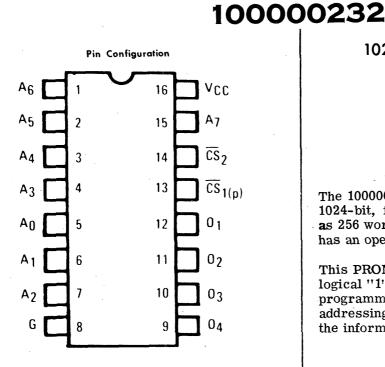

Х

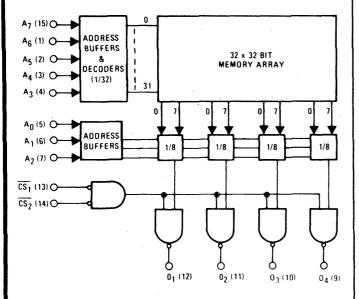
Input	H	L	X
A*	$v_{ID} \ge v_{Tmax}$	$v_{ID} \leqslant v_{Tmin}$	Irrelevant
S	$V_{I} \geqslant V_{IHmin}$	$v_{I} \leqslant v_{ILmax}$	Irrelevant


* A is a differential voltage $(V_{\rm ID})$ between A1 and A2. For these circuits, $V_{\rm ID}$ is considered positive regardless of which terminal is positive with respect to the other.

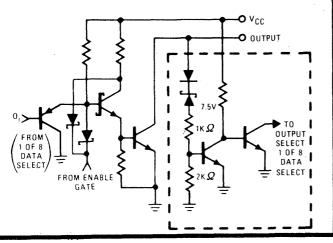
100000231

Pin Configuration


Functional Block Diagram


Dual Peripheral Driver

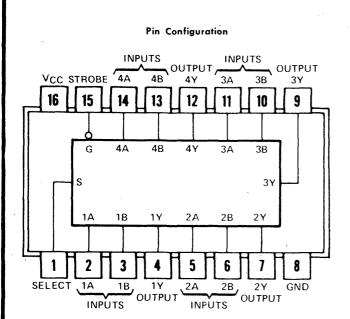
Pin Designations


V+ = Pin 14 V- = Pin 8 Gnd = Pin 7

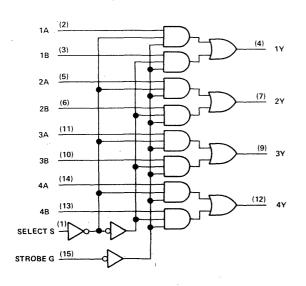
Functional Block Diagram

1024-Bit Field Programmable Bipolar PROM

Pin Designations


 $V_{CC} = Pin 16$ Gnd = Pin 8

The 100000232 is a fully decoded, high speed, 1024-bit, field programmable ROM, organized as 256 words by 4 bits per word. The device has an open collector output.


This PROM is supplied with all bits storing a logical "1" (output high) and can be selectively programmed for a logical "0" (output low). The addressing scheme for programming and reading the information in the system is the same.

100 - 217

10000233 10000240

Logic Diagram

Quadruple 2-Line-To-1-Line Data Selector/Multiplexer

Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

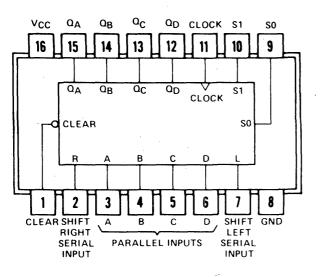
Positive logic:

Low logic level at S selects A inputs. High logic level at S selects B inputs.

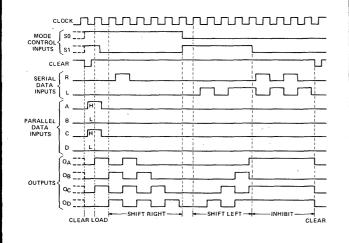
	Function Table							
	Inputs							
Strobe	Select	Α	В	Y				
H	х	х	х	\mathbf{L}				
\mathbf{L}	\mathbf{L}	\mathbf{L}		\mathbf{L}				
\mathbf{L}	\mathbf{L}	\mathbf{H}	X	Н				
\mathbf{L}	H	Х	Ľ	\mathbf{L}				
\mathbf{L}	н	Х	н	Ĥ				
	H L L L	Inputs Strobe Select H X L L L L L L L H	InputsStrobeSelectAHXXLLLLLHLHX	StrobeSelectABHXXLLLLLHLHXLHX				

Notes:

H = high level; L = low level; X = irrelevant.


These monolithic data selectors/multiplexors contain inverters and drivers to supply full onchip data selection to the four output gates. A separate strobe input is provided. A 4-bit word is selected from one of two sources and is routed to the four outputs. These devices present true data.

Note: The 100000233 is a Shottky device.


100-218

00000135 100000234

Pin Configuration

Typical Clear, Load, Right-Shift, Left-Shift, Inhibit, and Clear Sequences

4-Bit Bidirectional Universal Shift Registers

Pin Designations

 $V_{CC} = Pin 16$

Gnd = Pin 8

Function Table

INPUTS										OUT	PUTS		
	MC	DE	CLOCK	SEI	RIAL	PARALLEL			0.	•	0	~	
CLEAR	S1	S ₀	CLUCK	LEFT	RIGHT	Α	B	С	D	QA	QB	αc	0 _D
L	X	х	×	x	x	х	Х	х	Х	L	L	L	L.
н	x	х	L	×	х	х	х	х	х	Q _{A0}	QB0	QC0	Q _{D0}
.Н	н	н	1	x	х	а	b	с	d	а	b	с	d
H.	L	н	1	×	н	x	х	х	х	н	QAn	QBn	QCn
н	L	н	† 1	х	L	х	х	х	х	L	QAn	QBn	QCn
н	н	L	t	н	х	х	х	х	х	0 _{Bn}	QCn	Q _{Dn}	н
н)н.	L	† †	L	х	x	х	х	х	QBn	QCn	QDn	L
н	L	L	x	х	x	x	х	х	х	QA0	OB0	Q _{C0}	Q _{D0}

H = high level (steady state).

- L = low level (steady state).
- X = irrelevant (any input, including transitions).
- \dagger = transition from low to high level.
- a, b, c, d = the level of steady-state input at inputs A, B, C or D, respectively.
- Q_{A0} , Q_{B0} , Q_{C0} , Q_{D0} = the level of Q_A , Q_B , Q_C or Q_D , respectively, before the indicated steady-state input conditions were established.
- Q_{An}, Q_{Bn}, Q_{Cn}, Q_{Dn} = the level of Q_A, Q_B, Q_C or Q_D, respectively, before the most recent † transition of the clock.

Note: The 100000234 is a Shottky device.

The circuit contains 46 equivalent gates and features parallel inputs, parallel outputs, rightshift and left-shift serial inputs, operating-modecontrol inputs, and a direct overriding clear line. The register has four distinct modes of operation:

Parallel (Broadside) Load

Shift Right (in the direction Q_A toward Q_D)

Shift Left (in the direction Q_D toward Q_A)

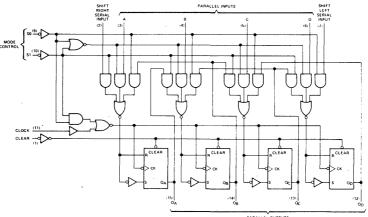
Inhibit Clock (Do nothing)

Continued....

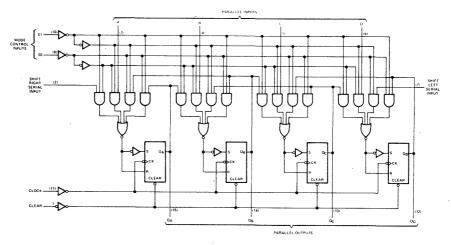
100000135 100000234

Continued

Synchronous parallel loading is accomplished by applying the four bits of data and taking both mode control inputs, S_0 and S_1 , high. The data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

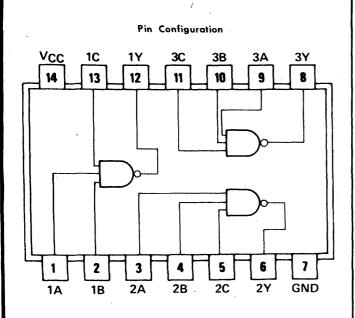

Shift right is accomplished synchronously with the rising edge of the clock pulse when S_0 is high

and S_1 is low. Serial data for this mode is entered at the shift-right data input. When S_0 is low and S_1 is high, data shifts left synchronously and new data is entered at the shift-left serial input.


Clocking of the flip-flop is inhibited when both mode control units are low. The mode controls of the 100000135 should be changed only while the clock input is high.

Logic Diagrams

100000135

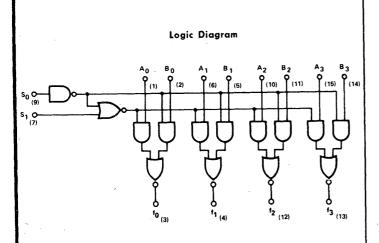

100000234

d dynamic input activated by a transition from a high level to a low level.

 \mathbf{P}

100000235

Triple 3-Input Positive-NAND Gate


Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

Positive logic: $Y = \overline{ABC}$

Note: 100000235 is a Shottky device.

100000236

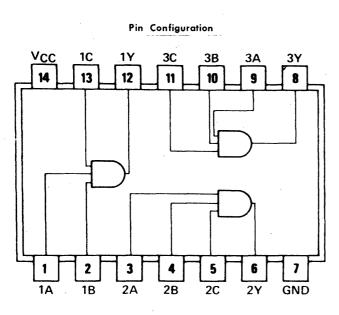
2-Input, 4-Bit Digital Multiplexer

Logic Diagram/Pin Designations

$V_{CC} = Pin 16$ Gnd = Pin 8

Truth Table

s ₀	s ₁	$\frac{f_n}{\overline{B}}$
0	0	B
1	0	Ā
0	1	B
1	1	1


This 2-Input, 4-Bit Digital Multiplexer features inverting data paths.

The 100000236 has open collector outputs which permit direct wiring to other open collector outputs (collector logic) to yield "free" four-bit words. As many as forty four-bit words can be multiplexed by using twenty of these devices in the WIRED-AND mode.

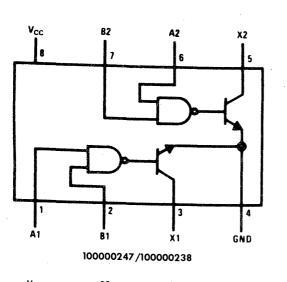
The inhibit state $S_0 = S_1 = 1$ can be used to facilitate transfer operations in an arithmetic section.

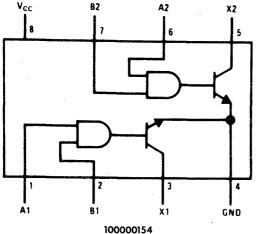
Note: The 100000236 is a Shottky device.

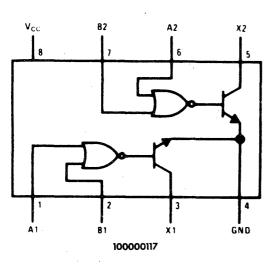
100000237

Triple 3-Input Positive-AND Gate

Logic Diagram/Pin Designations


 $V_{CC} = Pin 14$ Gnd = Pin 7


Positive logic: Y = ABC


Note: The 100000237 is a Shottky device.

100000247 100000238 100000154 100000117

Pin Configurations

Dual Peripheral Drivers

Pin Designations

 $V_{CC} = Pin 8$ Gnd = Pin 4

Truth Tables

100000247 and 100000238

Positive logic: AB=X

		_
A	В	Output X*
0	0	0
1	0	0
0	1	0
1	1	1

*''0'' Output \leq 0.7V ''1'' Output \leq 100 μ A

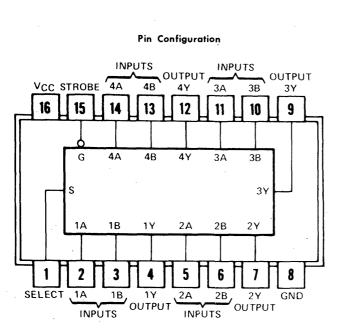
100000154

Positive logic: $\overline{AB}=X$

Α	В	Output X*
0	0	1
1	0	1
0	1	1
1	1	0

*''0'' Output \leq 0. 7V ''1'' Output \leq 100 μ A

100000117


Positive logic: A + B = X

Α	В	Output X*					
0	0	0					
1	0	1					
0	1	1					
1	1	1					

*''0'' Output $\leq 0.7V$ ''1'' Output $\leq 100\mu A$

These devices are general purpose dual peripheral drivers, each capable of sinking two independent 300mA loads to ground. In the off state (or with $V_{CC} = 0V$) the outputs will withstand 30V. Inputs are fully DTL/TTL compatible.

10000233 10000240

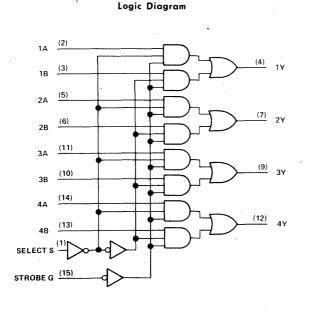
Quadruple 2-Line-To-1-Line Data Selector/Multiplexer

Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

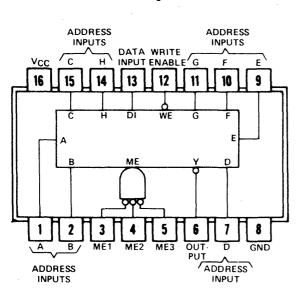
Positive logic:

Low logic level at S selects A inputs. High logic level at S selects B inputs.

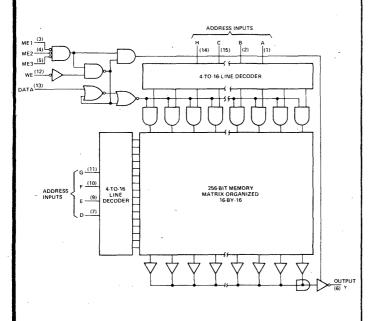

	Function Table							
	Inputs							
Strobe	Select	A	В	Ŷ				
Н	x	х	х	L				
L	\mathbf{L}	\mathbf{L}	Х	\mathbf{L}				
L	\mathbf{L}	Η	х	Н				
L	Н	Х	\mathbf{L}	\mathbf{L}				
L	Н	Х	н	Н				

Notes:

H = high level; L = low level; X = irrelevant.


These monolithic data selectors/multiplexors contain inverters and drivers to supply full onchip data selection to the four output gates. A separate strobe input is provided. A 4-bit word is selected from one of two sources and is routed to the four outputs. These devices present true data.

Note: The 100000233 is a Shottky device.



100000241

Pin Configuration

Functional Block Diagram

256-Bit Read-Write Memory With 3-State Outputs

Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Positive logic:

Data out is complement of data which was applied at data input.

	Function Table								
I		Inpu	and the second se						
		Memory							
	Function	Enable*	Enable	Output					
	Write (Store complement of data)	L	$\mathbf L$	High Impedance					
	Read	\mathbf{L}^{+}	н	Stored Data					
	Inhibit	H	Х	High Impedance					

H = high level

L = low level

X = irrelevant

* For memory enable:

L = all ME inputs low

H = one or more ME inputs high

This 256-bit active-element memory is a monolithic TTL array organized as 256 words of one bit each. It is fully decoded and has three gated memory-enable inputs to simplify decoding required to achieve the desired system organization. The memory-enable circuitry is implemented with minimal delay times to compensate for added system decoding.

Write Cycle

The complement of the information at the data input is written into the selected location when all memory-enable inputs and write-enable input are low. While the write enable input is low, the output is in the high-impedance state. When a number of outputs are bus-connected, this highimpedance output state will neither load nor drive the bus line, but it will allow the bus line to be driven by another active output or a passive pull-up if desired.

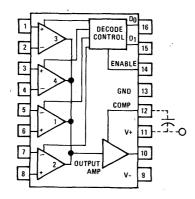
Read Cycle

The stored information (complement of information applied at the data input during the write Continued

10000241 Continued

cycle) is available at the output when the writeenable input is high and the three memory-enable inputs are low. When any one of the memory enable inputs is high, the output will be in the highimpedance state.

The high capacitive drive capability of the threestate bus-connectable output permits expansion up to 66, 304 words of N-bits without additional output buffering. The functional capability of the output being at a high impedance during writing and the data input being inhibited during reading means that both data inputs and outputs can be connected to the data lines of a bus-organized system without the need for interface circuits.


Word Supacity VS. Houas				
Loads	Maximum Number of Common Outputs	Maximum Number of Words		
1	259	66, 304		
2	220	56, 320		
3	180	46, 080		
4	140	35, 840		
5	100	25, 600		
6	60	15, 360		
7	20	5, 120		

Word Capacity Vs. Loads

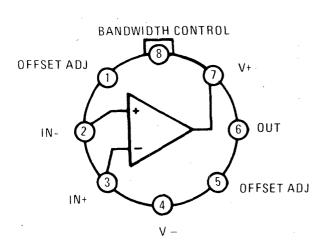
Note: The 100000241 is a Shottky device.

10000242

Pin Configuration

Four Channel Programmable Amplifier

Truth Table


D ₁	D ₀	EN	Selected Channel
L	L	Н	× 1
L	Н	н	2
н	\mathbf{L}	н	3
Н	н	H	4
x	X	L	None

This operational amplifier has four identical input stages, any one (or none) of which may be electronically connected to the single output stage. The "ON" channel is selected through DTL/TTL compatible address inputs. The unselected amplifier inputs are effectively "floating".

This device can be used as an analog signal selector, sampler or multiplexer with built in buffering or signal conditioning. By connecting different feedback networks from the output to each input pair, it can be used as a single or multiple channel amplifier with programmable feedback characteristics.

10000243

Pin Configuration

Schematic

C3 C4 16pf 4pf

立の

211

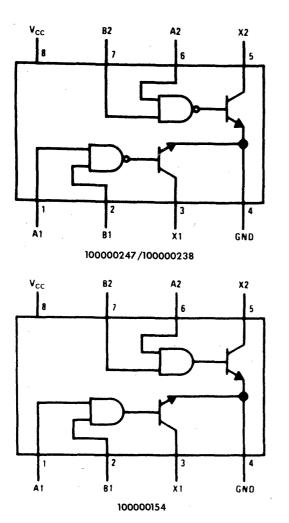
ня 1к 020 <u>5</u> 02

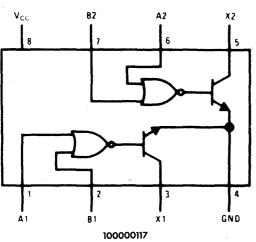
н9 15к BAN

04

立 059

Wide Band, High Impedance Operational Amplifier


This operational amplifier has very low input bias current and is intended for use as a high impedance comparator and a wide band amplifier. The device provides very high gain, very high slew rate and output short circuit protection.



R16 30

100000247 100000238 100000154 100000117

Pin Configurations

Dual Peripheral Drivers

Pin Designations

 $V_{CC} = Pin 8$ Gnd = Pin 4

Truth Tables

100000247 and 100000238

Positive logic: AB=X

Α	В	Output X*
0	0	0
1	0	0
0	1	0
1	1	1

*''0'' Output \leq 0.7V ''1'' Output \leq 100 μ A

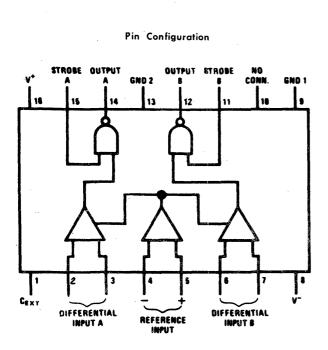
100000154

Positive logic: $\overline{AB}=X$

		0
А	В	Output X*
0	0	1 .
1	0	1
0	1	1
1	1	0

*''0'' Output \leq 0.7V ''1'' Output \leq 100 μ A

100000117

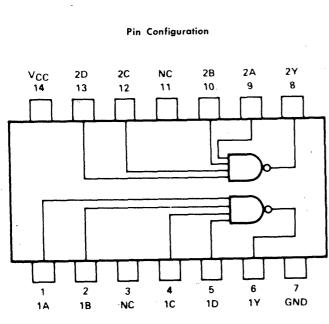

Positive logic: A + B = X

В	Output X*
0	0
0	1
1	1
1	1
	0

*''0'' Output \leq 0.7V ''1'' Output \leq 100 μ A

These devices are general purpose dual peripheral drivers, each capable of sinking two independent 300mA loads to ground. In the off state (or with $V_{CC} = 0V$) the outputs will withstand 30V. Inputs are fully DTL/TTL compatible.

100000248

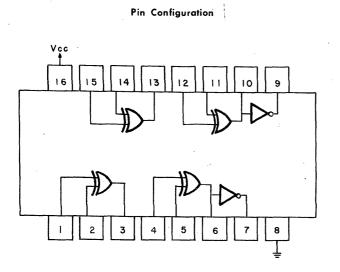

Sense Amplifier

Pin Designations

V+	= Pin 16
V -	= Pin 8
Gnd 1	= Pin 9
Gnd 2	= Pin 13

These dual core sense amplifiers convert bipolar millivolt-level memory sense signals to saturated logic levels. The design employs a common reference input which allows the input threshold voltage level of both amplifiers to be adjusted. Separate strobe inputs provide time discrimination for each channel. Logic inputs and outputs are DTL/TTL compatible.

100000249


Positive-NAND Gate

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

Note: The 100000249 is a Shottky device.

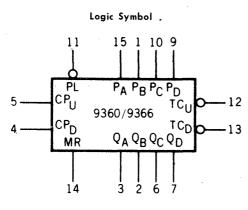
100000250

Quad Exclusive-OR Gate

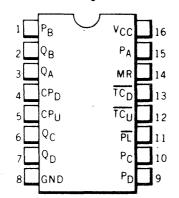
Logic Diagram/Pin Designations

$$V_{CC} = Pin \ 16$$

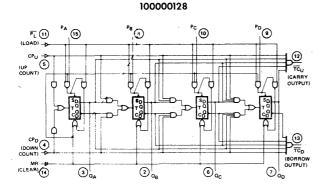
Gnd = Pin 8

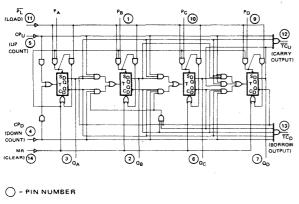

Truth Table

A	В	Z	$\overline{\mathbf{Z}}$
L	L	L	H
L	H	H	Ľ
н	L	H	L
н	H	L	н


H = High Voltage Level L = Low Voltage Level

The exclusive OR gate produces an output when the inputs are complementary. Two gates have an additional inverted output which provides directly a compare capability. The Boolean expressions for the gates are: $Z = \overline{AB} + \overline{AB}$; $\overline{Z} = AB + \overline{AB}$.


10000252


Pin Configuration

Logic Diagrams

100000128

Up/Down Decade and Binary Counters

Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Mode Selection (Both Counters)

ſ	MR	$\overline{\mathrm{PL}}$	CPU	CP_D	Mode
Γ	Н	X	X	Х	Preset (Asyn.)
	L	\mathbf{L}	x	Х	Preset (Asyn.)
	\mathbf{L}	Н	H	Н	No Change
	\mathbf{L}	Н	СР	Н	Count Up
	\mathbf{L}	н	н	СР	Count Down

Notes:

H = High voltage level

L = Low voltage level

X = Don't care condition

CP = Clock pulse.

The 100000252 is a synchronous Up/Down BCD Decade Counter and the 100000128 is a synchronous Up/Down 4-Bit Binary Counter. Both counters have separate up/down clocks, parallel load facility, terminal count outputs for multidecade operation and an asynchronous overriding master reset.

These counters can be reset, preset and count up or down. The operating modes are tabulated in the Mode Selection table. The operating modes of both devices are identical; the only difference between the devices is the count sequences.

Counting is synchronous, with the outputs changing state after the Low to High transition of either the Count-Up Clock (CP_U) or Count-Down Clock (CP_D) . The direction of counting is determined by which clock input is pulsed while the other clock input is High. (Incorrect counting will occur if both the count-up clock and count-down clock inputs are Low simultaneously.) Both counters will respond to a clock pulse on either input by changing to the next appropriate state of the count sequence. The state diagram for the 100000252 shows the regular sequence and in addition shows the sequence of states if a code greater than nine is present in the counter.

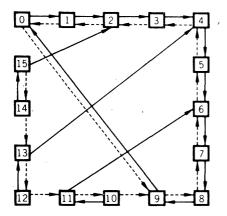
Continued

100000252 100000128

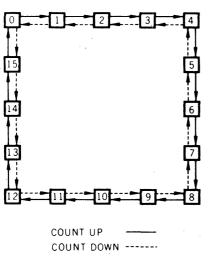
Continued

Logic Equations for Terminal Count

100000252

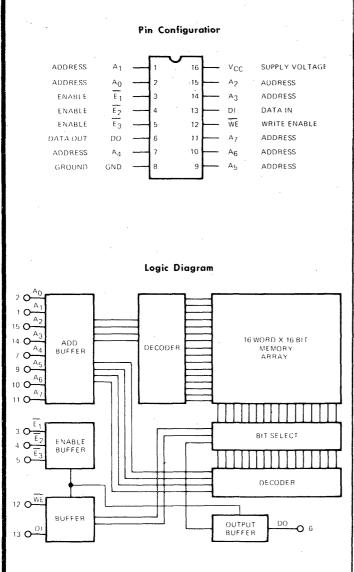

$$TC_{U} = Q_{0} \cdot \overline{Q_{1}} \cdot \overline{Q_{2}} \cdot Q_{3} \cdot \overline{CP_{U}}$$
$$TC_{D} = \overline{Q_{0}} \cdot \overline{Q_{1}} \cdot \overline{Q_{2}} \cdot \overline{Q_{3}} \cdot \overline{CP_{D}}$$

100000128


тси	=	0 <mark>0</mark> ·	Q ₁	· 0 ₂ ·	0 ₃ ·	CPU	
тс _D	=	$\overline{\Omega_0}$.	$\overline{Q_1}$	$\cdot \overline{o_2} \cdot$	$\overline{\Omega_3}$ ·	$\overline{CP_D}$	

State Diagrams

100000128


Both counters have a parallel load (asynchronous) facility which permits the device to be preset. Whenever the parallel load (\overline{PL}) input is Low, and Master Reset is Low, the information present on the Parallel Data inputs (P_A , P_B , P_C , P_D) will be loaded into the counters and appear on the outputs independent of the conditions of the clock inputs. When the Parallel Load Input goes High, this information is stored in the counters and when the counters are clocked they change to the next appropriate state in the count sequence. The Parallel Data inputs are inhibited when the Parallel Load is High and have no effect on the counters.

The Terminal Count-Up (\overline{TC}_U) and Terminal Count-Down (\overline{TC}_D) outputs (carry and borrow, respectively) allow multidecade counter operations without additional logic. The counters are cascaded by feeding the terminal count-up output to the count-up clock input and terminal count-down clock input of the following counter.

The terminal count-up outputs are Low when their count-up clock inputs are Low and the counters are in state nine (100000252) and state fifteen (100000128). Similarly, the terminal count-down outputs are Low when their count-down clock inputs are Low and both counters are in state zero. Thus, when the 100000252 counter is in state nine and the 100000128 counter is in state fifteen and both are counting up, or both counters are in state zero and counting down, a clock pulse will change the counter's state on the rising edge and simultaneously clock the following counter through the appriate active Low terminal count output. There are two gate delays per state when these counters are cascaded.

The asynchronous Master Reset input (MR), when High, overrides all input and clears the counters. Master reset overrides parallel load so that when both are activated the counters will be reset. (Obviously, both parallel load and master reset must not be deactivated simultaneously for predictable operation.)

100000255

256 Bit Bipolar Random Access Memory

Logic Diagram/Pin Designations

$V_{CC} = Pin 16$ Gnd = Pin 8

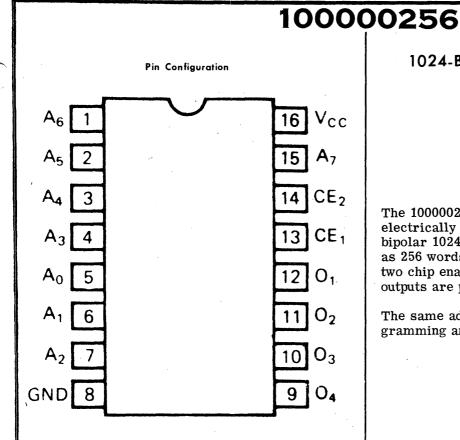
Truth Table

Chip Select	Write Enable	Operation	Output
All Low	Low	Write	Complement of data input
All Low	High	Read	Complement of written data
One or More High	Don't Care	Hold	High

The 100000255 is a fully decoded static bipolar random access memory organized 256 words by 1 bit, with open-collector outputs. The opencollector parts have 3 chip enables for easy expansion to larger size memories.

Memory Operation

Read


The memory is addressed with the A_0 - A_7 inputs which select one of the 256 words. The chip is enabled by making all chip enables low. If any or all chip enables are high the chip is disabled. If the write enable is high and the chip is enabled the stored data is read out on the data out pin. The data read out is the complement of the data written in during the write cycle.

Write

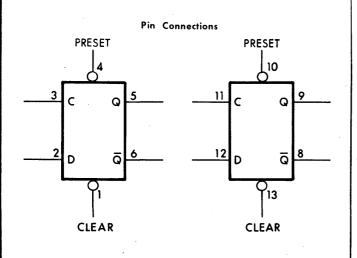
The memory is addressed with the A_0 - A_7 inputs which select one of the 256 words. The chip is enabled as in the read cycle. If the write enable is low the data on the data input pin is written into the addressed word. The data out of the memory during the write cycle is the complement of the data written in. This allows checking of the stored data during the write cycle.

Memory Expansion Rules

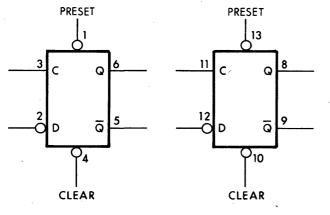
- 1. To expand the number of bits in the word: tie corresponding address pins together, tie write enable pins together, and bring data in and data out independently.
- 2. To expand the number of words: tie corresponding address pins together, tie write enable pins and corresponding data in and data out pins together, and use the higher order system addresses in conjunction with the chip enables to pick one row of packages.

1024-Bit Programmable Bipolar Read Only Memory

Pin Designations


 $V_{CC} = Pin 16$ Gnd = Pin 8

The 100000256 integrated circuit is a high speed, electrically programmable, fully decoded TTL bipolar 1024-bit read only memory, organized as 256 words by 4 bits. On chip address decoding, two chip enable inputs and uncommitted collector outputs are provided.


The same address inputs are used for both programming and reading.

100-239

10000017

Alternate Pin Connections

Dual D-Type Edge-Triggered Flip-Flop

100000257

Logic Diagram/Pin Designations

$V_{CC} = Pin 14$ Gnd = Pin 7

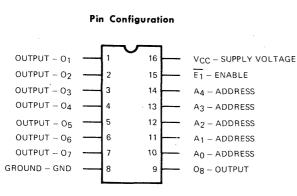
Function Table

	Inputs				
Pres	Preset Clear		x D	Q	\overline{Q}
L	Н	X	X	Н	L
Н	\mathbf{L}	X	Х	L	н
L	\mathbf{L}	Х	Х	• H*	H*
н	Н	ť	Н	н	L
Н	Н	t	\mathbf{L}	\mathbf{L}	н
Н	Н	L	x	Q_0	\overline{Q}_0

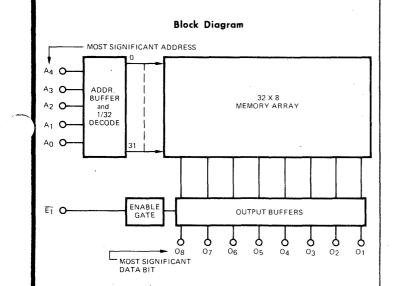
H = high level (steady state)

L = low level (steady state)

X = irrelevant


 \dagger = transition from low to high level

 Q_0 = the level of Q before the indicated input conditions were established.


* = This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

100-240

100000258

Low = Enable

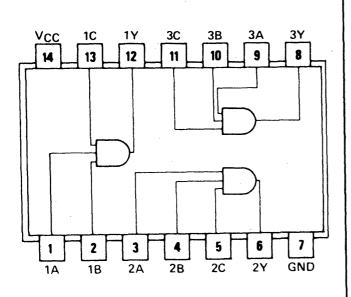
256 Bit Bipolar (32x8) Electrically Programmable Read Only Memory

Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

The 100000258 is a field programmable, 256-bit, DTL and TTL compatible, bipolar read only memory.

The three-state output of this device provides a low impedance driver Q_2 for driving capacitance on the memory output; no pullup resistor is required. When the chip enable is low, D_1 and D_2 are off and either Q_1 or Q_2 is on, depending upon the data in the memory array. When the chip enable is high, D_1 and D_2 are on and Q_1 and Q_2 are off, permitting wire ORing of memory outputs. In a system environment, up to 21 memory outputs of the 100000258 can be connected to a common bus. All of the devices, except one, are placed in the high impedance state. The selected device is enabled and has the characteristics of a TTL totem pole output.

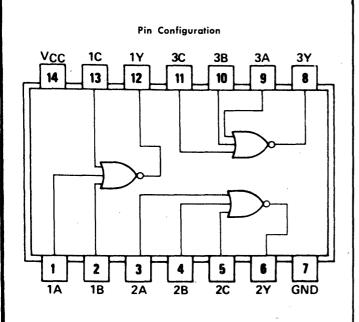

Memory Operation

The memory is addressed with inputs A_0 through A_4 which select one of 32 words. To enable the outputs for a readout, enable \overline{E}_1 must be low. If the enable is high, the outputs are held off permitting wire "OR"ing of the three-state outputs of several packages. The use of the enable permits expansion to greater than 32 words.

100000259

Pin Configuration

Triple 3-Input Positive-AND Gate With Open-Collector Outputs


Logic Diagram/Pin Designations

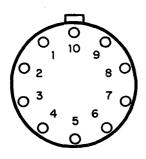
 $V_{CC} = Pin 14$ Gnd = Pin 7

Positive logic: Y = ABC

Note: The 100000259 is a Shottky device.

100000260

Triple 3-Input Positive-NOR Gate


Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

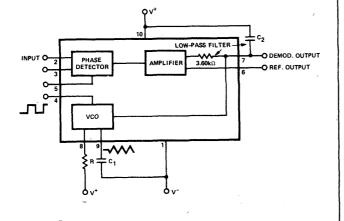
Positive logic: $Y = \overline{A+B+C}$

100000261

Pin Configuration

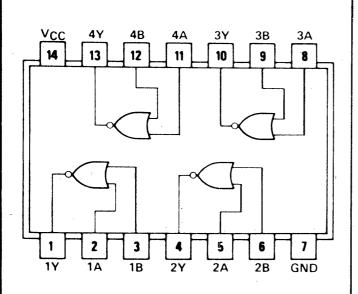
Phase Locked Loop

Pin Designations


- 1. V⁻
- 2. Input
- 3. Input
- 4. VCO Output
- 5. Phase Comparator VCO Input
- 6. Reference Output
- 7. Demodulated Output
- 8. External R for VCO
- 9. External C for VCO
- 10. V⁺

adaptable filter and demodulator for the frequency range 0.001Hz to 500kHz. The circuit comprises a voltage-controlled oscillator, a phase comparator, an amplifier and a low-pass filter.

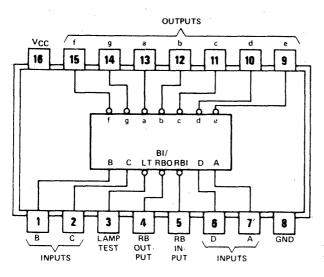
This Phase Locked Loop is a self-contained,


The center frequency of the device is determined by the free-running frequency of the VCO; this frequency can be adjusted externally with a resistor or a capacitor. The low-pass filter, which determines the capture characteristics of the loop, is formed by an internal resistor and an external capacitor.

100000262

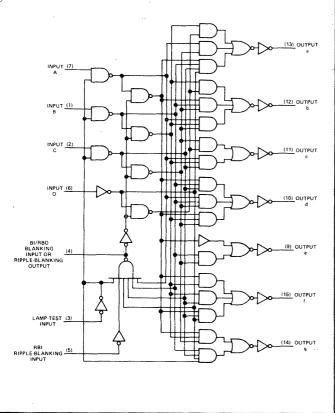
Pin Configuration

Quadruple 2-Input Positive-NOR Gate


Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

Positive logic: $Y = \overline{A+B}$


100000263

Pin Configuration

Positive Logic: See Function Table

Logic Diagram

BCD-To-Seven-Segment Decoder - Driver

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Function	Table
----------	-------

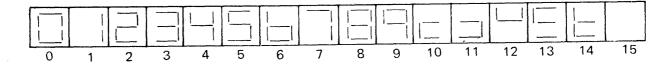
Decimal or	Inputs				BI/RBO*	Outputs						Note			
Function	LT	RBI	D	С	В	A		a	b	с	d	е	f	g	note
0	H	н	L	L	L	L	н	On	On	On	On	On	On	Off	1
1	н	х	L	\mathbf{L}	\mathbf{L}	н	н	Off	On	On	Off	Off	Off	Off	1
2	н	х	L	\mathbf{L}	H	\mathbf{L}	. н	On	On	Off	On	On	Off	On	
3	н	x	L	L	Н	H	н	On	On	On	On	Off	Off	On	
4	H	х	L	Н	L	L	н	Off	On	On	Off	Off	On	On	
5	н	.x	L	н	L	н	н	On	Off	On	On	Off	On	On	
6	н	х	L	н	н	L	н	Off	Off	On	On	On	On	On	
7	н	x	L	Н	н	н	H	On	On	On	Off	Off	Off	Off	
8	н	х	н	L	L	L	н	On	On	On	On	On	On	On	
9	H	х	н	L	r	H	н	On	On	On	Off	Off	On	On	
10	н	х	н	\mathbf{L}	H	L	н	Off	Off	Off	On	On	Off	On	
11	н	х	н	L	H	н	н	Off	Off	On	On	Off	Off	On	
12	H	х	н	H	L	L	н	Off	On	Off	Off	Off	On	On	
13	н	х	н	H	\mathbf{L}	Н	н	On	Off	Off	On	Off	On	On	
14	н	х	н	н	н	L	н	Off	Off	Off	On	On	On	On	
15	н	x	н	Ĥ	Н	H	Н	Off	Off	Off	Off	Off	Off	Off	
BI	х	х	х	х	х	х	L	Off	Off	Off	Off	Off	Off	Off	2
RBI	н	L	L	\mathbf{L}	\mathbf{L}	Ĺ	L	Off	Off	Off	Off	Off	Off	Off	3
LT	L	х	х	х	х	х	н	On	On	On	On	On	On	On	4

H = High level; L = Low level; X = irrelevant.

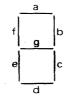
Notes:

- 1. The blanking input (BI) must be open or held at a high logic level when output functions 0 through 15 are desired. The ripple-blanking input (RBI) must be open or high if blanking of a decimal zero is not desired.
- 2. When a low logic level is applied directly to the blanking input (BI), all segment outputs are off regardless of the level of any other input.
- 3. When ripple-blanking input (RBI) and inputs A, B, C and D are at a low level with the lamp test input high, all segment outputs go off and the ripple-blanking output (RBO) goes to a low level (response condition).
- 4. When the blanking input/ripple blanking output (BI/RBO) is open or held high and a low is applied to the lamp-test input, all segment outputs are on.

* BI/RBO is wire-AND logic serving as blanking input (BI) and/or ripple-blanking output (RBO).

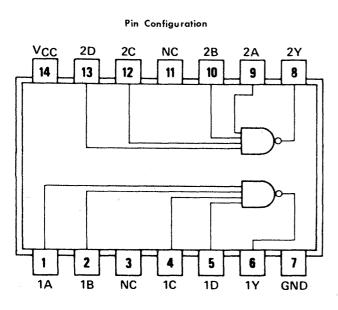

Continued....

10000263 Continued


This circuit has full ripple-blanking input/output controls and a lamp test input. Display patterns for BCD input counts above 9 are unique symbols to authenticate input conditions.

Automatic leading and/or trailing-edge zeroblanking control (RBI and RBO) is incorporated in this device. A lamp test (LT) may be performed at any time when the BI/RBO is at a high level. An overriding blanking input (BI) can be used to control the lamp intensity by pulsing or to inhibit the outputs. Inputs and outputs are compatible for use with TTL or DTL logic outputs.

Numerical Designations and Resultant Displays



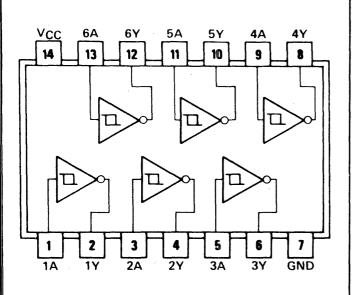
Segment Identification

100-247

100000264

Dual 4-Input Positive-NAND Buffer

Logic Diagram/Pin Designations


 $V_{CC} = Pin 14$ Gnd = Pin 7

Positive logic: $Y = \overline{ABCD}$

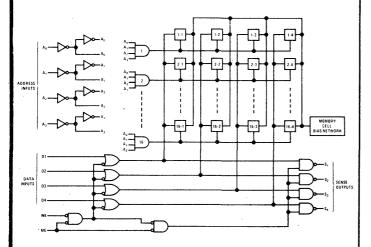
Note: The 100000264 is a Shottky device.

100000265

Pin Configuration

Hex Schmitt-Trigger Inverter

Logic Diagram/Pin Designations


 $V_{CC} = Pin 14$ Gnd = Pin 7

Positive logic: $Y = \overline{A}$

100000266

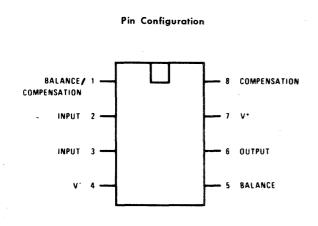
Pin Configuration Vcc 16 A A2 D4 A₃ S⊿ D₃ Ao S٦ ME WE D_2 D S₂ 6 GND

Functional Block Diagram

64-Bit Random Access Read/Write Memory

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$


Gnd = Pin 8

Truth Table

Memory Enable	Write Enable	Operation	Outputs
0	0	Write	Hi-Z State
0	1	Read	Complement of Data Stored in Memory
1	x	Hold	Hi-Z State

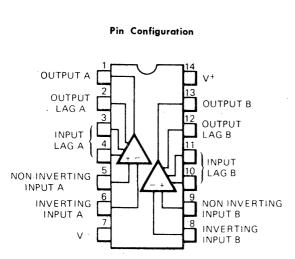
The 100000266 is a fully decoded 64-bit RAM organized as 16 4-bit words. The memory is addressed by applying a binary number to the four Address inputs. After addressing, information may be either written into or read from the memory. To write, both the Memory Enable and the Write Enable inputs must be in the logical "O" state. Information applied to the four Write inputs will then be written into the addressed location. To read information from the memory the Memory Enable input must be in the logical "O" state and the Write Enable input in the logical "1" state. Information will be read as the complement of what was written into the memory. When the Memory Enable input is in the logical "1" state, the outputs will go to the high-impedance state. This allows up to 128 memories to be connected to a common bus-line without the use of pull-up resistors. All memories except one are gated into the high-impedance while the one selected memory exhibits the normally totem-pole low impedance output characteristics of TTL.

100000267

Operational Amplifier

Pin Designations

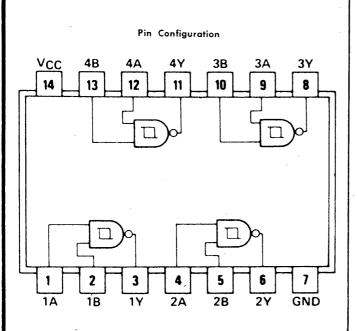
V + = Pin 7


V- = Pin 4

The 100000267 is a general purpose operational amplifier. This amplifier offers overload protection on the input and output, no latch-up when the common mode range is exceeded, freedom from oscillations and compensation with a single 30pF capacitor.

In addition, the circuit can be used as a comparator with differential inputs up to $\pm 30V$, and the output can be clamped at any desired level to make it compatible with logic circuits.

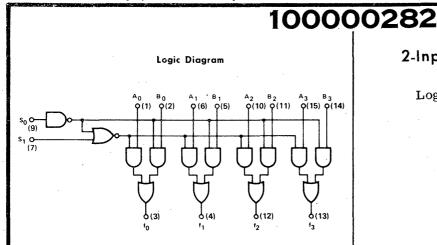
100-251


100000268

Dual Operational Amplifier

The 100000268 consists of two identical high gain operational amplifiers. These three-stage amplifiers use class A PNP transistor output stages with uncommitted collectors. The outputs may be ORed for use as a dual comparator or they may function as diodes in low threshold rectifying circuits.

100000281


Quadruple 2-Input Positive-NAND Schmitt Trigger

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

Positive logic: $Y = \overline{AB}$

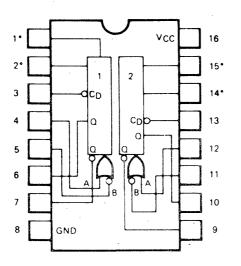
Note: The 100000281 is a Shottky device.

2-Input 4-Bit Digital Multiplexer

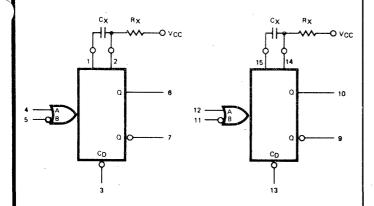
Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Truth Table


s ₀	s ₁	f _n
0	0	В
1	0	A
0	1	В
1	1	0

This 2-input, 4-bit digital multiplexer features non-inverting data paths.


The inhibit state $S_0 = S_1 = 1$ can be used to facilitate transfer operations in an arithmetic section.

100000283

Pin Configuration

Functional Schematic

Low Power Dual Retriggerable Resettable Monostable Multivibrator

Logic Diagram/Pin Designations

$V_{CC} = Pin 16$ Gnd = Pin 8

Triggering Truth Table

Pi			
5(11)	4(12)	3(13)	Operation
H→L	L	H	Trigger
Н	L→H	H	Trigger
x	x	L	Reset

Notes:

H = High Voltage Level $\geq V_{IH}$

L = Low Voltage Level $\leq V_{II}$.

X = Don't Care (either H or L)

H--L = High to Low Voltage Level transition

 $L \rightarrow H$ = Low to High Voltage Level transition

This dual resettable, retriggerable monostable multivibrator has two inputs per function, one active Low and one active High. This allows leading edge of trailing edge triggering. The TTL inputs make triggering independent of input transition times. When input conditions for triggering are met, a new cycle starts and the external capacitor is rapidly discharged and then allowed to charge. An input cycle time shorter than the output cycle time will retrigger this device and result in a continuous true output.

The output pulse may be terminated at any time by connecting the reset pin to a logic level Low. Active pullups are provided on the outputs for good drive capability into capacitive loads.

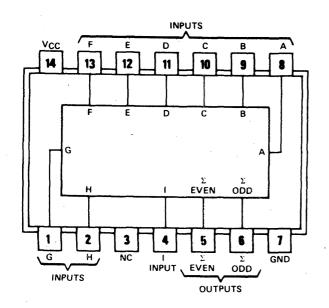
Retriggering may be inhibited by tying the \overline{Q} output to the active level Low input or the Q output to the active level High input.

100000188 **Pin Configuration** Vcc 6A 6Y 5A 5Y 4A **4**Y 10 9 14 13 12 11 8 7 5 1Y 2A 3A 3Y GND **1**A 2Y

Hex Inverter With Open-Collector Outputs

10000284

Logic Diagram/Pin Designations


 $V_{CC} = Pin 14$ Gnd = Pin 7

Positive logic: $Y = \overline{A}$

Note: The 100000188 is a Shottky device.

10000287

9-Bit Odd/Even Parity Generator/Checker

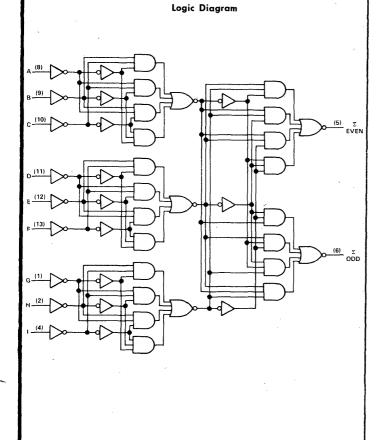
Pin Designations

 $V_{CC} = Pin 14$

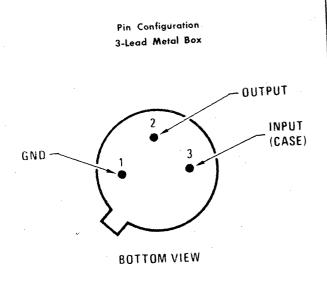
Gnd = Pin 7

NC = No internal connection

connection


Function Table

Number of Inputs A	Outputs				
Thru I That Are High	ΣEven	ΣOdd			
0, 2, 4, 6, 8	H	L			
1, 3, 5, 7, 9	\mathbf{L}	н			

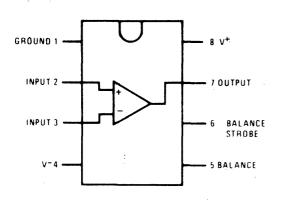

H = high level

L = low level

This universal, monolithic, nine-bit parity generator/checker utilizes Schottky-clamped TTL circuitry and features odd/even outputs to facilitate operation of either odd or even parity applications. The word-length capability is expanded by cascading.

100-257

1:8


Schematic

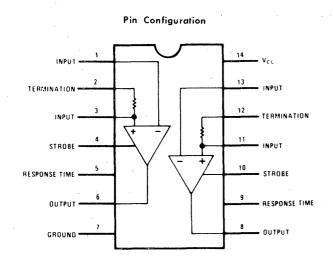
Three-Terminal Negative Regulator

The 100000290 is a three-terminal negative regulator with a fixed output voltage of -12V. This device needs only one external component -a compensation capacitor at the output.

100000292

Pin Configuration

Voltage Comparator/Buffer

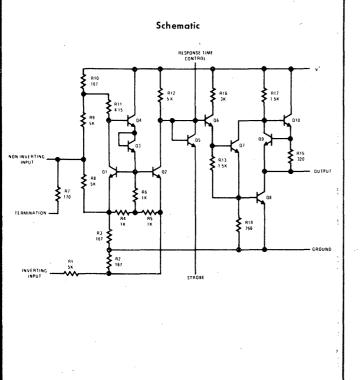

Pin Designations

V+ = Pin 8 V- = Pin 4 Gnd = Pin 1

This voltage comparator is designed to operate over a wide range of supply voltages. Its output is compatible with RTL, DTL and TTL as well as MOS circuits.

Both the input and output can be isolated from system ground, and the output can drive loads referred to ground, the positive supply or the negative supply. Offset balancing and strobe capability are provided and outputs can be wire OR'd.

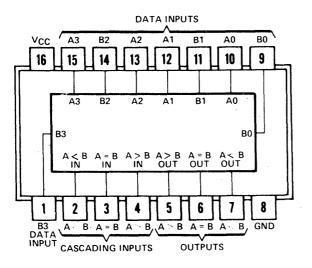
10000295

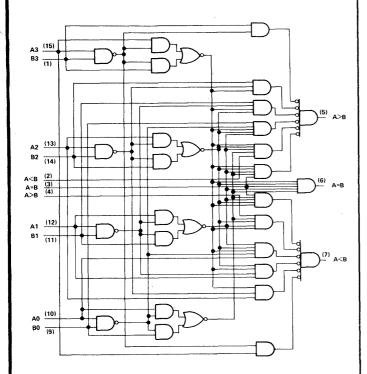


Dual Line Receiver

Pin Designations V_{CC} = Pin 14

Gnd = Pin 7


The 100000295 is a digital line receiver. The response time can be controlled with an external capacitor to eliminate noise spikes. The output is directly compatible with RTL, DTL or TTL integrated circuits.


100-262

100000296

Pin Configuration

Logic Diagram

4-Bit Magnitude Comparator

Pin Designations

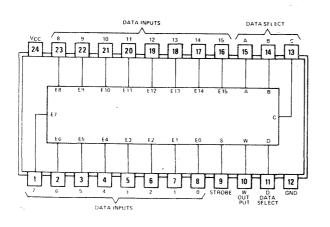
 $V_{CC} = Pin 16$ Gnd = Pin 8

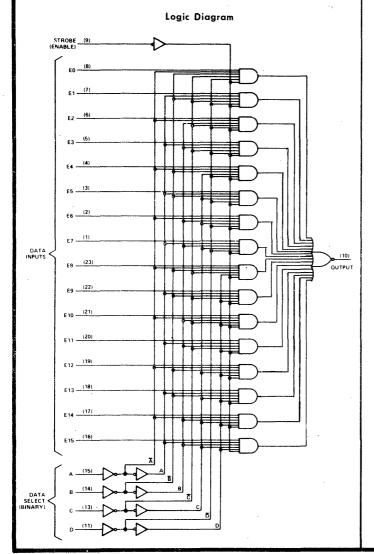
Function Table

	Comparii	Cascading Inputs			Outputs				
A3, B3	A2, B2	A1, B1	A0, B0	A>B	A <b< td=""><td>A=B</td><td>A>B</td><td>A<b< td=""><td>A=B</td></b<></td></b<>	A=B	A>B	A <b< td=""><td>A=B</td></b<>	A=B
A3>B3	х	х	x	х	х	х	н	L	\mathbf{L}
A3 <b3.< td=""><td>x</td><td>x</td><td>x</td><td>x</td><td>х</td><td>х</td><td>L.</td><td>Н</td><td>L</td></b3.<>	x	x	x	x	х	х	L.	Н	L
A3= B3	A2>B2	x	х	х	х	х	н	\mathbf{L}	\mathbf{L}
A3= B3	A2 <b2< td=""><td>x</td><td>х</td><td>х</td><td>х</td><td>х</td><td>L</td><td>H</td><td>\mathbf{L}</td></b2<>	x	х	х	х	х	L	H	\mathbf{L}
A3= B2	A2= B2	A1>B1	x	х	х	х	Н	\mathbf{L}	L
A3= B3	A2= B2	A1 <b1< td=""><td>х</td><td>х</td><td>х</td><td>х</td><td>\mathbf{L}</td><td>н</td><td>\mathbf{L}</td></b1<>	х	х	х	х	\mathbf{L}	н	\mathbf{L}
A3= B3	A2= B2	A1= B1	A0>B0	х	х	х	н	\mathbf{L}	\mathbf{L}
A3= B3	A2= B2	A1= B1	A0 <b0< td=""><td>х</td><td>х</td><td>х</td><td>L</td><td>H</td><td>\mathbf{L}</td></b0<>	х	х	х	L	H	\mathbf{L}
A3= B3	A2= B2	A1= B1	A0= B0	н	\mathbf{L}	\mathbf{L}	н	\mathbf{r}	\mathbf{L}
A3= B3	A2= B2	A1= B1	A0= B0	L	н	\mathbf{L}	L	н	L
A3= B3	A2= B2	A1= B1	A0= B0	L	\mathbf{L}	Ħ	L	L	н
A3= B3	A2= B2	A1= B1	A0= B0	х	х	H	\mathbf{L}	L,	н
A3= B3	A2= B2	A1= B1	A0= B0	н	н	\mathbf{L}	L	L	\mathbf{L}
A3= B3	A2= B2	A1= B1	A0= B0	\mathbf{L}	\mathbf{L}	\mathbf{L}	н	H	L

H = high level

L = low level


X = irrelevant


This four-bit magnitude comparator performs comparison of straight binary and straight BCD (8-4-2-1) codes. Three fully decoded decisions for two 4-bit words (A, B) are made and are externally available at three outputs. This device is fully expandable to any number of bits without external gates. Words of greater length may be compared by connecting comparators in cascade. The A>B, A<B, and A=B outputs of a stage handling less-significant bits are connected to the corresponding A>B, A<B, and A=B inputs of the next stage handling more-significant bits. The stage handling the least-significant bits must have a high-level voltage applied to the A=B input.

Note: The 100000296 is a Shottky device.

10000297

Pin Configuration

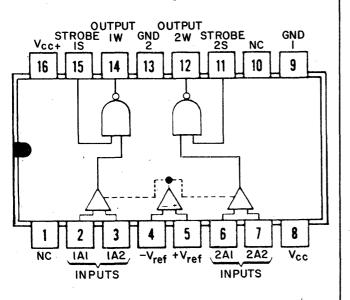
Data Selector/Multiplexer

Pin Designations

$V_{CC} = Pin 24$ Gnd = Pin 12

Function Table

Inputs		
Select	Strobe	Output
DCBA	S	W
XXXX	H	н
LLLL	\mathbf{L}	Ē0
LLLH	\mathbf{L}	E1
LLHL	L	E2
LLHH	L	$\overline{E3}$
LHLL	\mathbf{L}	E4
LHLH	\mathbf{L}	$\overline{E5}$
LHHL	\mathbf{L}	E6
LННН	L	$\overline{\mathrm{E7}}$
HLLL	L	E8
HLLH	L	E9
HLHL	\mathbf{L}	E10
нгнн	L	E11
HHLL	L .	E12
ннгн	\mathbf{L}	E13
нннг	L	E14
нннн	L	E15


H = high level, L = low level, X = irrelevant. $\overline{E0}$, $\overline{E1}$ $\overline{E15}$ = the complement of the level of the respective E input.

This monolithic data selector/multiplexer contains full on-chip binary decoding to select oneof-sixteen data sources. The strobe input must be at a low logic level to enable this device. A high level at the strobe forces the W output high and the Y output low. The 100000297 has an inverted (W) output only.

100-264

100000118 100000229 100000298 100000299

Pin Configuration

Dual Sense Amplifiers

Logic Diagram/Pin Designations

 $V_{CC+} = Pin \ 16$ $V_{CC} = Pin \ 8$ Gnd 1 = Pin 9 Gnd 2 = Pin 13 NC = No internal connection

Positive logic: $W = \overline{AS}$

Truth Table									
Inp	uts	Output							
Α	S	W							
 Н	H	L							
 \mathbf{L}	х	Н							
х	\mathbf{L}	Н							

Definition of logic levels:

Input	Н	L	x
A*	$v_{ID} \ge v_{Tmax}$	$v_{ID} \leqslant v_{Tmin}$	Irrelevant
S	$V_{I} \geqslant V_{IHmin}$	$v_{I} \leqslant v_{ILmax}$	Irrelevant

* A is a differential voltage $(V_{\rm ID})$ between A1 and A2. For these circuits, $V_{\rm ID}$ is considered positive regardless of which terminal is positive with respect to the other.

DGC PROPRIETARY - This manual contains proprietary information of Data General Corporation (DGC) revealed for the limited purpose only to service DGC equipment on the express condition that the information herein shall not be disclosed to others, and shall not be reproduced in whole or in part, or used in whole or in part as the basis for manufacture or sale of items, without written permission.

SILIC 1%.5M ROLA	ON RECT 7.5ZS1	

		ire or sale of items, without written permission.	_
PART NUMBER REV	DESCRIPTION	PART NUMBER REV DESCRIPTION	
NUMBER REV 101000002 00 101000003 00 101000015 00 101000015 00 101000015 00 101000017 00 101000019 00 101000021 00 101000022 00 101000023 00 101000024 00 101000027 00 101000028 00 101000028 00 101000028 00 101000028 00 101000028 00 101000028 00 101000039 00 101000050 00 101000051 00 101000052 00 101000053 00 101000054 00 101000055 00 101000064 00 101000065 00 101000066 00 101000067 00 101000068 00	DIODE CD81148/FDH600 XISTOR 2N44125 XISTOR 2N4425 XISTOR 2N4922 XISTOR 2N4922 XISTOR 2N4123 DIODE 1N5231 XISTOR 2N5302 XISTOR 2N3715 DIODE IN5231 DIODE IN4997 DIODE BRIDGE MDA 962-1 DIODE IN4997 DIODE IN5213 20% DIODE IN5213 20% DIODE IN5243 XISTOR 40526/40691 TRIAC XISTOR 40526/40691 TRIAC XISTOR 40526/40691 TRIAC XISTOR 40526/40691 TRIAC XISTOR MPS 3646/2N3646 XISTOR T28065 DIODE IN5248B TRIAC XISTOR MPS 3646/2N3646 XISTOR T28065 DIODE IN5250B 20V 1% XISTOR MPS3640 XISTOR 2N4403 DIODE IN5250B 20V 1% XISTOR 2N4403 DIODE IN5250B 20V 1% XISTOR 2N4409 DIODE MDA 970-1FW BRIDGE DIODE MDA 962A-1 DIODE IN52588/IN754A GLASS XISTOR ZN4400 DIODE ZENER IN5251B 22V 5% DIODE IN5258/57M24Z5E 2% XISTOR TP 34 XISTOR TP 35 DIODE 40108	PART NUMBER NUMBER NUMBER NUMBERREVDESCRIPTION10100013500DIODE IN5236B10100013700XISTOR TIP 1411010013900DIODE IN473510100014100DIODE ZENER IN5239B10100014200DIODE RECTIPTER IN4933 MOTOROLA10100014300DIODE RECTIPTER IN4933 MOTOROLA10100014400DIODE ZENER IN5239B 3.7V 5%10100014500DIODE IN494710100014600DIODE IN494710100014700DIODE ZENER IN5239B10100014600DIODE ZENER IN5239B10100015000DIODE ZENER IN5239B101000151200XISTOR SC45D TRIAC1010015200XISTOR TIP 3A1010015300XISTOR NEPS A-421010015400XISTOR MPS A-421010015500XISTOR MPS A-421010015600DIODE ZENER IN5342B1010015700XISTOR MPS A-421010015800XISTOR MPS A-421010016400XISTOR MPS A-421010016500XISTOR MPS A-421010016600XISTOR MPS A-521010016700XISTOR MPS A-521010016800XISTOR MPS A-5210100016900XISTOR MPS A-5210100016000XISTOR MPS A-52101000161600XISTOR MPS A-5210100016600XISTOR MPS A-5210100017700XISTOR MPS A-5210100017800 <td< td=""><td></td></td<>	
$\begin{array}{cccc} 101000100 & 00 \\ 101000101 & 00 \\ 101000102 & 00 \\ 101000103 & 00 \\ 101000104 & 00 \\ 101000105 & 00 \\ 101000106 & 00 \\ 101000107 & 00 \\ 101000108 & 00 \end{array}$	DIODE 1N5349 MDA 980-1 BRIDGE RECTIFIER DIODE 1N53899R DIODE 1N5231B ZENER XISTOR TIP 30 XISTOR TIP 29 XISTOR TIP 35 DIODE 40108 DIODE 1N4448	101000198 00 DIODE ZENER 1N5245B 101000199 00 XISTOR TIP 41B NPN PWR 101000200 00 XISTOR RCA 41B NPN POWER 101000201 00 XISTOR RCA 41B NPN POWER 101000202 00 XISTOR RCA 42A PNP POWER 101000202 00 XISTOR RCA 42A PNP POWER 101000204 00 XISTOR BF 338 101000205 00 XISTOR BDY 95	
101000109 00 101000110 00 101000112 00 101000112 00 101000114 00 101000115 00 101000116 00 101000120 00 101000121 00 101000123 00 101000124 00 101000125 00 101000126 00 101000127 01 101000128 00 101000129 00 101000120 01 101000120 01 101000120 01 101000120 01 101000120 01 101000131 00 101000131 01 101000133 01 101000134 00 101000135 00	XISTOR TIP 36B DIODE 1N5242 XISTOR TIP 42A W/INSUL H/W DIODE 1N5341 DIODE CD4148 XISTOR TEXAS INST TIP33 DIODE MOTOROLA MR1210SL DIODE IN4004 MR 1200 50A SILICON RECTIFIER XISTOR 2N6164 XISTOR TIP 29A XISTOR TIP 31A DIODE 1N5355 XISTOR PHOTO NPN PLANAR SILICON XISTOR TIP 36A XISTOR 40527/40692/L4001, 5 DIODE 1N3880 DIODE 1N3880 DIODE NETWORK 4-CD8(148) RECT MR 1210SL 80A SILICON RECT DIODE ZENER 7.5V 1% .5M7.5ZS1 DIODE MR831 MOTOROLA		

8		pare, o		ole or m	part as t	ne ba
PART NUMBEI	R REV		DESCI	RIPTION		
10200000 10200000		RES	2.70	OHM	1/4W	5% 5%
10200000		RES RES	3.00 3.30	OH M OH M	1/4W 1/4W	5%
10200000		RES	3.60	OHM	1/4W	5%
10200000 10200000		RES	$3.90 \\ 4.30$	OHM	1/4W 1/4W	5% 5%
10200000		RES RES	4.30	OHM OHM	1/4W	5%
10200000	8 00	RES	5.10	OHM	1/4W	5%
10200000 10200001		RES	5.60	OHM	1/4W	5% 5%
10200001		RES RES	6.20 6.80	OH M OH M	1/4W 1/4W	5%
10200001	2 00	RES	7.50	OHM	1/4W	5%
10200001		RES	8.20	OHM	1/4W	5%
10200001 10200001		RES RES	9.10 10.00	OH M OH M	1/4W 1/4W	5% 5%
10200001		RES	11.00	OHM	1/4W	5%
10200001		RES	12.00	OHM	1/4W	5%
10200001 10200001		RES	$13.00 \\ 15.00$	OH M OH M	1/4W 1/4W	5% 5%
10200001		RES RES	16.00	OHM	1/4W	5%
10200002	1 00	RES	18.00	OHM	1/4W	5%
10200002		RES	20.00	OHM	1/4W	5%
10200002 10200002		RES RES	$22.00 \\ 24.00$	OHM OHM	1/4W 1/4W	5% 5%
10200002	5 00	RES	24.00	OHM	1/4W	5%
10200002		RES	30.00	OHM	1/4W	5%
10200002 10200002		RES	33.00	OHM	1/4W	5% 5%
10200002		RES RES	36.00 39.00	OHM OHM	1/4W 1/4W	5%
10200003		RES	43.00	OHM	1/4W	5%
10200003 10200003		RES	47.00	OHM	1/4W	5%
10200003		RES RES	51.00 56.00	OHM OHM	1/4W 1/4W	5% 5%
10200003		RES	62.00	OHM	1/4W	5%
10200003		RES	68.00	OHM	1/4W	5%
10200003 10200003		RES	$75.00 \\ 82.00$	OHM	1/4W 1/4W	5% 5%
10200003		RES RES	91.00	OHM OHM	1/4W	5%
10200003	9 00	RES	100.00	OHM	1/4W	5%
10200004		RES	110.00	OHM	1/4W	5% 5%
10200004 10200004		RES RES	$120.00 \\ 130.00$	OHM OHM	1/4W 1/4W	5%
10200004		RES	150.00	OHM	1/4W	5%
10200004	4 00	RES	160.00	OHM	1/4W	5%
10200004 10200004		RES RES	180.00 200.00	OH M OH M	1/4W 1/4W	5% 5%
10200004		RES	220.00	OHM	1/4W	5%
10200004		RES	240.00	OHM	1/4W	5%
10200004 10200005		RES	270.00 300.00	OHM	1/4W 1/4W	5% 5%
10200005		RES RES	330.00	OHM OHM	1/4W	5%
10200005		RES	360.00	OHM	1/4W	5%
10200005		RES	390.00	OHM	1/4W	5%
10200005 10200005		RES RES	$430.00 \\ 470.00$	OH M OH M	1/4W 1/4W	5% 5%
10200005	6 00	RES	510.00	OHM	1/4W	- 5%
10200005		RES	560.00	OHM	1/4W	5%
10200005 10200005		RES RES	$620.00 \\ 680.00$	OHM OHM	1/4W 1/4W	5% 5%
10200006		RES	750.00	OHM	1/4W	5%
10200006	1 00	RES	820.00	OHM	1/4W	5%
10200006 10200006		RES	910.00 1.00K	OH M OH M	1/4W 1/4W	5% 5%
10200006		RES RES	1. 10K	OHM	1/4W 1/4W	5%
10200006	5 00	RES	1.20K	OHM	1/4W	5%
10200006		RES	1.30K	OHM	1/4W	5%
10200006 10200006		RES RES	1.50K 1.60K	OH M OH M	1/4W 1/4W	5% 5%
10200006		RES	1.80K	OHM	1/4W	5%
10200007		RES	2.00K	OHM	1/4W	5%
10200007		RES	2. 20K	OHM	1/4W	5%
10200007 10200007		RES RES	2.40K 2.70K	OH M OH M	1/4W 1/4W	5% 5%
10200007		RES	3.00K	OHM	1/4W	5%
10200007		RES	3.30K	OHM	1/4W	5%
10200007 10200007		RES RES	3.60K 4.30K	OHM OHM	1/4W 1/4W	5% 5%
10200007		RES	4. 70K	OHM	1/4W	5%
10200007	9 00	RES	5.10K	OHM	1/4W	5%
10200008		RES	5.60K	OHM	1/4W	5%
10200008 10200008		RES RES	6. 20K 6. 80K	OH M OH M	1/4W 1/4W	5% 5%
10200008		RES	7.50K	OHM	1/4W	5%
10200008	4 00	RES	8. 20K	OHM	1/4W	5%
10200008		RES	9. 10K 10. 00K	OHM	1/4W	5% 5%
10200008 10200008		RES RES	10.00K 11.00K	OHM OHM	1/4W 1/4W	5% 5%
10200008	8 00	RES	12.00K	OHM	1/4W	5%
10200008	9 00	RES	13.00K	OHM	1/4W	5%

PART NUMBER	REV		DESC	RIPTIC	N	
102000091	00	RES	16.00K	OHM	1/4W	5%
102000092	00	RES	18.00K	OHM	1/4W	5'ê
102000093	00	RES	20. 00K	OHM	1/4W	5 6
102000094	00	RES	22. 00K	OHM	1/4W	5,
102000095	00	RES	24. 00K	OHM	1/4W	51.
102000096	00	RES	27.00K	OHM	1/4W	5.0
102000097	00	RES	30.00K	OHM	1/4W	5%
102000098	00	RES	33.00K	OHM	1/4W	5%
102000099	00	RES	36. 00K	OHM	1/4W	5%
102000100	00	RES	39. 0 0 K	OHM	1/4W	× 5%
102000101	00	RES	43.00K	OHM	1/4W	5%
102000102	00	RES	47. 00K	OHM	1/4W	5%
102000103	00	RES	51.00K	OHM	1/4W	5
102000104	00	RES	56. 00K	OHM	1/4W	5'0
102000105	00	RES	62.00K	OHM	1/4W	5% 5%
102000106	00	RES	68.00K	OHM	1/4W	5%
$102000107 \\ 102000108$	00 00	RES RES	75.00K	OHM	1/4W 1/4W	5%
102000108	00	RES	82.00K 91.00K	OH M OH M	1/4W	5%
102000110	00	RES ·	100. 00K	OHM	1/4W	5%
102000111	00	RES	110.00K	OHM	1/4W	5%
102000112	00	RES	120.00K	OHM	1/4W	5.0
102000113	00	RES	130.00K	OHM	1/4W	5%
102000114	00	RES	150.00K	OHM	1/4W	5%
102000115	00	RES	116.00K	OHM	1/4W	5%
102000116	00	RES	118.00K	OHM	1/4W	5%
102000117	00	RES	200. 00K	OHM	1/4W	5%
102000118	00	RES	220. 00K	OHM	1/4W	5%
102000119	00	RES	240. 00K	OHM	1/4W	5%
102000120	00	RES	270. 00K	OHM	1/4W	5%
102000121	00	RES	300.00K	OHM	1/4W	5%
102000122	00	RES	330. OOK	OHM	1/4W	5%
102000123	00	RES	360.00K	OHM	1/4W	5%
102000124	00	RES	390.00K	OHM	1/4W	5%
102000125	00	RES	430.00K	OHM	1/4W	5% 5%
102000126	00	RES	470.00K	OHM	1/4W	ວ% 5ິທ
102000127	00	RES	510.00K	OHM	1/4W	ວ. 5%
$102000128 \\ 102000129$	00	RES	560.00K	OHM	1/4W 1/4W	5%
102000129	00 00	RES RES	620.00K 680.00K	OH M OH M	1/4W	5%
102000130	00	RES	750.00K	OHM	1/4W	5%
102000131	00	RES	820.00K	OHM	1/4W	5%
102000133	00	RES	910.00K	OHM	1/4W	5%
102000134	00	RES	1.00M	OHM	1/4W	5%
102000135	00	RES	1.10M	OHM	1/4W	5%
102000136	00	RES	1.20M	OHM	1/4W	5%
102000137	00	RES	1.30M	OHM	1/4W	5%
102000138	00	RES	1.50M	OHM	1/4W	5%
102000139	00	RES	1.60M	OHM	1/4W	5%
102000140	00	RES	1.80M	OHM	1/4W	5%
102000141	00	RES	2.00M	OHM	1/4W	5%
102000142	00	RES	2.20M	OHM	1/4W	5%
102000143	00	RES	2.40M	OHM	1/4W	5%
102000144	00	RES	2.70M	OHM	1/4W 1/4W	5% 5%
$102000145 \\ 102000146$	00	RES	3.00M 3.30M	OHM	1/4W	5%
102000140	00 00	RES RES	3.60M	ОНМ ОНМ	1/4W	5%
102000141	00	RES	3.90M	OHM	1/4W	5%
102000149	00	RES	4.30M	OHM	1/4W	5%
102000150	00	RES	4.70M	OHM	1/4W	5%
102000151	00	RES	5.10M	ОНМ	1/4W	5%
102000152	00	RES	5.60M	OHM	1/4W	5%
102000153	00	RES	6.20M	OHM	1/4W	5%
102000154	00	RES	6.80M	OHM	1/4W	5%
102000155	00	RES	7.50M	OHM	1/4W	5%
102000156	00	RES	8.20M	OHM	1/4W	5%
102000157	00	RES	9.10M	OHM	1/4W	5%
102000158	00	RES	10.00M	OHM	1/4W	5%
102000159	00	RES	11.00M	OHM	1/4W	5%
102000160 102000161	00	RES	12.00M	OHM	1/4W 1/4W	5% 5%
102000161	00 00	RES	13.00M	OHM OHM	1/4W 1/4W	5%
102000162	00	RES /	15.00M 16.00M	OHM	1/4W	5%
102000163	00	RES	18.00M	OHM	1/4W	5%
102000165	00	RES	20.00M	OHM	1/4W	5%
102000166	00	RES	22.00M	OHM	1/4W	5%
102000167	00	RES	24. 00M	OHM	1/4W	5%
102000168	00	RES	27.00M	OHM	1/4W	5%
102000169	00	RES	30. 00M	OHM	1/4W	5%
102000170	00	RES	33. OOM	OHM	1/4W	5%
102000171	00	RES	36.00M	OHM	1/4W	5%
102000172	00	RES	39.00M	OHM	1/4W	5%
102000173	00	RES	43.00M	OHM	1/4W	5%
102000174	00	RES	47.00M	OHM	1/4W	5%
102000175	00	RES	51.00M	OHM	1/4W	5%
102000176	00	RES	56.00M	OHM	1/4W	5% 5%
$102000177 \\ 102000178$	00 00	RES	62.00M 68.00M	OHM	1/4W 1/4W	5% 5%
102000178	00	RES RES	68.00M 75.00M	OHM OHM	1/4W 1/4W	ວ% 5%
. 102000119	00	RES	82.00M	OHM	1/4W	5%

DGC PROPRIETARY - This manual contains proprietary information of Data General Corporation (DGC) revealed for the limited purpose only to service DGC equipment on the express condition that the information herein shall not be disclosed to others, and shall not be reproduced in whole or in part, or used in whole or in part as the basis for manufacture or sale of items, without written permission.

1020001	5 I v	whole or	in part, or used in	whole or in part a	is the basis for r	nanufactu	re or sale of items	, witho	out writ	ten permission,				0200038
PART NUMBER	REV		DI	ESC RIPTION			PART NUMBER	REV			Ľ	ESC RIPT	ION	
PART	REV 00	whole or RESS RESS RESS RESS RESS RESS RESS RES	DI 91.00M OHM 100.00M OHM 5.00 OHM 150.00 OHM 17.50 OHM 17.50 OHM 1.00 OHM 330.00 OHM 470.00 OHM 470.00 OHM 600.00 OHM 3.90K OHM 1.4.00 OHM 1.50K OHM 1.50K OHM 1.65K OHM 1.82K OHM 1.82K OHM 1.30K OHM 2.00K OHM 330.00 OHM 330.00 OHM 330.00 OHM 30.00 OHM 30.00 OHM 30.00 OHM 30.00 OHM 30.00 OHM 30.00 OHM 30.00 OHM 300.00 OHM		THMC THMC THMC THMC W.W. CARBON PIHER CARBON PIHER (1/2WR) A-P WOU CARBON CARBON CARBON W/W CARBON CARBON DUMMY PIHER CARBON		PART	,	RES POT RES RES RES RES POT POT POT POT POT RES RES RES RES RES RES RES RES RES RES	 en permission. 0. 50 82.00 500.00 10.00K 10.00K 10.00K 10.00K 6.80K 6.80 150.00 12.00 500.00 10.00K 11.00K 10.00K 10.00K 11.00K 10.00K 10.00K	$\begin{array}{c} \text{OHM}\\ \text{OHM}\\$	10W 1/2W W 50W 1/8W 1/8W 1/8W 2W 5W 1W 1/8W 3/4W 3/4W		PIHER METFILM METFILM METFILM METFILM METFILM KE22L2 ELZH CERMET
]						•								

102000388

102000389 102000390

102000391

102000392 102000393

102000394

102000395 102000396

102000397 102000398

102000399

102000400 102000401

102000402 102000403

PART NUMBER REV

00

00 00 00

00 00

00

00 00

00 00 00

00 00

00

RES

RES

RES RES

RES

RES POT

RES RES

RES RES RES

RES

RES POT

RES

1.00K

330.00

. 10 82. 00

680. 00 . 20 100. 00

110.00 5.00 33.00K

30.00 510.00

5.00 2.00 4.00

13.50K

OH M OH M

OHM

ОНМ ОНМ

OHM OHM

OHM OHM OHM

OHM

OHM

OHM

OHM OHM

OHM

DGC PROPRIETARY - This manual contains proprietary information of Data General Corporation (DGC) revealed for the limited purpose only to service DGC equipment on the express condition that the information herein shall not be disclosed to others, and shall not be reproduced in whole or in part, or used in whole or in part as the basis for manufacture or sale of items, without written permission.

DESCRIPTION

1W 1/2W

> SW 1W

1W 25 T SQ 1/2W 225W 1/2W

1/8W 2W

25W

25W 3W

1/4W

2 1/2W

5% 5% 3% 1% 5% 5% 10%

5%

5% 1% 5% +5% 10% 1% COMP

CERMET

WR WND

OHMITE ADJ.

,

.

DGC PROPRIETARY - This manual contains proprietary information of Data General Corporation (DGC) revealed for the limited purpose only to service DGC equipment on the express condition that the information herein shall not be disclosed to others, and shall not be reproduced in whole or in part, or used in whole or in part as the basis for manufacture or sale of items, without written permission.

10300021

				of in part, of used in wi	ione of in pa				,,				-	
	PART							PART						
	NUMBER	REV		, D	ESCRIPTIC	N		NUMBER	REV			DESCRIPTI	ON	
	103000001	00	CAP	.0100MF	+80-20%	50V	CER	103000116	00	CAP	.0500MF	÷50-20%	25 V	DISC
	103000002	00	CAP	6.8000MF	+10-10%	35V	TANT	103000117	00	CAP	. 1000MF		250V	60HZ
	$103000003 \\ 103000004$	00 00	CAP	. 2200MF 470, 0000PF	+10-10%	20V	TANT	103000118	00	CAP	. 4000MF		660V	
	103000004	00	CAP CAP	470.0000PF 820.0000PF	+5- 5% +5- 5%	500V 300V	MICA MICA	103000119 103000120	00 00	CAP CAP	AC LINE FILTER, H 160.0000PF	+5- 5%		MICA
	103000006	00	CAP	220.0000PF	+5- 5%	500V	MICA	103000121	00	CAP	12. 5000MF	+6- 6%	370V	MICA
	103000007	00	CAP	50.0000MF	+5- 5%	50V	TANT	103000122	00	CAP	.0470MF	+10-10%	100V	MYLAR
	103000012 103000013	00 00	CAP CAP	. 1000MF . 5000	+5- 5%	250V	FIL	103000123 103000124	00 00	CAP CAP	.0033MF 1.0000MF	+10-10% +10-10%		MYLAR MYLAR
	103000015	00	CAP	.0022MF	+5- 5%	1000V		103000124	00	CAP	2. 2000MF	+10-10%	35V	
	103000016	00	CAP	1.0000MF	+10-10%	35V	TANT	103000126	00	CAP	.1500FD	+75-10%	6 V	ELEC
	$\frac{103000018}{103000026}$	00 00	CAP	6.8000MF	+10-10%	6V	TANT	103000127	00	CAP	. 0220MF	+10-10%		MYLAR
	103000020	00	CAP CAP	21000.0000MF 6000.0000MF	+20-20% +20-20%	40V 10V	ELEC ELEC	103000128 103000129	00 00	CAP CAP	. 3300MF 98000. 0000MF	+10-10% +75-10%	50V 20V	MYLAR ELEC
1	103000031	00	CAP	100.0000PF	+5- 5%	500V	MICA	103000130	00	CAP	6.0000MF	110 - 10 /0	660V	OIL FILLED
	103000032	00	CAP					103000131	00	CAP	.01 MF		400V	
	103000033 103000035	00 00	CAP CAP	1200.0000PF	+5- 5%	500V	MICA	103000132 103000133	00 00	CAP CAP	500MF 10MF		25 V 660 V	
	103000036	00	CAP	8.0000MF	+20-20%	50V	TANT	103000134	00	CAP	150. 000MF	ı	6V	
	103000037	00	CAP	47.0000MF	+20-20%	20V	TANT	103000135	00	CAP	1600.0000PF			
	103000038 103000039	00 00	CAP CAP	0500347	+20-20%	1017	GED	103000136 103000139	00 00	CAP CAP	1.0000MF 1000 UF 25W			00V
	103000040	00	CAP	. 0500MF 33. 0000PF	+20-20%	12V 500V	CER MICA	103000139	00	CAP	15MFD 200-3			0-20
	103000041	00	CAP	560.0000PF	+5- 5%	300V	MICA	103000141	00	CAP	5MFD 366-41	OVAC GE 45	F273	
	103000042 103000043	00	CAP	300.0000PF				103000142	00	CAP	1.0000PF	+ 5-5%	500V	MICA
	103000043	00 00	CAP CAP	21000.0000MF 12.0000PF	+20-20% +5-5%	25 V 500 V	ELEC MICA	103000143 103000144	00 00	CAP CAP	2.0000PF 3.0000PF	+ 5-5% + 5-5%	500V 500V	MICA MICA
	103000045	00	CAP	2.2000MF	+20-20%	20V	TANT	103000145	00	CAP	4.0000PF	+ 5-5%	500V	MICA
	103000046	00	CAP	330.0000PF	+5- 5%	100V	MICA	103000146	00	CAP	7.0000 PF	+ 5-5%	500V	MICA
	103000047 103000048	00 00	CAP CAP	. 0068MF 24000. 0000MF	+10-10% +20-20%	100V	RCAP	103000147 103000148	00 00	CAP CAP	8.0000PF 18.0000PF	+ 5-5% + 5-5%	500V 500V	MICA
	103000048	00	CAP	24000.0000MF 38000.0000MF	+20-20%	40V 20V	ELEC ELEC	103000148	00	CAP	20.0000PF	+ 5-5%	500V 500V	MICA MICA
	103000051	00	CAP	20000. 0000MF	+20-20%	10V	ELEC	103000150	00	CAP	22.0000PF	+ 5-5%	500V	MICA
	103000052	00	CAP	47.0000MF	+20-20%	6V	TANT	103000151	00	CAP	24.0000PF	+ 5-5%	500V	MICA
	103000053 103000054	00 00	CAP CAP	68.0000PF .0100MF	+5-5% +10-10%	500V 50V	MICA RCAP	103000152 103000153	00	CAP CAP	30.0000PF 36.0000PF	+ 5-5% + 5-5%	500V 500V	MICA MICA
	103000055	00	CAP	100.0000PF	+5- 5%	100V	RCAP	103000154	00	CAP	39.0000PF	+ 5-5%	500V	MICA
	103000056	00	CAP	82.0000PF	+5- 5%	500V	/ MICA	103000155	00	CAP	43.0000 PF	+ 5-5%	500V	MICA
	103000057 103000059	00 00	CAP CAP	6.8000MF	+50-20%	6. 3V	T/T	103000156 103000157	00 00	CAP CAP	47.0000PF 62.0000PF	+ 5-5% + 5-5%	500V 500V	MICA MICA
	103000060	00	CAP	110.0000MF 31000.0000MF	+20-20%	40V 40V	ELEC	103000158	00	CAP	75.0000PF	+ 5-5%	500V 500V	MICA
	103000061	00	CAP	20000.0000MF	+20-20%	20V	ELEC	103000159	00	CAP	91.0000PF	+ 5-5%	500V	MICA
	103000062	00	CAP	6.8000MF	+50-20%	35V	T/T	103000160 103000161	00 00	CAP CAP	110.0000PF 120.0000PF	+ 5-5% + 5-5%	500V	MICA
	$103000063 \\ 103000064$	00 00	CAP CAP	161-193MF	%	110V V	60H Z	103000161	00	CAP	120.0000PF	+ 5-5% + 5-5%	500V 500V	MICA MICA
	103000065	00	CAP	1.0000MF	+10-10%	35 V	T/T	103000163	00	CAP	180.0000PF	+ 5-5%	500V	MICA
	103000066	00	CAP	6300.0000	%	20V	ELEC	103000164	00	CAP	200.0000PF	+ 5-5%	500V	MICA
	103000067 103000068	00 00	CAP CAP	33000. 0000 47. 0000MF	% +50-20%	50V 6. 3V	ELEC T/T	103000165 103000166	00 00	CAP CAP	240.0000PF 300.0000PF	+ 5-5% + 5-5%	500V 500V	MICA
	103000069	00	CAP	1.5000MF	+20-20%	35V	ELEC	103000167	00	CAP	360.0000PF	+ 5-5%	500V	MICA
	103000070	00	CAP	.0220MF	+10-10%	100V	RCAP	103000168	00	CAP	390.0000PF	+ 5-5%	500V	MICA
	103000071	00	CAP	27.0000PF	+5-5% +5-5%	500V	MICA	103000169 103000170	00 00	CAP CAP	430.0000PF 510.0000PF	+ 5-5% + 5-5%	500V 500V	MICA MICA
	103000072 103000073	00 00	CAP CAP	150.0000PF .1000MF	+5- 5%	500V 50V	MICA MYLAR	103000171	00	CAP	620.0000PF	+ 5-5%	500V 500V	MICA
	103000074	00	CAP	100.0000MF	%	15V	TANT	103000172	00	CAP	680.0000PF	+ 5-5%	500V	MICA
	103000075	00	CAP	4.7000MF	+50-20%	50V	TAG	103000173 103000174	00 00	CAP	750.0000PF 910.0000PF	+ 5-5%	500V	MICA
	$103000076 \\ 103000077$	00 00	CAP CAP	7000. 0000MF . 1000MF	% +10-10%	20V 200V	ELEC TANT	103000174	00	CAP CAP	1000.0000PF	+ 5-5% + 5-5%	500V 500V	MICA MICA
	103000078	00	CAP	130-156MF		110V	60HZ	103000176	00	CAP	1100.0000PF	+ 5-5%	500V	MICA
	103000079	00	CAP	5600.0000PF	+10-10%	200V		103000177	00	CAP	1300.0000PF	+ 5-5%		MICA
	103000080 103000081	00 00	CAP CAP	47-56MF 1200. 0000MF	97	200V 40V	60HZ	103000178 103000179	00 00	CAP CAP	1500.0000PF 1800.0000PF	+ 5-5% + 5-5%	500V 500V	MICA MICA
	103000082	00	CAP	1200.0000MF	% %	20V	ELEC ELEC	103000180	00	CAP	2000. 0000PF	+ 5-5%	500V	MICA
	103000083	00	CAP	20000.0000MF		10V	ELEC	103000181	00	CAP	2200.0000PF	+ 5-5%	500V	MICA
	103000084	00	CAP	22. 0000MF		10V	TAG	103000182 103000183	00 00	CAP CAP	2400.0000PF 2700.0000PF	+ 5-5% + 5-5%	500V 500V	MICA MICA
	103000085 103000086	. 00	CAP CAP	. 2200MF . 1000MF		100V 50V	MYLAR	103000184	00	CAP	3000.0000PF	+ 5-5%	500V 500V	MICA
	103000087	00	CAP	, 4700MF		50V		103000185	00	CAP	3300.0000PF	+ 5~5%	500V	MICA
	103000088	00	CAP	3600.0000MF		50V	DI 50	103000186	00	CAP	3600.0000PF	+ 5-5%	500V	MICA
	103000089 103000090	00 00	CAP CAP	800.0000MF .2000FD	+75-10%	50V 10V	ELEC	103000187 103000188	00 00	CAP CAP	3900.0000PF 4300.0000PF	+ 5-5% + 5-5%	500V 500V	MICA. MICA
	103000090	00	CAP	98000.0000MF	+75-10%	20V		103000189	00	CAP	4700.0000PF	+ 5-5%	500V	MICA
	103000092	00	CAP	66000.0000MF	+75-10%	20V		103000190	00	CAP	5100.0000PF	+ 5-5%	500V	MICA
	103000093 103000094	00 00	CAP CAP	NOT ASSIGNED . 0010MF	+10-10%	1000V		103000191 103000192	00 00	CAP CAP	5600.0000 PF 6200.0000 PF	+ 5-5% + 5-5%	500V 500V	MICA MICA
	103000094	00	CAP	. 1000MF	+10-10%	400V	MYLAR	103000192	00	CAP	6800.0000PF	+ 5-5%	500V	MICA
	103000096	00	CAP	12000.0000MF	+75-10%	20V	SANG	103000194	00	CAP	7500.0000PF	+ 5-5%	500V	MICA
	103000097 103000098	00 00	CAP	12000.0000MF 5.0000PF	+75-10% +5-5%	40 V 500 V	SANG	103000195 103000196	00 00	CAP CAP	8200.0000PF .0010MF	+ 5-5% +10-10%	500V 100V	MICA MYLAR
	103000098	00	CAP CAP	6.0000PF	+5-5%	500V 500V	MICA MICA	103000197	00	CAP	. 0010MF	+10-10%	100V	MYLAR
	103000100	00	CAP	10.0000PF	+5- 5%	500V	MICA	103000198	00	CAP	.0015MF	+10-10%	100V	MYLAR
	103000101	00	CAP	51.0000PF	+5-5%	500V	MICA	103000199	00	CAP	. 0018MF	+10-10%	100V	MYLAR '
	103000102 103000103	00 00	CAP CAP	270.0000PF .0150MF	+5- 5% +10-10%	500V 100V	MICA	103000200 103000201	00 00	CAP CAP	. 0022MF . 0027MF	+10-10% +10-10%	100V 100V	MYLAR MYLAR
	103000104	00	CAP	77000.0000MF	+75-10%	20V	ELEC	103000202	00	CAP	.0039MF	+10-10%	100V	MYLAR
	103000105	00	CAP	71000 MF/63000 MF				103000203	00	CAP	.0047MF	+10-10%		MYLAR
	103000107 103000108	00	CAP CAP	13000. 0000MF 22. 0000MF		40V 16V	TAC	103000204 103000205	00 00	CAP CAP	.0050MF .0056MF	+10-10% +10-10%	100V 100V	MYLAR MYLAR
	103000110	00	CAP	77000.0000MF	+75-10%	20V	TAG ELEC	103000205	00	CAP	. 0058MF	+10-10%	100V 100V	MYLAR
	103000111	00	CAP	. 2300FD	+75-10%	20 V	ELEC	103000207	00	CAP	.0082MF	+10-10%	100V	MYLAR
	103000112 103000113	00 00	CAP CAP	. 6300FD 15. 0000PF	+75-10% +5-5%	6V 500γ	ELEC	103000208 103000209	00 00	CAP CAP	.0100MF .0120MF	+10-10% +10-10%	100V 100V	MYLAR MYLAR
	103000113	00	CAP	1. 0000PF	+20-20%	500V	TANT	103000210	00	CAP	.0120MF	+10-10%	100V	MYLAR
	103000115	00	CAP	4.0000MF	+50-20%	660V	60HZ	103000211	00	CAP	.0180MF	+10-10%	100V	MYLAR
								1						

DGC PROPRIETARY - This manual contains proprietary information of Data General Corporation (DGC) revealed for the limited purpose only to service DGC equipment on the express condition that the information herein shall not be disclosed to others, and shall not be reproduced in whole or in part, or used in whole or in part as the basis for manufacture or sale of items, without written permission.

PART						
NUMBER	REV		DESC	RIPTION		
103000212	00	ĊAP	.0270MF	+10-10%	100V	MYLAR
103000213	00	CAP	.0330MF	+10-10%	100V	MYLAR
103000214	00	CAP	.0390MF	+10-10%	100V	MYLAR
103000215	00	CAP	.0500MF	+10-10%	100V	MYLAR
103000216	00	CAP	.0560MF	+10-10%	100V	MYLAR
103000217	00	CAP	.0820MF	+10-10%	100V	MYLAR
103000218	00	CAP	. 1000PF	+10-10%	100V	MYLAR
103000219	,00	CAP	.1200MF	+10-10%	100V	MYLAR
103000220	00	CAP	.1500MF	+10-10%	100V	MYLAR
103000221	00	CAP	.1800MF	+10-10%	100V	MYLAR
103000222	00	CAP	. 2700MF	+10-10%	100V	MYLAR
103000223	00	CAP	.3300MF	+10-10%	100V	MYLAR
103000224	00	CAP	.4700MF	+10-10%	100V	MYLAR
103000225	00	CAP	. 5000MF	+10-10%	100V	MYLAR
103000226	00	CAP	.5600MF	+10-10%	100V	MYLAR
103000227	00	CAP	. 6800MF	+10-10%	100V	MYLAR
103000228	00	CAP	. 8200MF	+10-10%	100V	MYLAR
103000229	00	CAP	1.0000MF	+10-10%	100V	MYLAR
103000230	00	CAP	1.2500MF	+10-10%	100V	MYLAR
103000231	00	CAP	1.5000MF	+10-10%	100V	MYLAR
103000232	00	CAP	2.0000MF	+10-10%	100V	MYLAR
103000233	00	CAP	3.0000MF	+10-10%	100V	MYLAR
103000234	00	CAP	4.0000MF	+10-10%	100V	MYLAR
·103000235	00	CAP	. 0680MF	+10-10%	100V	MYLAR
103000236	00	CAP	.3900MF	+10-10%	100V	MYLAR
103000237	00	CAP	50.0000PF	+ 5-5 %	500V	MICA
103000238	00	CAP	2500.0000PF	+ 5-5 %	500V	MICA
103000239	00	CAP	500.0000PF	+ 5-5 %	500V	MICA

DGC PROPRIETARY - This manual contains proprietary information of Data General Corporation (DGC) revealed for the limited purpose only to service DGC equipment on the express condition that the information herein shall not be disclosed to others, and shall not be reproduced in whole or in part, or used in whole or in part as the basis for manufacture or sale of items, without written permission.

PART		•	. –
NUMBER	DET		
nomplan	REV		DESCRIPTION
104000001	00	XFMR	BALON NOVA
104000002	00	XFMR	3:1
104000003	00	XFMR	1:1
104000004	00	XFMR	F-109U
104000005	05	XFMR	F-60U
10400006	00	XFMR	CHOKE CLOCK S/N
104000010	03	XFMR	PWR-S/N
104000012	01	XFMR	MEMORY
104000013	00	XFMR	BALON S/N
104000014	00	XFMR	F-106Z
104000016	00	XFMR	ISOLATION 230/115
104000018	00	XFMR	CHOKE 100MH +5-5%
104000022	04	XFMR	PWR-1210
104000023 104000026	02	XFMR	PWR-1220/820
104000028	00	XFMR	F-108U 115V-24V 96VA
104000028	01	XFMR	CENTER TAP BIFILAR COIL
104000030	00 00	XFMR	SINGLE WOUND COIL
104000031	00	XFMR	STEP DOWN
104000032	00	XFMR XFMR	STEP DOWN 230/115 50/60HZ VA1000
104000033	00	XFMR	15 MH COIL
104000034	EE	XFMR	1MH COIL
104000035	EE	XFMR	COIL ASSY +- 15MHD COIL ASSY +5 MHD
104000036	00	COIL	HOLD ELECTROMAGNET 4000 TURNS
104000037	00	XFMR	TRIAD F107Z
104000038	01	XFMR	MMC-4814
104000039	00	XFMR	5-28/15-10
104000040	00	XFMR	CONSTANT VOLTAGE 5-35/15-10
104000041	00	XFMR	PWR LINEAR 170W
104000042	E1	XFMR	CONSTANT VOLTAGE
104000043	03	XFMR	36VOLT 16AMP & 36VOLT 13AMP
104000044	00	XFMR	50HZ CVT 600 VA
104000045	00	XFMR	CVT 5-60/15-15 60HZ
104000046	00	XFMR	CVT 5-60/15-15 50HZ
104000047	01	XFMR	COIL
104000048	00	XFMR	24:8
104000049	00	XFMR	110/220V 50HZ
104000050	00	XFMR	PULSE, BH ELECTRONICS
104000051	00	XFMR	115V TO 230V, STEP UP, 1000 VA
104000052	00	XFMR	MMC 5030 1:12
104000053	00	COIL	CLOCK HEAD 35 TURNS
$104000054 \\ 104000055$	00 00	XFMR	25. 2V CT. 060A MICROTRAN 2512
104000056	00	INDTR	. 10 MH +10-10%
104000057	00	INDTR	12 MH + 10 - 10%
104000058	00	INDTR INDTR	. 15 MH +10-10% . 18 MH +10-10%
104000059	00	INDIR	.22 MH + 10-10%
104000060	00	INDIR	.27 MH + 10 - 10%
104000061	00	INDIR	. 33 MH +10-10%
104000062	00	INDTR	. 39 MH +10-10%
104000063	00	INDTR	. 47 MH +10-10%
104000064	00	INDTR	.56 MH +10-10%
104000065	00	INDTR	. 68 MH +10-10%
104000066	00	INDTR	. 82 MH +10-10%
104000067	00	INDTR	1. 20 MH +10-10%
104000068	00	INDTR	1.50 MH +10-10%
104000069	00	INDTR	1.80 MH +10-10%
104000070	00	INDTR	2.20 MH +10-10%
104000071	00	INDTR	2.70 MH +10-10%
104000072	00	INDTR	3. 30 MH +10-10%
104000073	00	INDTR	3.90 MH +10-10%
104000074	00	INDTR	4.70 MH +10-10%
104000075	00	INDTR	5. 60 MH +10-10%
104000076	00	INDTR	6.80 MH +10-10%
104000077	00	INDTR	8. 20 MH $+10-10\%$
104000078 104000079	00 00	INDTR	10.00 MH +10-10% 12.00 MH +10-10%
104000019	00	INDTR INDTR	12.00 MH $\pm 10-10\%$ 18.00 MH $\pm 10-10\%$
104000081	00	INDIR	22. 00 MH $\pm 10-10\%$
104000082	00	INDIR	
104000083	00		33.00 MH + $5-5\%$
104000084	00	INDTR	39.00 MH + $5-5\%$
104000085	00	INDTR	47.00 MH + 5-5 %
104000086	00		56.00 MH + 5-5 %
104000087	00	INDTR	68.00 MH + 5-5 %
104000088	00	INDTR	82.00 MH + 5-5 %

PART NUMBER	REV		DESCRIPTION
104000089	00	INDTR	120.00 MH + 5-5 %
104000090	00	INDTR	150.00 MH + 5-5 %
104000091	00	INDTR	180.00 MH + 5-5 %
104000092	00	INDTR	220.00 MH + 5-5 %
104000093	00	INDTR	270.00 MH + 5-5 %
104000094	00	INDTR	330.00 MH + 5-5 %
104000095	00	INDTR	390.00 MH + 5-5 %
104000096	. 00	INDTR	470.00 MH + 5-5 %
104000097	00	INDTR	560.00 MH + 5-5 %
104000098	00	INDTR	680.00 MH + 5-5 %
104000099	00	INDTR	820.00 MH + 5-5 %
104000100	00	INDTR	1000.00 MH + 5-5 %
104000101	00	INDTR	1200.00 MH +10-10%
104000102	00	INDTR	1500.00 MH +10-10%
104000103	00	INDTR	1800.00 MH +10-10%
104000104	00	INDTR	2200.00 MH +10-10%
104000105	00	INDTR	2700.00 MH +10-10%
104000106	00	INDTR	3300.00 MH +10-10%
104000107	00	INDTR	3900.00 MH +10-10%
104000108	00	INDTR	4700.00 MH +10-10%
104000109	00	INDTR	5600.00 MH +10-10%
104000110	00	INDTR	6800.00 MH +10-10%
104000111	00	INDTR	8200.00 MH +10-10%
104000112	00	INDTR	10000.00 MH +10-10%

.

PART		
NUMBER	BEV	
	102 V .	DESC RIPTION
110000002	00	RELAY, BRSR1-901
110000004	00	SWITCH, MICRO 1321D8
110000005	00	SWITCH, MICRO V32308
$110000006 \\ 110000010$	00	ACTUATOR KIT, MICRO JV-91
110000011	00 00	ACTUATOR, AH H 83503
110000013	00	CONTACT BLOCK, 83500-90
110000014	00	LENS, AH H 83500-90 SWITCH AH H 83602
110000015	00	SWITCH, AH H 82603 SWITCH, AH H 82613
110000016	01	SWITCH, C & K 7101CSP
110000017	01	SWITCH, C & K 7105CSP
110000018	01	SWITCH, C & K 7205CSP
110000019 110000020	00	SWITCH, C & K 7103A
110000021	00	SWITCH, EECO 177608
110000022	00	SWITCH, C & H 7691K74-F27 HAPDWARE KIM 7690
110000023	00	HARDWARE KIT, 76SG SWITCH, C & K 7201A
110000024	00	SWITCH, CH 7561K74-F27
110000025	00	SWITCH, CH 7561K54-F27
110000026	01	SWITCH, CK 7105SYPZ
110000027	01	SWITCH, CK 7211SYPZ
110000028	01	SWITCH, CK 7301SYPZ
110000029	01	SWITCH, CK 7109SYPZ
110000030 110000032	01	SWITCH, CK 7101SYPZ
110000032	00	RELAY, REED P B JOT4100
110000034	00 01	PB, JOT 4000 RELAY
110000035	00	SWITCH, CK 7215SYPZ
110000036	00	SWITCH, TOGGLE CK 7101CSPX-EQUIV SWITCH, CK 7105CSPX SATIN OR EQUIV
110000037	00	SWITCH, CK 7205 CSPX SATIN OR EQUIV
110000038	00	SWITCH, MICRO HONEYWELL 1SM1
110000039	00	RELAY, POTTER BRUMFIELD 6VAC DPST PR
110000040	00	RELAY, POTTER BRUMFIELD 6VAC PMT 17A
110000041	00	RELAY, JRM 1000 PB 1AMP 10WATT
110000042	00	RELAY,4897-990
110000043 110000044	00	RELUCTANCE PICK-UP 6815013
110000044	00 00	SWITCH, THUMBWHEEL #189220 1 POLE DEC.
110000046	00	SWITCH, 7103SY PWGEAV-2-X RELAY, RBM 91252-103
110000047	00	RELAY, 50HZ 230V
110000048	00	SWITCH, 435166-1
110000049	00	SWITCH DIP, 8 POSITION AMP
110000050	00	SWITCH DIP, 4 POSITION AMP
110000051	00	SWITCH CK 73034ZQEJ2
110000052	00	AMP DISTRIBUTOR 4325166-3
110000053 110000054	00	SWITCH, 5 POS, AMP
110000055	00 00	RELAY, DRY REED W103MPCX-4 RELAY, DRY REED W101MPCX-3
110000056	00	RELAY, MERC WETTED W131MPCX-3 RELAY, MERC WETTED W131MPCX-4
110000057	00	RELAY, MERC WEITED WI31MPCX-4 RELAY, MERC WETTED WI32MPCX-4
110000058	00	SWITCH, 7203ZQEJ2 C&K
110000059	00	SWITCH, DP3P ROCKER
110000060	EE	SOLENOID, LEDEX #124911-030
110000061	00	SWITCH, SPST CUTLER HAMMER 7561K74
110000062	00	RELAY, W107DIP-1
110000063	00	SWITCH, 8-POS AMP435166-5
110000064 110000065	00	SWITCH, 3PDT 15A/CONTACT
110000066	01 01	SWITCH, MINI TOGGLE MOMENTARY
110000067	02	SWITCH, MINI TOGGLE MAINTAINING SWITCH SELECTOR
110000068	01	SWITCH SELECTOR (POWER)
110000069	01	SWITCH SELECTOR (POWER) SWITCH, TOGGLE, MOMENTARY
110000070	01	SWITCH, TOGGLE, MAINTAIN
110000071	00	SWITCH, MICRO #311SM701-T
110000072	00	SWITCH, PRESS 10" FAIRCHILD #PSF100A-10C
110000073	00	SWITCH, PRESS 20" FAIRCHILD #PSF100A-20C
110000074	00	SWITCH, MOM ACT 101 SN11
110000075	_00	SWITCH, OAK 390 DP TCW POS
110000076 110000077	00 00	SWITCH LOW TORQUE 1-NO, CHERRY #E51-51T SWITCH . 251 SIM RLR, MICRO#311SM4-T
110000078	00	SWITCH 1.251 SIM RER, MICRO#511SM4~1 SWITCH FLEX LEAF W/RLR, MICRO#111SM2-T
110000079	00	SWITCH OPT 2-CHAN, HEI#0S562A-060LW
		- ,

DGC PROPRIETARY - This manual contains proprietary information of Data General Corporation (DGC) revealed for the limited purpose only to service DGC equipment on the express condition that the information herein shall not be disclosed to others, and shall not be reproduced in whole or in part, or used in whole or in part as the basis for manufacture or sale of items, without written permission.

000000		r in part, or used in whole or in part as the basis for manufact			
PART NUMBER	REV	DESCRIPTION	PART NUMBER	REV	DESCRIPTION
111000000		DEVICE CONN CARD READER	111000111	00	TERM R TNG #10STUD 12-10 AMP 2-35109-1
111000001 111000002		CONN 9 CONTACT PLUG DEC 9P CONN 9 CONTACT SOCKET DEC 9S SZ 20	111000112 111000113	00 00	CONN PCB 28 DUAL POSITION CONN CABLE 20 POSN AMP 86402-1
111000003		CONN 25 CONTACT PLUG DBC 25P SZ 20	111000114	00	CONN 12 POSITION AMP 86402-4
111000004	00	CONN 25 CONTACT SOCKET DBC 25S SZ 20	111000115	00	CONN CONTACT TWIN LEAF AMP 583616
111000005		CONN 50 CONTACT PLUG DDC 50P SZ 20	111000116	00	CONN KEY AMP 583274
111000006 111000007		CONN 50 CONTACT SOCKET DDC 50S SZ 20 CONN 19 CONTACT PLUG 2DE19P	111000117 111000118	00 00	CONN PC EDGE 50 DUAL POS AMP1-583717-9 CONN CINCH 252-15-30-160
111000008		CONN 19 CONTACT SOCKET 2DE19S	111000119	00	CONN PC EDGE 10 DUAL POS AMP 583717-1
111000009		CONN 52 CONTACT PLUG 2DB52P	111000120	00	CONN FERRULE COAX 328664
111000010 111000011		CONN 52 CONTACT SOCKET 2DB5ES CONN 100 CONTACT PLUG 2DD100P	111000121 111000122	00 00	CONN RETENTION SPRING COAX 243332-1 CONN ALIGN BSHG RED AMP 329051
111000012		CONN 100 CONTACT FLOG 2DD100F CONN 100 CONTACT SOCKET 2DD100S	111000122	00	CONN SPR RTNG AMP 583691-3
111000019	00	CONN JUNCTION SHELL DE 24657	111000124	00	CONN RECEPTACLE MOLEX 1292-R2
111000020 111000021		CONN JUNCTION SHELL DB24659 CONN JUNCTION SHELL DD24661	111000125 111000126	00 00	CONN PIN FEMALE MOLEX 02091133 CONN PLUG MALE MOLEX 1292-P1
111000022		CONN SCREW LOCK ASSY FEMALE D204018-2	111000120	00	TERM MALE . 093 18 TC 22 GA MOLEX 1380
111000023	00	CONN SCREW LOCK MALE D20419-16	111000128	00	CONN RIVET FLAT HD AK41H
111000024 111000025		CONN SCREW LOCK MALE 20419-21 CONN SCREW LOCK MALE 20420-15	111000129 111000131	00 00	CONN RECEPTACLE MOLEX 1261R-2 CONN PIN MOLEX 02092132
111000023		CONN SCREW LOCK MALE 20420-15 CONN A/C OUTLET PS 1369	111000131	00	CONN RF PNL RECEPTOR 83-798-1050
111000027	00	CONN CABLE 20 DUAL POS AMP 86148-1	111000133	00	CONN JACKSCREW FEMALE 200875
111000029		CONN CONTACT COMP LD 4-330808-9	111000134 111000135	00 00	CONN 9 PIN W/MOUNTING TABS TERM FEM . 093 18 TO 22 GA MOLEX 1381
111000030 111000031		CONN DIP SOCKET 16 PIN 041-001 112N TERM POST 025SQ . 287 AMP 86144-4	111000135	00	CONN PLUG 2 PIN
111000032	2 00	CONN FASTON RECEPTACLE SERIES 250	111000137	00	CONN RECEPTACLE 2 PIN
111000033		TERM RCPT 250 22-18 AWG AMP 42628-2	111000138 111000139	00 00	CONN 22 PIN TERM SLTD TNG FLG #6 16-14A#2-320861-1
111000034 111000035		TERM RCPT 250 16-14 AWG AMP 42332-4 TERM R TNG #10STUD 16-14 AMP 2-31903-2	111000139	00	TERM R TNG #6STUD 16-14 AMP 2-32442-1
111000036		TERM R TNG #10STUD 22-16 AMP 2-31889-3	111000141	00	TERM R TNG #8STUD 22-16 AMP 2-31886-2
111000037		TERM R TNG #6STUD 22-16 AMP 2-32403-1	111000142	00	CONN MALE A/C PLUG 15AMP 125V
111000038 111000039		TERM RCPT 187 22-18 AWG AMP 60972-3 CONN WINCHESTER ELEC 109-8340	111000143 111000144	00 00	CONN DAISY CHAIN . 025 SQ POST 5"SP TERM R TNG #2STUD 22-16 AMP 2-320440-1
111000040		CONN CABLE 22 DUAL POS AMP 86148-2	111000145	00	CONN FEMALE SOCKET CONTACT
111000041		CONN RCPT 50 DUAL POSN AMP 86018-2	111000146	00	CONN MALE PIN CONTACT
111000042 111000043		TERM TAB 250 .097STUD 90 AMP 41204 CONN 36 CONT FOR DISK	111000147 111000148	00 00	CONN 13 POS SINGLE ROW MOD IV CONN KEY AMP 86286-1
111000044		TERM TAB 250. 130STUD 90 AMP 42117-2	111000149	00	CONN HOUSING, TWIN LEAF . 100CTRS
111000045		TERM TAB 250. 130STUD DFS AMP 42506-2	111000150	00	CONN AMP 225-21031-101 OR EQUIV
111000046 111000047		CONN T&B 18RA-6F CONN W1RE SPLICE T&B ZRBR	111000151 111000152	00 00	CONN CINCH 251-18-30-160 CONN AMP 57-30360
111000050		CONN HI-CLAMP PPC-11	111000153	EE	CONN FLAG FASTON TERM
111000051		CONN FASTENER CB4-2 1/8 DIA BUTTON	111000154	00	CONN OUTPUT ELCO 00-8016-038-000-707
111000052 111000053		CONN 6 PIN AM CONN DISK FROM 111-000-043 LG	111000155 111000156	EE 00	CONN BERG #75307-002 CONN JACK SCREW AMP #202490-2
111000054		CONN DISK FROM 111-000-043 SM	111000157	00	CONN FLANGED INLET AH 5278 NEMA 5-15P
111000055		CONN T&B RBB-25	111000158	00	CONN WIRE MOLD ASSY 10P AMCO PM60-10
111000056 111000057		CONN T&B RCC TERM TAB 250 130STUD 1PR AMP 41480	111000159 111000160	00 00	CONN RUBBER BOOTH AH 7511 CONN 3VH30-1JN3 DEVICE 1055B
111000058		CONN AMP 85969-2 CRP 24-20 AWG	111000161	EE	CONN WIRE MOLD ASSY 6 POS
111000059		CONN AMP 1-480435-0	111000162	00	CONN PIN CONTACT 14 AWG AMP 61118-5
111000062 111000063		CONN SOLDER SLEEVE D142-51 CONN HAYCO DC-201 BLACK	111000163 111000164	00 00	CONN PIN CONTACT 26 AWG AMP 60910-5 CONN SOCKET AC ARROW HART #5278
111000064	4 00	CONN HAYCO DC-201 AMBER ORANGE	111000165	00	CONN SOCKET AMP 61117-5
111000065		CONN HAYCO T-1018 TIN PLATE TAB CONN STYLE A 5353867	111000166 111000167	00 00	CONN CONT SKT 30-22 AWG AMP 60909-
111000069 111000070		CONN STYLE B 5353868	111000167	00	CONN 6 SKT MATE-N-LOK AMP 1-480273-0 CONN 12 SKT MATE-N-LOK AMP 1-480275-0
111000071	1 00	CONN TERMINAL CONTACT 66341-2	111000169	00	CONN 12 PIN MATE-N-LOK AMP 1-480275-0
111000072		CONN 6 CIRCUIT FASTON P/18 480003-5	111000170		CONN PLUG MOLEX 12CKT 1360P
111000073 111000074		CONN CONTACT PC 125CF 50 CONN CONTACT TERMINAL 60413-1	111000171 111000172	00 00	CONN RCPT MOLEX 12CKT 1360R-1 CONN VIKING 3VH30/1JN3
111000075	5 00	TERM POST 025SQ . 210 AMP 86144-8	111000174	00	CONN MOLEX 5 PIN WAFERCON
111000076 111000077		CONN TERMINAL BUSH GREEN DC-87-3-2 CONN TERMINAL BUSH CRG DC-87-3-2	111000175 111000176	00 00	CONN MOLEX 5 PIN CONN BASELESS CRTG LAMP AMP 61528-1
111000078		CONN TERMINAL TAB BRASS T-202-55	111000177	00	TERM TAB 250 . 130STD 2PR AMP 41481
111000079		CONN 26 POSITION 583679-1	111000178	00	CONN USM POP RIVET AD42S
111000080 111000081		CONN MOLEX 1490 RECEPTACLE TERM FEM . 093 14 TO 20 GA MOLEX 1189	111000179 111000180	00 00	CONN PC EDGE 25 DUAL POS AMP1-583717-1 CONN WIRE MOLD ASSY
111000082		CONN MOLEX 1490 PLUG	111000182	00	CONN WIRE MOLD ASSY CONN WIRE MOLD ASSY MODIFIER
111000083		TERM MALE . 093 14 TO 20 GA MOLEX 1190	111000183	00	CONN TEST PROBE FEM #53061
111000084 111000085		CONN AMPHENOL MIN RAC 17 17-300-01 CONN AMPHENOL RT ANGLE PIN 17-1208-02	111000184 111000185	00 00	CONN TEST PROBE MALE #20357 CONN 50 DUAL POS
111000086		CONN AMPHENOL RT ANGLE PIN 17-1209-02	111000186	00	CONN AMP FSTON 187 SERIES TAB 61947-1
111000087		CONN COMPONENT LEAD SOCKET 380635-1	111000187	00	CONN AMP FSTON 187 SERIES TAB 61951-1
111000088 111000091		CONN EPO GROUND TAB 5271288 CONN PWR RECEPT. MS3102 A24-25	111000188 111000189	00 00	CONN AMP FSTON ''187'' RECP AMP 61697-1 CONN HOUSING MALE 9 PIN
111000093		CONN BLOCK SKT 75 CONT AMP 201311-1	111000190	00	CONN HOUSING FEMALE 9 PIN
111000094		CONN BLOCK 29 POSN AMP 202477-4	111000191	00	CONN FASTON CLIP-FLAG TYPE
111000095 111000096		CONN CONT SKT 18-16 AWG AMP 66101-1 CONN CONT SKT 10-8 AWG AMP 66257-2	111000192 111000193	.00 00	CONN BARRIER STRIP & TERMINAL CONN SPADE LUG #10-12
111000097		CONN SKT RG/U CA AMP 329013	111000194	00	CONN WAFER 9 PIN MOLEX 0918-5094
111000098	3 01	CONN POLORIZING KEY (USED/079)	111000195	00	CONN AMP FSTON 110 TAB 42971-1
111000099 111000100		CONN MINI BRASS RIVIT . 116X3/16 CONN 24 PIN (PART # 111000040)	111000196 111000197	00	CONN AMP FSTON 187 TAB 61761-1 CONN 40 PIN W/STRAIN RELIEF #3417-3000
111000101	1 00	CONN CABLE 40 DUAL POSN AMP 1-86148-1	111000198	00	CONN 40 PIN PCB HEADER #3432-1002
111000102		CONN PLUG RECP P&S TURNLOCK	111000199	00	CONN POLARIZING KEY
111000103 111000104		CONN ASSY DIGITRONICS PTR 2540 CONN CRIMP LUG T&B RC1157	111000200 111000201	00 00	CONN VIKING 3VH35/CND-12 TERM R TNG #4STUD 22-16 AMP 31878
111000107	7 00	CONN MOLEX STD NYLON P/N 126-P-1	111000202	00	TERM R TNG #10STUD 6AWG AMP 52265-2
111000108	3 00	CONN MOLEX STD NYLON P/N 1261-R	111000203 111000204	00 00	TERM RCPT 250 14-10AWG AMP 41450
111000109 111000110		CONN MRAC 42PJ CONN PIN CONTACT 8114	111000204	00	CONN HSG 250 TERM RCPT AMP 1-480416-0 TERM RCPT 187 22-18AWG MAP 60972-2
000110			1		

		in part, or used in whole of in part us the sasis for man
PART NUMBER	REV	DESCRIPTION
111000206	00	TERM RCPT 110 22-18AWG AMP 61048-2
111000207	00	TERM TAB 187 130STUD ANLR AMP 61761-2
111000208 111000209	00 00	TERM TAB 110 136STUD STR AMP 60858-1 TERM POST 025SQ . 165 AMP 87022-9
111000210	00	SPLICE COAX TO AWG AMP #330592
111000211	00	CONN BRASS RIVET TIN PLATED
111000212	00	CONN PNL RCPT TYPE UHF AMPHENOL 83-1R
111000213 111000214	00 00	TERM RCPT 28-22 AWG BERG 47712 CONN HSG 4 PIN BERG 65039-033
111000215	01	CONN 3VH50/1JV5 VIKING
111000216	00	TERM R TNG #8STUD 16-14 AMP 30927
111000217 111000218	00 00	CONN RECEPTACLE MOLEX # 1261-R2 CONN PLUG MOLEX # 1261-P
111000219	00	CONN 9 PIN MOLEX #1201-9
111000220	00	CONN 12 PIN MOLEX #1840-12-2
111000221 111000222	00	CONN QUICK DISC TAB ETC #3531
111000222	00 00	CONN QUICK DISC TAB ETC #3523 CONN 25 PIN DUAL POSN #PJDH-255
111000224	00	CONN POLARIZING KEY #109-8597
111000225	00	TERM R TNG #10STUD 6AWG BUR YAEUSC-L1
$111000226 \\ 111000227$	00	TERM RCPT 250 14-10AWG BUR PQ10R258B
111000228	00 00	CONN 29 PIN WINCHESTER #SRE29PD4J CONN MR 4PIN HDR(TIN) AMP #9-350255-1
111000229	00	CONN MR 4SKT HSG AMP #1-350240-9
111000230	00	CONN MR 6PIN HDR(TIN) AMP #9-350258-1
$111000231 \\ 111000232$	00 00	CONN MR 65KT HSG AMP #1-350241-9 CONN MR 9PIN HDR(GOLD) AMP#9-350261-2
111000233	00	CONN MR 95KT HSG AMP #1-350242-9
111000234	00	CONN MR 12PIN HDR (TIN) AMP #9-350264-1
111000235	00	CONN MR 12SKT HSG AMP #1-350243-9
$111000236 \\ 111000237$	00 00	CONN MR SKT CON 26-18 TIN AMP 350037-1 CONN MR SKT CON 26-18 GLD AMP 350037-2
111000238	00	CONN HOUSING AMP 1-480305-0
111000239	00	PIN AMP 61118-1
$111000240 \\ 111000241$	00 00	CON PIN MALE 20-14 MOLEX #20-09-2101 CON PIN FEMALE 20-14 MOLEX #20-09-1101
111000242	00	CON FIN FEMALE 20-14 MOLEX #20-05-1101 CONN 60 PIN AMP 582459-1
111000243	00	CONN PIN MALE 22-18 MOLEX #02-09-2116
111000244	00	CON PIN FEMALE 22-18 MOLEX #02-09-1116
$111000245 \\ 111000246$	00 00	CON PLUG FOR .093 TERM, MOLEX TYPE 1619 CON RCPT FOR .093 TERM, MOLEX TYPE 1619
111000247	00	CONTACT, CONN. AMP #66135-2
111000248	00	SHIELD, CONN. AMP #200532-1
$111000249 \\ 111000250$	00 00	JACKSCREW AMP #582360-3
111000251	00	CONNECTOR, DUAL, 36 PIN 600-061-18SL CONNECTOR 582388-9 AMP
111000252	00	CONTRACT, CONN. 66088-3 AMP
111000253	00	CONTRACT, CONN. 66150-3 AMP
$111000254 \\ 111000255$	00 00	CONNECTOR WINCHESTER #MRAC50PJTDHS CONNECTOR CINCH #251-25-30-160
111000256	00	CONNECTOR 57-30240
111000257	00	CONN CARD CAGE-TERMINAL
111000258 111000259	00 00	CONN CARD CAGE 15 PIN CONN MR 15 PIN HDR (TIN) AMP #9-350267-1
111000260	00	CONN MR 15SKT HSG AMP #1-35024409
111000261	00	CONN PIN . 025SQ, WW, . 660LG #75401-015
$\frac{111000262}{111000263}$	00 00	CONN CANNON 19S SK-19-21C-1/2 CONN PC QUICK-CONNECT . 187 TAB FEMALE
111000264	00	TERM R TNG #6STUD 18-22 AMP 2-34144-1
111000265	00	TERM R TNG #6STUD 10-12 AMP 2-34168-1
111000266	00	CONN RIVET
$111000267 \\ 111000268$	00 00	CONN FEMALE MOLEX 1189T PIN CONN MALE MOLEX 1380T
111000269	00	CONN MALE MOLEX 1120T PIN
111000270	00	CONN FEMALE PIN MOLEX 1381T
$111000271 \\ 111000272$	00 00	CONN USM POP RIVET #AD44H TERM POST.025SQ UMINSUL. AMP #87022-4
111000273	00	TERM AMP 250 FASTON ADT 61765-2
111000274	00	CONN KEY, POLARIZING FOR AMPMODU TYPE
111000275 111000276	00 00	CONN CONTRACT, LOCK CLIP 025POST CONN HOUSING LOCK CLIP 2 ROW 6 POS
111000277	00	CONN HOUSING, LOCK CLIP, 2 ROW 6 POS CONN HOUSING, LOCK CLIP, 2 ROW 20 PCS
111000278	00	CONN PLDG 20A 250V HUBBELL 2421
111000279	00	CONN AMP PINS (BRIGHT TIN DIP)
$111000280 \\ 111000281$	00 00	CONN RCPT 2-PIN MOLEX #03-09-1021 CONN SCREW LOCK PNL RECEPTACLE
111000282	00	CONN SCREW LOCK CA PLUG
111000283	00	CONN MATE-N-LOCK 8 PIN HDR, #350212-1
$111000284 \\ 111000285$	00 00	CONN MATE-N-LOCK 8 PIN, AMP #1-480283-0 CONN 20-14 TIN PIN, AMP #60619-1
111000286	00	CONN POST INSUL POD AMP #1-480306-1
111000287	00	CONN FLAG INSUL SPT AMP #60290-2
$111000288 \\ 111000289$	00 00	CONN WINCHESTER HW50D2-111-2B TERM MALE-MOLEX 1854-02-06-2132
111000290	00	TERM RECEP, 2 CKT MOLEX 1625-2R1
111000291	00 FF	CONN ADPTR 1/4" PUSHON TAB-1:2
$111000292 \\ 111000293$	EE 00	CONN HOUSING, LOCK CLIP 12 POS CONN 11 POS 22 PIN, EDGE CARD
111000294	00	CONN 4 PIN M. R. HDR (GOLD)
111000295	00	CONN 15 PIN M. R. HDR (GOLD)

PART NUMBER	REV	DESCRIPTION
	1121	
113000002	00	FUSE 10A 250V LITTELFUSE 3AB #314010
113000003	00	FB 2-POLE, 3AG MTG, LITTELFUSE #357002
113000004	00	FUSE 1/2A 250V LITTELFUSE 8AG #361.500
113000005	00	FUSE 3/4A 250V LITTELFUSE 8AG #361.750
113000008	00	FUSE CLIP, EARLESS, BUSS #5680-05
113000009	00	FUSE 2A 250V LITTELFUSE 8AG #361002
113000010	00	FUSE 3A 125V LITTELFUSE 3AG #313003
113000011	00	FUSE 2A 125V LITTELFUSE 3AG #313002
113000012	00	FUSE 1/2A 125V LITTELFUSE 3AG #313.500
113000013	00	FUSE 3/8A 250V BUSS MDL FUSETRON
113000014	00	FUSE 1A 250V BUSS AGX FAST ACTING
113000015	00	FUSE 4A 250V LITTELFUSE 3AG #312004
113000016	00	CB 15A 50V 1-POLE TI #51MC2-29-15
113000017	00	FUSE 15A 32V LITTELFUSE 1AG #301015
113000018	00	FUSEHOLDER PNL MTD, R-A TERM, LF #342004
113000019	00	FUSE 15A 250V LITTELFUSE 3AB #314015
113000020	00	FUSE 30A 600V BUSS KTK LIMITRON
113000021	00	FUSE BLOCK 3-POLE 250V BUSS #2809
113000022	00	FUSE 5A 32V LITTELFUSE 1AG #301005
113000023	00	FUSE 10A 32V LITTELFUSE 1AG #301010
113000025	00	FUSEHOLDER PNL MTD, STR TERM, LF #342012
113000026	00	FUSE 30A 125V LITTELFUSE 3AB #31430
113000027	00	FUSEHOLDER PNL MTD, H-V KNOB, LF #34027
113000028	00	PICOFUSE AX LEAD 3/4A 125V LF #275.750
113000029	00	FUSE 2 1/2A 32V BUSS AGW GLASS TUBE
113000030	00	FUSE 1/4A 250V BUSS AGX FAST ACTING
113000032	00	FUSE 15A 32V BUSS MDL FUSETRON
$113000033 \\113000034$	00	FUSE 5A 250V LITTELFUSE 3AB #314005
113000035	00 00	FUSE 1A 32V BUSS AGA GLASS TUBE
113000035	00	FUSE 3A 32V BUSS AGA GLASS TUBE
113000038	00	FUSE 6A 32V BUSS AGA GLASS TUBE
113000038	00	FUSE 8A 250V LITTELFUSE 3AB #314008 FUSEHOLDER PNL MTD, STR TERM, LF #342038
113000040	00	FUSE 15A 32V BUSS AGC FAST ACTING
113000040	00	FUSE 2A 250V LITTELFUSE 3AG #312002
113000042	00	PICOFUSE AX LD, 1 1/2A 125V, LF #26501.5
113000043	00	FUSE 5A 32V BUSS MDL FUSETRON
113000044	00	FUSE 3A 32V LITTELFUSE 1AG #301003
113000045	00	FUSE 4A 32V BUSS AGW FAST ACTING
113000046	00	CB 20A 65V 2P, AIRPAX #UPG-11-1-6-1-203
113000047	00	FUSE 5A 125V LITTELFUSE 3AG #313005
113000048	00	FUSEHOLDER IN LINE FOR 3AG
113000049	00	FUSEHOLDER, MODIFIED, INLINE FOR 3AG
113000050	00	FUSE 1/4A 250V LITTELFUSE 3AG #313. 250
113000051	00	FUSE . 125A BUSS MDL SLD BLD

PART NUMBER	REV	DESCRIPTION			
$\begin{array}{c} 114000001\\ 114000002\\ 114000004\\ 114000005\\ 114000006\\ 114000006\\ 114000008\\ 114000008\\ 114000009\\ 114000011 \end{array}$	00 00 00 00 00 00 00 00 00	HUDSON 28V BULBS 21870 HUDSON BULB 2176 INDICATOR CARTRIDGE CML INDICATOR CARTRIDGE CML 64 0272 INDICATOR CARTRIDGE 6V CML 240272 GR W INDICATOR CARTRIDGE 115V CML 240212 RE LAMP TUNGSOL #561 BULB-PLT LAMP CML 84-0421 LAMP INCANDESCENT AMBER 14V			
114000012 114000013 114000014 114000015 114000016 114000017	00 00 00 00 00 00	LAMP INCANDESCENT RED 14V INDICATOR RDOUT DIG SP-331 1.5D16.33" INDICATOR RDOUT DIG SP-332 2DIG. 33 IN INDICATOR RDOUT DIG SP-333 3DIG. 33 IN INDICATOR RDOUT DIG SP-353 3DIG. 55 IN INDICATOR RDOUT DIG SP-354 2.5D.55IN			
	*				
					•
	,	C		•	
			11	4-1	

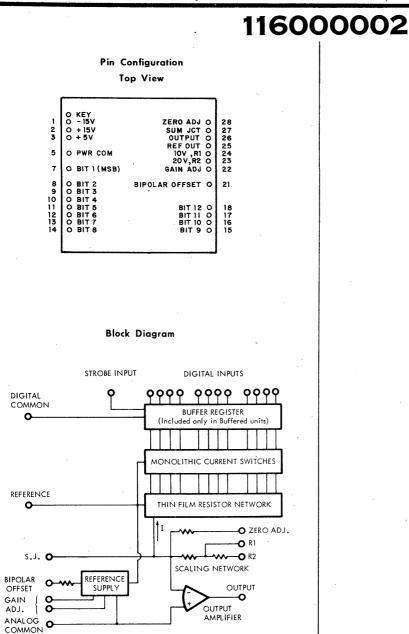
PART		
NUMBER	REV	DESCRIPTION
115000001	00	FAN AXIAL-PAMOTOR 8500
115000002	00	FAN AXIAL-ROTROMMUFFIWMK4
115000004	00	BLOWER AMCO B-350-25 BS-350 2REQD BHA
115000005	00	FAN ROTRON SARGENT 115V 50/60
115000007	01	MOTOR HEAD LOAD
115000008	00	FAN, SKIPPER
115000009	00	MOTOR DRIVE 50HZ
115000010	00	MOTOR DRIVE 60HZ DISC 6000
115000011	01	MOTOR CAPSTAN OUTLINE DWG
115000012	02	MOTOR REEL OUTLINE DWG
115000013	00	MOTOR UNMODIFIED 3M103 GRANGER
115000014	03	MOTOR SHADED POLE TRIEM 1012
115000015	00	BLOWER ADPT BRKT
115000016	00	MOTOR FILTER (350 CFM)
115000017	00	MOTOR SCREEN OUTLET (350 CFM)
115000018	00	MOTOR AIR DUCT (350 CFM)
115000019	00	MOTOR ALUM GRILL
115000020	00	BLOWER (350 CFM)
115000021	00	FAN SKIPPER ROTON #SK2A-1
115000022	00	FAN ADAPTER, AIR DUCT
115000023	00	FAN 105 CFM HOWARD #3-90-8010-115V
115000024	00	BLOWER LAMB #115721-0
115000025	00	MOTOR 1/3 HP GE #5KC P19PG285T
115000026	00	BLOWER AUXILLARY WITH SS GRILL
115000027	00	BLOWER AUX W/SS GRILL 230V
115000028	EE	MOTOR HYSTERESIS SYNCH SPEC
115000029	00	FAN, VENTURI 115V, 50/60HZ ROTRON CT3A2
115000030	00	GUARD, FINGER ROTRON 20132-2
115000031	\mathbf{EE}	BLOWER SPECIFICATION CABINET

NUMERICAL INDEX CIRCUIT MODULES

DGC Part Number	Functional Description	Page Number
116000001	12-Bit A/D Converter	116-2
116000002	12-Bit D/A Converter	116-3
116000003	Power Supply DC/DC	116-4
116000004	Sample and Hold	116-5
116000006	10-Bit D/A Converter	116-6
116000007	10-Bit A/D Converter	116-7

116000001

A/D Converter

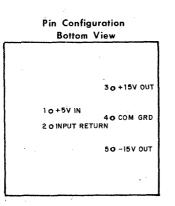

Pin Designations

	Top \	/iew	•
1 2 3 4 5	O GAIN ADJ O ANALOG IN O ANALOG IN COM	BIT1 (MSB) O <u>BIT</u> 1 O BIT1 (MSB) O	72 71 70
4 5 6	O ANALOG IN COM O BUFFER OUT O BIPOLAR, R2 O UNIPOLAR, R1	BIT 3 O	67
		BIT 4 O	65
	•	BIT 5 O	63
-		BIT 6 O	61
		BIT7 Ø	58
		BIT 8 O	56 [:]
19 20	O BIPOLAR OFFSET	ВІТ 9 О	54
22	O REF OUT O ANALOG COM	BIT 10 O	52
25	0 - 15V	BIT 11 O BIT 12 (LSB) O	50 48
27	O + 15 V		
· 29 30	O + 5V O DIGITAL COM	STATUS O	43
32 33	O COMP OUT O STATUS O CONV COMP		
34 35 36	O CONV COMP O CLOCK IN O CLOCK OUT	CLOCK INHIBIT O	
		CLOCK INHIBIT O	37
	Block Di	aaram	
	BUFFER OUT	(DIRECT INPUT)	
ANALOG	Ŷ		COMPARATOR
INPUT		}	TUO 0
•	BUFFER		
COMPARATOR IN			CLOCK.
0	COM		
BIPOLAR OFFSET	REEPENICE	┓╧	
0	REFERENCE VOLTAGE		INTERNAL
			CLOCK
	1	•	CLOCK
L, MC	WEIGHTED	WITCHES	OUT
L	* * * * * * * * *		
	GATING LOGIC AN		CLOCK
	OUTPUT REGISTER		О
	DIGITAL OUTPUT		OMMAND
8	Timing D		
	-	U	
		·····	CONVERT
- SSB	-558 -558 -558 -558 -758	828- 826- 8201- 8201-	STATUS
	n n n n n r	<u>י</u> תחחות היי	
			I MSB
"o"			2 SB
			35B
			458
"o"			55B
•			•
•			•
•			LSB
1	o" "ו" ס" "o" "ו"] "o" "1" "o" "o"	
	`````	ڒۛۛٮؙؗڔ	COMPARATOR
	3 4 5 6 7	8 9 10 11	12

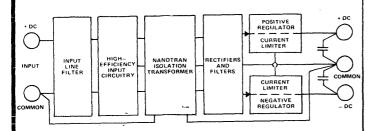
**Pin Configuration** 

Pin		Pin	
No.		No.	1
			·. ·
1	Gain Adj.	72	Bit 1 (MSB)
2	Analog In	71	Bit 2
3	Analog In Com	70	Bit 1 (MSB)
4	Buffer Out	69	No pin
5	Bipolar, R2	68	No pin
6	Unipolar, R1	67	Bit 3
7	No pin	66	No pin
8	No pin	65	Bit 4
- 9	No pin	64	No pin
10	No pin	63	Bit 5
11	No pin	62	No pin
12	No pin	61	Bit 6
13	No pin	60	No pin
14	No pin	59	No pin
15	No pin	58	Bit 7
16	No pin	57	No pin
17	No pin	56	Bit 8
18	No pin	55	No pin
19	Bipolar Offset	54	Bit 9
<b>20</b>	Comp In	53	No pin
<b>21</b>	No pin	52	Bit 10
<b>22</b>	Ref Out	51	No pin
23	Analog Com	50	Bit 11
<b>24</b>	No pin	49	No pin
<b>25</b>	-15V	48	Bit $12 (LSB)$
<b>26</b>	No pin	47	No pin
<b>27</b>	+15V	46	No pin
28	No pin	45	No pin
29	+5V	44	<u>No pin</u>
30	Digital Com	43	STATUS
31	No pin	42	No pin
32	Comp Out	41	No pin
33	Status	40	No pin
34	Conv Comm	39	No pin
35	Clock In	38	No pin
36	Clock Out	37	Clock Inhibit

The 116000001 circuit module is a 12-bit binary analog-to-digital converter.




D/A	Converter	
Pin Designations		
Pin No.		
К	Key	
1	- 15V	
2	+15V	
3	+5V	
4	No pin	
5	Pwr Com	
6	No pin	
7	Bit 1 (MSB)	
8	Bit 2	
9	Bit 3	
10	Bit 4	
11	Bit 5	
12	Bit 6	
13	Bit 7	
14	Bit 8	
15	Bit 9	
16	Bit 10	
17	Bit 11	
18	Bit 12	
19	No pin	
20	No pin	
21	Bipolar Offset	
22	Gain Adj	
23	20V	
24	10 <b>V</b>	
25	Ref	
26	Output	
27	Sum JCT	
28	Zero Adj	


The 116000002 circuit module is a 12-bit binary digital-to-analog converter with an externally programmable output amplifier.

116-3

# 11600003



#### **Block Diagram**



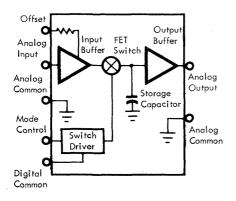
## Power Supply DC/DC

Pin Designations

Pin <u>No.</u>	ð.	
1		+5VDC Input
2		Input Return
3		+15VDC Output
4		Common Grd
5		-15VDC Output

# 11600004

## Sample and Hold


#### **Pin Designations**

	e
Pin No.	~
К	Key
1	Control In
2	No pin
3	No pin
4	Digital Ground
5	No pin
6	Analog Ground
7	No pin
8	No pin
9	No pin
10	-15VDC
11	No pin
12	Power G <b>r</b> ound
13	No pin
14	+15VDC
15	Analog Ground
16	No pin
17	Analog Output
18	No pin
19	No pin
 20	No pin
21	No pin
22	No pin
23	No pin
24	Offset (Grd)
25	No pin
26	Analog Ground
27	No pin
28	Analog Input

The 116000004 circuit module is a fast sampleand-hold device with low droop rate and overall accuracy compatible with 12-bit A/D conversion systems operating to 1/2LSB accuracy. This module accepts  $\pm 10$  volt data, a TTL/DTL and C/MOS compatible control signal, and requires  $\pm 15$ Vdc power.

Pin Configuration Bottom View		
0 28 Analog Input	KEY o Control In 1º	
026 Analog Ground 024 Optional	Digital Ground 40 Analog Ground 60	
017 Analog Output 015 Analog Ground	-15VDC 100 Power Ground 120 +15VDC 140	

#### **Block** Diagram





3	No pin
4	+Ref Out
5	Grd
6	No pin
7	Bit 1 (MSB)
8	No pin
9	Bit 2
10	No pin
11	Bit 3
12	No pin
13	Bit 4
14	Bit 5
15	Bit 6
16	Bit 7
17	No pin
18	Bit 8
19	No pin
20	No pin
21	Bit 9
22	No pin
23	Bit 10
24	Offset
25	-Ref Out
26	Out
27	Sum JCT
28	No pin

The 116000006 circuit module is a 10-bit binary, unipolar digital-to-analog converter with a builtin I.C. output amplifier.

# 11600007

## A/D Converter

#### **Pin Designations**

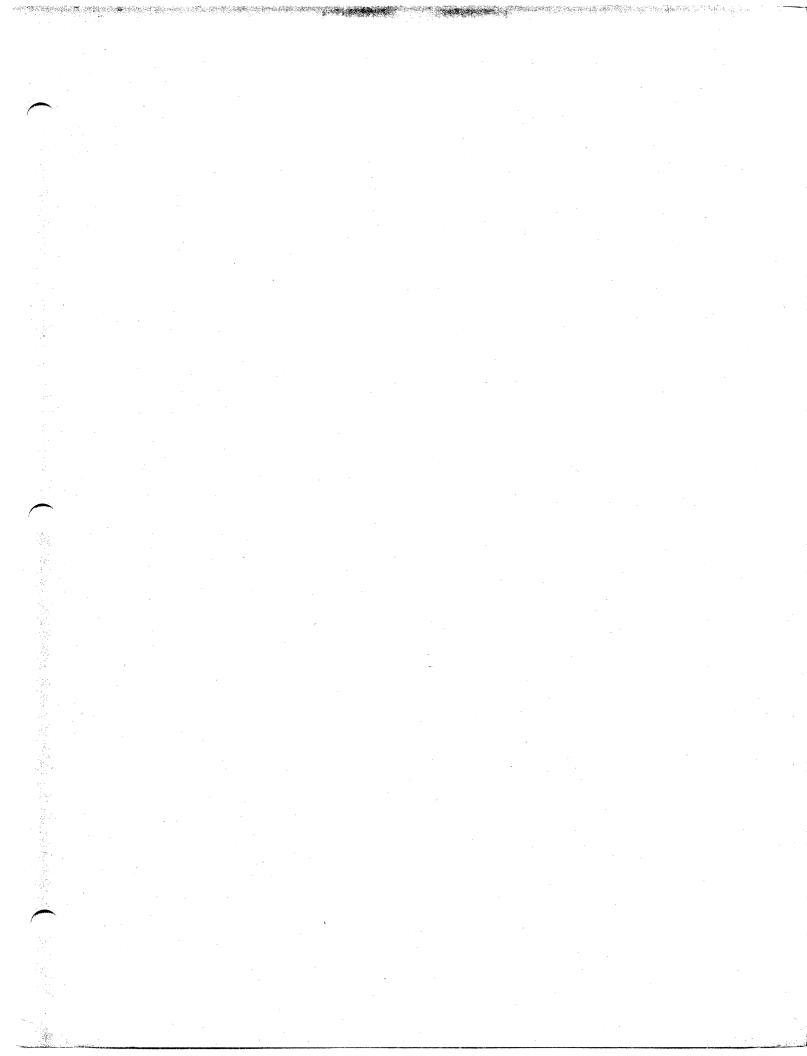
1			
1 2 3 4 5	O GAIN ADJ O SIG IN BUFFER O SIG GND O SIG OUT BUFFER O BIPOLAR (20V)	BIT 1 (MSB) O <u>BIT 2</u> O BIT 1 (MSB) O	72 71 70
6	O UNIPOLAR (10V)	BIT 3 O	67
		BIT 4 O	65
		BITS O	63
		BIT 6 O	61
		BIT 7 O	58
		BITS O	56
19	O BIPOLAR OFFSET	BIT 9 O	54
22	O REF OUT	BIT 10(LSB) O	52
23	O SIG GND		
25	0 - 15V		
27	0 +15V		
29 30	O + 5 V O DIGITAL GND	STATUS O	43
32	O COMPOUT O STATUS		
34 35	O CONV COMM		
36	O CLOCK OUT	CLOCK INHIBIT O	37
ANALOG INPUT COMPARATO IN BIPOLAR BIPOLAR OFFSET OUT COMPARATO IN BIPOLAR OFFSET OUT COMPARATO IN BIPOLAR OFFSET OUT COMPARATO IN STATUS	BUFFER OUT BUFFER OR COM REFERENCE VOLTAGE		
Timing Diagram →_← 100ns mm			
			CONVERT COMMAND
ş,	258		STATUS
	ىرىرىرى	nnn	CLOCK
		•	MSB • 2SB
·o·			3\$B
<u> </u>			4SB
.0.	<u> </u>		5SB

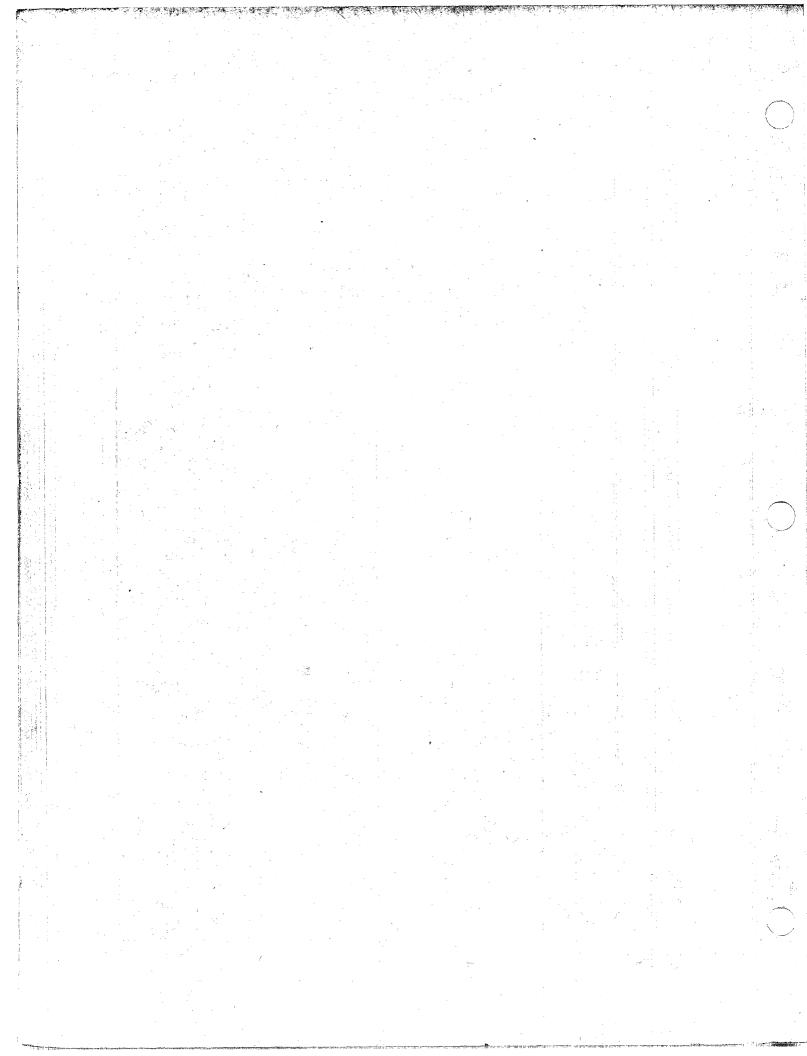
Pin Configuration Top View

Pin <u>No.</u>		Pin <u>No.</u>	
1	Gain Adj.	72	Bit 1 (MSB)
2	Sig. In Buffer	71	Bit 2
3	Sig. Grd	70	Bit 1 (MSB)
4	Sig. Out Buffer	69	No pin
5	Bipolar (20V)	68	No pin
6	Unipolar (10V)	67	Bit 3
7	No pin	66	No pin
8	No pin	65	Bit 4
9	No pin	64	No pin
10	No pin	63	Bit 5
11	No pin	62	No pin
12	No pin	61	Bit 6
13	No pin	60	No pin
14	No pin	59	No pin
15	No pin	58	Bit 7
16	No pin	57	No pin
17	No pin	56	Bit 8
18	No pin	55	No pin
19	Bipolar Offset	54	Bit 9
20	Comp. In	<b>5</b> 3	No pin
21	No pin	52	Bit 10 (LSB)
<b>22</b>	Ref. Out	51	No pin
23	Sig. Grd	50	No pin connection
<b>24</b>	No pin	49	No pin
25	-15V	48	No pin connection
26	No pin	47	No pin
27	+15V	46	No pin
28	No pin	45	No pin
29	+5V	44	<u>No pin</u>
30	Digital Grd	43	STATUS
31	No pin	42	No pin
32	Comp. Out	41	No pin
33	Status	40	No pin
34	Conv. Comm.	39	No pin
35	Clock In	38	No pin
36	Clock Out	37	Clock Inhibit

The 116000007 circuit module is a 10-bit binary analog-to-digital converter capable of -1/2LSB.

LSB


COMPARATOR


(RETURN TO ZERO SERIAL OUTPUT

DGC PROPRIETARY - This manual contains proprietary information of Data General Corporation (DGC) revealed for the limited purpose only to service DGC equipment on the express condition that the information herein shall not be disclosed to others, and shall not be reproduced in whole or in part, or used in whole or in part as the basis for manufacture or sale of items, without written permission.

1210000	J29
---------	-----

PART NUMBER	REV	DESCRIPTION
121000001	00	CRYSTAL 14, 08 KC
121000002	00	CRYSTAL 16.00 KC
121000003	00	CRYSTAL 10 MC
121000004	00	CRYSTAL 20 MC
121000005	00	CRYSTAL 19. 20 KC
121000006	00	CRYSTAL 8.8 KC
121000007	00	CRYSTAL 230.4 KC
121000008	00	CRYSTAL 153.6 KC
121000009	00	CRYSTAL 65, 536 KC
121000010	00	CRYSTAL 307, 2 KC
121000011	-00	CRYSTAL 38.4 KC
121000012	00	CRYSTAL 76.8 KC
121000013	00	CRYSTAL 192.0 KC
121000014	00	CRYSTAL 13.33 MC
121000015	00	CRYSTAL 40 KC
121000016	00	CRYSTAL 204, 8 KC
121000017	00	CRYSTAL 25.6 KC
121000018	00	CRYSTAL 10.752 KC
121000019	00	CRYSTAL 1228.800 KHZ VR6 E-5
121000020	00	CRYSTAL 11.5 MHC
121000021	00	CRYSTAL 100 KC
121000023	00	CRYSTAL 614.4 KC
121000024	00	CRYSTAL XTA2. 1.54 MHZ
121000025	00	CRYSTAL 11.004 MHZ
121000026	00	CRYSTAL 50 MHZ
121000027	00	CRYSTAL 15.36 MHZ
121000028	00	CRYSTAL 160.000 KHZ
121000029	00	CRYSTAL 8.33 MHZ



