
NOVA® 4

PROGRAMMER’S REFERENCE

~ MANUAL

@, Data General
Data General Corporation, Westboro, Massachusetts 0158]

NOTICE

Data General Corporation (DGC) has prepared this

manual for use by DGC personnel, licensees, and

customers. The information contained herein is the

property of DGC and shall not be reproduced in whole

or in part without DGC’s prior written approval.

Users are cautioned that DGC reserves the right to

make changes without notice in the specifications and

materials contained herein and shall not be

responsible for any damages (including con-

sequential) caused by reliance on the materials

presented, including, but not limited to typographical,

arithmetic, or listing errors.

NOVA, INFOS, and ECLIPSE are registered trademarks of

Data General Corporation, Westboro, Massachusetts.

DASHER and microNOVA are trademarks of Data

General Corporation, Westboro, Massachusetts.

FIRST EDITION

(First Printing November 1978)

Ordering No. 014-000617

©Data General Corporation, 1978

All Rights Reserved

Printed in the United States of America

Rev. 00, November 1978

CHAPTER |

CHAPTER II

Ch = =
C) a

wa ©
C)= oo <

SeMwWNHKH aA £

CONTENTS

NOVA 4 SYSTEM

INTRODUCTION

INTERNAL STRUCTURE

INTRODUCTION

INFORMATION FORMATS

INFORMATION ADDRESSING

PROGRAM EXECUTION

INSTRUCTIONS SETS

INTRODUCTION

INSTRUCTION FORMATS

CODING AIDS

FIXED POINT ARITHMETIC

LOGICAL OPERATIONS

STACK MANIPULATION

STACK MANIPULATION INSTRUCTIONS

PROGRAM FLOW ALTERATION

BYTE INSTRUCTIONS

INPUT/OUTPUT

INTRODUCTION

OPERATION OF I/O DEVICES

PRIORITY INTERRUPTS

DATA CHANNEL

CODING AIDS

CENTRAL PROCESSOR FUNCTIONS

POWER FAIL

REAL-TIME CLOCK

CHAPTER V —_ PROCESSOR OPTIONS

4 INTRODUCTION

1 MULTIPLY/DIVIDE

3. MEMORY MANAGEMENT

5 MEMORY ALLOCATION AND PROTECTION

10 SUPERVISOR PROGRAMMING FOR THE NOVA 4

72 FLOATING POINT UNIT

2B INSTRUCTION SET

CHAPTER VI. VIRTUAL CONSOLE (VO)

APPENDIX A _ I/O DEVICE CODES AND DATA GENERAL MNEMONICS

APPENDIX B = OCTAL AND HEXADECIMAL CONVERSION

APPENDIX C ASCII CHARACTER CODES

il

Chapter |

NOVA 4 SYSTEM

INTRODUCTION

The NOVA 4 is a general purpose, four-accumulator,

stored-program computer, with a word length of 16

bits. The maximum amount of main memory is 64

Kbytes without a MAP and 256 Kbytes or 131,072

16-bit words with a MAP.

Memory can be addressed either directly or by using

indirect addresses. A data channel is provided to

enable rapid data transfer between main memory

and peripheral devices.

The standard instruction set contains instructions

that perform fixed point arithmetic and logical

operations between accumulators, transfer of

operands between accumulators and main memory,

transfer of program control, and input/output (I/O)

operations. Options are available that add

instructions to this set. These additional instructions

perform such operations as multiply/divide, floating

point calculations, and memory allocation and

protection.

Efficient Basic Instruction Set

The basic instruction set for the NOVA 4 contains

instructions that perform fixed point arithmetic and

logical operations between accumulators, transfer of

operands between accumulators and main memory,

transfer of program control, and I/O operations. All

instructions are one 16-bit word in length. The

arithmetic and _ logical instructions have the

capability to perform, in one instruction, the

following sequence: perform an operation, shift the

result one bit left or right, test the result of the shift,

and then conditionally skip the next instruction

depending upon the outcome of the test. In addition,

it is possible to perform this entire sequence without

affecting either of the operands. this means that

complicated numerical manipulation and testing can

be performed using a small number of instructions.

014-000617-00

Stack

A Last-In/First-Out (LIFO) or push-down stack is

maintained by the NOVA 4 processor. This feature

provides a convenient method for saving return

information and passing arguments’ between

subroutines. The stack also provides an expandable

area for the temporary storage of variables and

intermediate results.

Floating Point

The floating point feature allows the manipulation of

both single precision (32 bits) and double precision

(64 bits) floating point numbers. Single precision

gives 6-7 significant decimal digits while double

precision gives 15-17 significant decimal digits. The

decimal range of a floating point number is

approximately 5.4x10- to 7.2x10+” in either
precision.

The floating point feature contains two 64-bit

floating point accumulators. Floating point

calculations can take place between these two

accumulators or between one of the accumulators and

operands in main memory.

Memory Allocation and Protection

The optional Memory Allocation and Protection unit

(MAP) translates logical addresses within the user

space to physical memory addresses. The MAP

feature holds two user maps and two data channel

maps at a time. Only one user map can be enabled at

any one time, but both data channel maps are

enabled at the same time.

In addition to translating addresses, the feature also

performs various protection functions. A user is

allowed to access only those blocks of memory

allocated to him. This ensures that a user does not

reach out of his own areas of memory for either

instructions or data. Blocks of memory allocated to a

INTRODUCTION

user may be write-protected so that the user may not

modify them. This allows blocks of memory

containing constants or nonself-modifying

procedures to be shared between users.

The MAP detects and inhibits indirection chains that

go deeper than 16 levels. This protects the system

from becoming disabled by an indirection loop. The

MAP also provides I/O protection which allows all

I/O devices to be declared accessible or inaccessible to

a user.

Memory

Memory for the NOVA 4 is available in 32 Kbyte, 64

Kbyte, 128 Kbyte and 256 Kbyte modules. All

memory is semiconductor.

Auto-Increment/Decrement

If the intermediate address of a _ short class

instruction is in the range 20-27., and the indirect bit

is 1, the contents of the addressed location are

incremented by one. The incremented value is used to

continue the addressing chain.

If the intermediate address of a _ short class

in truction is in the range 30-37,, and the indirect bit

is 1, the contents of the addressed location are

decremented by one. The decremented value is used

to continue the addressing chain.

NOTE: The state of bit 0 before the increment or

decrement determines whether the indirection

chain is continued. For example: Assume an

auto-increment location contains 1777773 (all

bits = 1 including bit 0), and the location is

referenced as part of an indirection chain. After

incrementing, the location contains all zeros.

However, bit 0 was 1 before the increment, so 0

will be the next address in the chain rather than

the effective address.

Power Fail/Auto Restart

The power fail/auto restart feature of the NOVA 4

provides a fail-soft capability in the event of

unexpected power loss. In the event of power failure,

there is a delay of one to two milliseconds before the

processor shuts down. The power fail portion of the

feature senses the imminent loss of power and

interrupts the processor. The interrupt service

routine can then use this delay to store the contents

of the accumulators, the program restart address,

and other information that will be needed to restart

the system.

When power is restored, the action taken by the

auto-restart portion of the feature depends upon the

position of the lock switch on the front panel. If the

switch is not in the lock position, the processor

remains stopped after power is restored. If the switch

is in the lock position and battery backup is

INTRODUCTION

Data General Corporation

operational, then after power is restored, the

processor executes the instruction contained in the

first location of main memory, restarting the

interrupted system.

The battery backup option available with the NOVA

4 operates in conjunction with the power fail/auto

restart feature to provide security for semiconductor

memories in the event of a power failure. If power

fails, the battery backup option will supply power to

the memories for a period of up to one-and-one-half

hours (depending on the number of memory boards)

so that they will not lose their data. If further

security is desired, a larger external battery can be

attached to ensure the integrity of the memories for

extended periods of time.

Real-Time Clock

The real-time clock feature of the NOVA 4 generates

a sequence of pulses that is independent of the timing

of the processor. The clock will interrupt the system

at one of four program-selectable frequencies. The

frequencies are: ac line frequency, 10Hz, 100Hz, and

1000Hz.

Input/Output Bus

The input/output (I/O) bus is that portion of the

computer that carries commands and data between

the central processor and various peripheral devices

connected to it. The bus is made up of a six-line

device selection network, interrupt circuitry,

command circuitry, and sixteen data lines.

Device Addressability

Each I/O device in a NOVA 4 is connected to the

six-line device selection network in such a way that

each device will only respond to commands that

contain its own device code. The fact that the

selection network is made up of six lines gives 2° = 64
unique device codes. Ten of these codes are reserved

for specific functions, but there are still 54 device

codes available for use with I/O devices.

Interrupt Capability

The interrupt circuitry contained in the I/O bus

provides the capability for any I/O device to interrupt

the system when that device requires service. When a

device requests an interrupt, the processor

automatically transfers program control to the main

interrupt service routine. This routine can either poll

all the I/O devices in the system to find out which one

initiated the interrupt, or the routine can use a

special instruction to identify the source of the

interrupt.

The interrupt circuitry of the NOVA 4 also contains

the capability to implement up to sixteen levels of

priority interrupts. This is done with a 16-bit priority

mask. Each level of device priority is associated with

014-000617-00

NOVA 4 SYSTEM

a bit in this mask. In order to suppress interrupts

from any priority level, the corresponding bit in the

mask is set to 1.

Data Channel

Handling data transfers between external devices

and memory under program control requires an

interrupt plus the execution of several instructions

for each word transferred. To allow greater transfer

rates, the I/O bus contains circuitry for a data

channel through which a device, at its own request,

can gain direct access to main memory using a

minimum of processor time. At the maximum

transfer rate, the data channel effectively stops the

processor, but at lower rates, processing continues

while data is being transferred.

Ease of Interfacing

Due to the straightforward logic and general design

of the NOVA 4 I/O bus, customer-provided or

customer-designed I/O devices may be _ easily

interfaced to a NOVA 4. Information on how to

interface to the NOVA 4 may be found in “The

Interface Designer’s Reference Manual” (DGC

015-000031).

Input/Output Devices

A comprehensive array of I/O devices is available

from Data General for the NOVA 4. This wide choice

of devices, ranging from teletypewriters to line

printers to video displays for man-machine

interaction; and from paper tape to magnetic tape to

fixed and moving-head discs for data storage allows a

wide spectrum of possible configurations. Also

available are various multiplexors and

telecommunications adapters, including an IBM

360/370 interface.

Software

A wide variety of software support is available for the

NOVA 4.

Operating systems include the Disc Operating

System (DOS), the Real-Time Operating System

(RTOS), and the Real-Time Disc Operating system

(RDOS).

An assembler is available with all of these operating

systems. In addition, many higher-level languages are

available. These include Fortran IV and V, DG/LTM,
ALGOL, Extended BASIC, and Business BASIC. Note

that not all languages are available in all operating

systems.

I- 3

014-000617-00 INTRODUCTION

Chapter II

INTERNAL STRUCTURE

INTRODUCTION

The basic structure of a NOVA 4 data processing

system consists of a central processing unit (CPU),

some amount of main memory, the I/O bus, the I/O

devices connected to the I/O bus.

MEMORY

CONSOLE

TELETYPEWRITER

LINE

PRINTER

DISPLAY

DG-05588

014-000617-00

Due to the general-purpose design of the NOVA 4,

the type, size, and number of memory modules and

I/O devices have no effect upon the internal logical

structure of the CPU. This chapter deals with the

addressing of information and_ the logical

representation of information within the CPU, and is

unaffected by those portions of the system outside the

CPU.

INFORMATION FORMATS

The basic piece of information within the processor is

the binary digit, or bit. A bit is capable of

representing only two quantities, 0 and 1. However, a

bit cannot represent both these values at the same

time. At any one point in time, a bit can either

represent a 0 or a 1, never both.

The normal unit of information within the CPU is

the word. A word is made up of 16 bits. Because each

bit is capable of representing two quantities, a word

is capable of representing 2!© = 65,536 different
quantities. A word may be broken into two bytes of 8

bits each. A byte is capable of representing 2° = 256
different quantities. I/O devices transfer information

in units of bits, bytes, words or groups of words called

“records” depending upon the device.

Bit Numbering

In order to avoid confusion when talking about the

information contained in bytes and words, the bits

that make up these units of information are

numbered from left to right, with the leftmost

(highorder) bit always numbered bit 0. The

numbering extends to the right and is always carried

out in the decimal number system. The rightmost

ow order) bit in a byte is bit 7. The rightmost bit in

a word is bit 15.

INFORMATION FORMATS

WORD WORD

BYTE | BYTE BYTE BYTE
0,1,;2,;3,;4,5,6,7 0, ',2,3,4,;5,6,7 0,1,2,3,4,5,;6,7 0,1,2,3,4,5,6,7

0123456789 101121314150 1234567 8 9ION I2I13I4I5

Octal Representation

Because talking about the binary data contained in

bytes and words would quickly become awkward and

confusing if each bit were described, the octal

representation of binary information will be used in

this manual. To convert a piece of binary information

to its octal representation, the bits in the quantity

are separated into groups of three bits each, starting

from the right and proceeding to the left. If the

number of bits to be represented is not evenly

divisible into groups of three, the leftmost group will

contain one or two bits. Each group of bits can now

be represented by one of eight different symbols. The

digits 0-7. Each encoded digit is called an octal digit.

Because each group of bits can contain any one of 8

values, this representation is sometimes called base 8

representation.

Another way to represent binary information is the

hexadecimal or hex representaion. In hexadecimal,

the bits in the quantity are separated into groups of

four bits each and each group can be represented by

one of 16 different symbols. The digits 0-9 are used to

represent the quantities 0-9. The letters A-F are used

to represent the quantities 10-15. Because each group

of bits can contain any one of 16 values, this

representation is sometimes called base 16

representation.

Our normal decimal numbering system is sometimes

called base 10 representation. Because it is sometimes

possible to confuse numbers written in hex or octal

with those written in decimal, a subscript denoting

the base will be used in cases where confusion might

occur. Conversion tables for hex to decimal and octal

to decimal are contained in Appendix B of this

manual.

Character Codes

Within the processor, all information is represented

by binary quantities. The CPU does not recognize

certain bit combinations as characters and certain

other bit combinations as numbers. Sooner or later,

however, this information must be _ transferred

outside the computer in some form easily understood

by humans. For this reason, some _ standard

correspondence must be made between certain bit

combinations and printable symbols. The code used

to implement this correspondence in I/O devices

available with the NOVA 4 is called the American

Standard Code for Information Interchange (ASCII).

This code can represent 95 printable symbols plus 33

INFORMATION FORMATS

Data General Corporation

control functions. A complete table of the codes and

their corresponding characters can be found in

Appendix C of this manual.

Information Representation

Even though the CPU does not intrinsically recognize

one information type from another, the different

instructions in the instruction set expect that the

information to be operated on will be in a specific

format. In general, there are three different, basic

information formats. They are integers, floating point

numbers, and logical quantities.

Integers

Integers can be represented as either signed or

unsigned numbers and carried in either single or

multiple precision. Single precision integers are two

bytes long, while multiple precision integers are four

or more bytes long. Unsigned integers use all the

available bits to represent the magnitude of the

number. A single two-byte word can represent any

unsigned number in the inclusive range 0 to 65,535.

Two words taken together as an unsigned, double

precision integer can represent any number in the

inclusive range 0 to 43,294,967,295.

For signed operations, the two’s complement

numbering system is used. In this system, the

leftmost or high-order bit is used as a sign bit. If the

sign bit is 0, the number is positive and the

remainder of the bits in the number represent the

magnitude of the number as described above. If the

sign bit is 1, the number is negative and the

remainder of the bits represents the magnitude of the

number.

To create the negative of a number in the two’s

complement scheme, complement all the bits of the

number including the sign bit. After the

complementing process is finished, add 1 to the

rightmost or low-order bit. If the two’s complement

of a negative number is formed, the result will be the

corresponding positive number.

There is only one representation for zero in two’s

complement arithmetic: it is the number with all bits

zero. Forming the two’s complement of zero will

produce a carry out of the high-order bit and leave

the number with all bits zero. Note that 0 is a positive

number, 1.e., its sign bit is 0.

Because the two’s complement scheme has only one

representation for 0, there is always one more

negative number than there are non-negative

numbers. The most negative number is a number

with a 1 in the sign bit and all other bits 0. The

positive value of this number can not be represented

in the same number of bits as used to represent the

negative number.

014-000617-00

INTERNAL STRUCTURE

A single two-byte word can represent any signed

number in the inclusive range -32,768 to +32,767.

Two words taken together as a signed, double

precision integer can represent any number in the

inclusive range -2,147,483,648 to +2,147,483,647.

It is a property of numbers using the two's

complement scheme that addition and subtraction of

signed numbers are identical to addition and

subtraction of unsigned numbers. The CPU just

treats the sign bit as the most significant magnitude

bit.

Floating Point

The floating point feature of the NOVA 4 allows

operations on signed numbers having a much larger

range than those normally represented as integers. It

would take a 16-word multiple precision integer to

represent the range of a NOVA 4 floating point

number. Since floating point numbers occupy either

two words for single precision or four words for

double precision, and the floating point feature is

much faster than multiple precision integer software

routines, floating point arithmetic is used when

numbers having a large range must be manipulated.

A floating point number is made up of three parts:

the sign, the exponent, and the mantissa. The value

of a floating point number is defined to be:

Single Precision

IS] EXPONENT MANTISSA
| l l 1 | J] l lL j] l l l i |] Jj l l i l j 4 l l l L lL

oO | 3|

Double Precision

>?

IS| EXPONENT MANTISSA
J Ltefj f | jl |] Jf Lt Ls)] 1 Lt »y> |] ff l 1 LJ] L l Lt

O | “ss 63

DG-05589

MANTISSA X 1 BRAISED TO THE TRUE VALUE OF THE EXPONENT FIELD

The number is signed according to the value of the

sign bit. If the sign bit is 0, the number is positive; if

the sign bit is 1, the number is negative.

Floating point numbers are represented internally by

either 32 bits (single precision) or 64 bits (double

precision).

The formats are shown below:

014-000617-00

Bit zero is the sign bit: 0 for positive, 1 for negative.

Bits 1-7 contain the exponent. This is the power to

which 16 must be raised in order to give the correct

value to the number. So that the exponent field may

accommodate a large range, Excess 64 representation

is used. This means that the value in the exponent

field is 64 greater than the true value of the exponent.

If the exponent field is zero, the true value of the

exponent is -64. If the exponent field is 64, the true

value of the exponent is 0. If the exponent field is 127,

the true value of the exponent is 63.

Bits 8-31 for single precision and bits 8-63 for double

precision contain the mantissa. This means that bit 8

of the floating point number is bit 0 of the mantissa.

The mantissa is always a positive fraction greater

than or equal to 1/16 and less than 1. The binary point

can be thought of as being just to the left of bit 8.

Continuing this concept then, bit 8 represents the

value 1/2, bit 9 represents the value 1/4, bit 10

represents the value 1/8, and so on.

In order to keep the mantissa in the range of 1/16 to

1, the results of floating point arithmetic are

normalized. Normalization is the process whereby the

mantissa is shifted left one hex digit at a time until

the high-order four bits represent a nonzero quantity.

For every hex digit shifter, the exponent is decreased

by one. Since the mantissa is shifted four bits at a

time, it is possible for the high-order three bits of a

normalized mantissa to be zero.

Zero is represented by a floating point number with

all bits zero. This is true for both single and double

precision. This is known as true zero. When a

calculation results in a zero mantissa, the floating

point processor automatically converts the number to

INFORMATION FORMATS

a true zero. Note that true zero is positive. It is not

possible to obtain negative zero as the result of a

calculation. .

Logical Quanities

Logical operations in the NOVA 4 can be performed

upon individual bits, bytes, or words. When using the

logical operations, quantities operated on are treated

as unstructured binary quantities. The number of

bits, bytes, or words operated upon depends on the

particular instruction.

INFORMATION ADDRESSING

The information formats described in the preceding

section give a way of representing different types of

data in main memory. Operations cannot be

performed upon these data types, however, unless

they can be addressed by the CPU. The address of a

piece of information is its location in main memory.

Once the CPU knows the address of a piece of

information, the desired operation can be performed.

Word Addressing

Main memory is partitioned into 2-byte words, and

each word has an address. The first word in memory

has the address 0. The next word has the address 1,

the next word has the address 2, and so on. Word

addressing is used to address integers, floating point

numbers, and logical quantities that are formatted in

units of words.

INFORMATION ADDRESSING

Data General Corporation

ADDRESS WORD
CO VO ‘ ee _)

. : 7
Poe ee eee ee ee ee ee eee 4

‘ FS |
bee ee eee eee ee ee ee -|

I 7

e '

400g | BYTE | BYTE
+ ! 1 — 1 j { 1 { } a { j j

O ! 23 45 6 7 8 9 1 lt 12 13 14 15

401, | BYTE | BYTE
+ 1 —_t14 i pipet op 4 i 4

O !234 5 6 7 8 9 10 It l2 13 14 15

4028 L l BYTE L ae | BYTE L _|
O 12345 6 7 8 9 10 ti l2 13 14 15

DG 00538

Effective Address Calculation

There are six instructions in the NOVA 4 instruction

set that directly reference memory using word

addressing. These instructions use eleven bits in the

instruction to define the address of the desired word.

The resultant address is called the effective address

or HE, and the calculation is called the effective

address calculation.

The eleven bits in an instruction that are used in the

effective address calculation, are bits 5-15. Their

format is shown below.

| | @| INDEX | DISPLACEMENT
i L 1 i 1 i I J I l 1 1

of 1' 2! 37 4! 5! 6] 7! g! 9] 10! 11!' 12] 13! 14! 15

Bit 5 is called the indirect bit, bits 6 and 7 are called

the index bits, and bits 8-15 are called the

displacement bits.

If the index bits are 00, the displacement is used as an

unsigned 8-bit number to address one of the first 2564

words in memory. This is called page zero addressing

and this first block of 256 words is known as page

Zero.

If the index bits are 01, the displacement is treated as

a signed, two’s complement number, which is added

to the address of the instruction to produce a memory

address. This is called relative addressing. By relative

addressing, any instruction which uses the effective

address calculation can directly address any word in

014-000617-00

INTERNAL STRUCTURE

storage whose address is in the range -128;) to +127149

from the instruction.

If the index bits are 10, accumulator 2 is used as an

index register. If the index bits are 11, accumulator 3

is used as an index register. In this form of word

addressing, known as index register addressing, the

displacement is treated as a_ signed, two’s

complement number which is added to the contents

of the selected index register to produce a memory

address. In index register addressing, the addition of

the displacement to the contents of index register

does not change the value contained in the index

register.

The result of the addition performed in relative

addressing and index register addressing is clipped to

15 bits. In other words, the high order bit of the

result is set to 0. For example, if accumulator 2 is to

be used as an index register and contains the number

0777742, and the displacement bits contain the

number 012., then the result of the addition would be

O00006g, not 100006g.

After one of the three types of addresses has been

computed from the index and displacement bits, the

indirect bit is tested. If this bit is zero, the address

already computed is taken as the effective address. If

the indirect bit is one, the word addressed by the

result of the index and displacement bits is assumed

to contain an address. In this word bit O is the

indirect bit and bits 1-15 contain an address. If bit 0

of the referenced word is 1, another level of

indirection is indicated, and bits 1-15 contain the

address of the next word in the indirection chain.

The processor will continue to follow this chain of

indirect addresses until a word is retrieved with bit 0

set to 0. Bits 1-15 of this word are taken to be the

effective address.

Auto-Increment/Decrement

If an indirect address points to a location in the range

20-27, (auto-increment locations); that word is

fetched, the contents of the word are incremented by

one and written back into the location. This updated

value is then used to continue the addressing chain. If

an indirect address points to a location in the range

30-37, (auto-decrement location), that word is

fetched, the contents of the word are decremented by

one and written back into the location. The updated

value is then used to continue the addressing chain.

NOTE: When referencing auto-increment and

auto-decrement locations, the state of bit 0

before the increment or decrement is the

condition upon which the continuation of the

indirection chain is based. For example: if an

auto-increment location contains 177777, and

the location is referenced as part of an

indirection chain, location O will be the next

address in the chain.

014-000617-00

DISPLACEMENT BITS

GO TO INTERMEDIATE

ADDRESS AS

UNSIGNED NUMBER

YESiNDEX

BITS=00

NO

| DISPLACEMENT BITS
YE

oN
<< ,INOEX S| AS SIGNED NUMBER

. ARE ADDED TO

INSTRUCTION ADDRESS

|

DISPLACEMENT BITS '
LOW ORDER !5

AS SIGNED NUMBER BITS GO TO

v

ARE ADDED TO INTERMEDIATE
ADORESS

i

INDEX

BITS =i0?
CONTENTS OF

ACCUMULATOR 2
i

DISPLACEMENT BITS
oN

pee SX yes. | AS SIGNED NUMBER

< gitenny ES are aopeo To = |
: CONTENTS OF

ACCUMULATOR 3

INDIRECT

BIT=0?

4
YES FETCH WORD

-—® AT INTERMEDIATE

ADDRESS

ADD | TO FETCHED

WORD AND REPLACE.

USE NEW VALUE

TO CONTINUE

| SUBTRACT | FROM |
WORD

FETCHED WORD

FETCHED FROM NES os AND REPLACE. USE
30-37. NEW VALUE TO
Sk CONTINUE

WORD

FETCHED FROMTM YES

LOCATION

N20 -27

BITS I-15 GO TO

INTERMEDIATE

ADDRESS

INTERMEDIATE

ADDRESS {5S

EFFECTIVE

ADDRESS

DG 00539

An effective address is always 15 bits in length. This

means that an instruction which uses the effective

address calculation can address any one of 32,76816

words. This gives rise to the concept of an address

space, which, in the NOVA 4, contains 64K bytes or

32,768 2-byte words.

Byte Addressing

While bytes in main memory cannot be directly

addressed by the CPU, there is a convenient

programming method for manipulating individual

bytes of information. This technique involves the use

of a byte pointer. A byte pointer is a word in which

INFORMATION ADDRESSING

bits 0-14 are the address in memory of a 2-byte word.

Bit 15 is the byte indicator. If the byte indicator is 0,

the byte pointer references the high-order byte (bits

0-7) of the word in memory; if it is 1, the pointer

references the low order byte (bits 8-15).

100. =10l 102 103 104 105 106 #107 Ho Utd

word |WoRD | WORD| WORD | WORD WORD WORD | WORD | WORD | woRD |

BITS 0-14 A

ADDRESS WORD

. ee

BIT 15 a

SELECTS BYTE TE
BYTE INDICATOR

0 0 0 53

BYTEIO 0 0f0 0 01001100 0l1 0 1/1
POINTERL | | LL} 11 Lo} an

0G -00930

Addressing With Address Translation

Hardware

The concept of an address space was introduced in

the discussion of effective address calculation. The

program or logical address space is that amount of

memory that can be referenced by instructions in a

program. The maximum logical address space

available to a program running on a NOVA 4 is 64K

bytes or 32K words.

The physical address space is that amount of physical

memory that can be referenced by the CPU. If the

MAP is not installed, the maximum physical address

space available to the CPU is 64K bytes or 32K words,

and the logical address space is equal to the physical

space. For a NOVA 4 with the MAP installed, the

maximum physical address space is 256K bytes and

the logical address space is some subset of the

physical space.

Installation of a MAP has no effect on logical

addressing. Addressing calculations remain the same.

The MAP translates the 15-bit address from the CPU

into a 17-bit address and uses this new address to

perform the memory reference.

PROGRAM EXECUTION

Data General Corporation

PROGRAM EXECUTION

Programs for the NOVA 4 consist of sequences of

instructions that reside in main memory. The order

in which these instructions are executed depends on

a 15-bit counter called the program counter. The

program counter always contains the address of the

instruction currently being executed. After the

completion of each instruction, the program counter

is incremented by one and the next instruction is

fetched from this address. This is called sequential

operation, and the instruction fetched from the

location addressed by the incremented program

counter is called the next sequential instruction.

Program Flow Alteration

Sequential operation can be explicitly altered by the

programmer in two ways: jump instructions alter

program flow by inserting a new value into the

program counter: conditional skip instructions can

alter program flow by incrementing the program

counter an extra time if a specified test condition is

true. In the case of a conditional skip instruction,

when the test condition is true, the next sequential

instruction is not executed because it is not

addressed. After either a jump instruction or a

successful conditional skip instruction, sequential

operation continues with the instruction addressed

by the updated value of the program counter.

[SEQUENTIAL
PROGRAM

' FLOW

INCREASING

ADDRESSES

JUMP

PROGRAM

FLOW

MOZO-ANCDAW!S — A...

SKIP

PROGRAM

FLOW

DG 00543

Because the program counter is 15 bits in length, it

can address 32,768 separate memory locations. The

next memory location after 77777. 1s location 0, and

the location before 0 is location 77777,. If the

program counter rolls from 77777, to 0 in the course

of sequential operation, no indication is given and

processing continues with the location addressed by

the updated value of the program counter.

-

014-000617-00

INTERNAL STRUCTURE

Program Flow Interruption

The normal flow of a program may be interrupted by

external or exceptional conditions such as [TO

interrupts or various kinds of faults. In this case, the

address of the next sequential instruction in the

interrupted program is saved by the CPU so that the

I/O handler, or the various fault handlers, can return

control to the program at the correct point. Once the

address of the next sequential instruction in the

program has been placed in the program counter by

the fault handler, sequential operation of the

program resumes.

SEQUENTIAL

PROGRAM

FLOW

ne

1/0
INTERRUPT

INCREASING
ADDRESSES

A.

\

/

<
\OZO-ANCDAV]S— RETURN

CONTINUED
PROGRAM

FLOW

;

<

‘

,

|

|

|
DG 00544

014-000617-00

II- 7

PROGRAM EXECUTION

Chapter III

INSTRUCTIONS SETS

INTRODUCTION

The instruction set implemented on the NOVA 4 is

divided into 5 sets. There are instruction sets

available for fixed point arithmetic, logical

operations, program flow alteration, floating point

arithmetic, and I/O operations. In _ addition,

instructions are available for programming the stack,

MAP, the Real Time Clock, power fail/auto-restart,

and certain CPU functions.

INSTRUCTION FORMATS

There are four different formats for instructions on

the NOVA 4. These formats allow an extensive

instruction set while still keeping the instruction

length to one word. The four formats and their

general layouts are described below.

| oO. 0 0 | OP'N

otartatat a
@| INDEX | DISPLACEMENT
5' 61 7! Bt atiotartistist 14 t 15

In the No Accumulator-Effective Address format

instructions, bits 0-2 are 000, and bits 3-4 contain the

operation code. The effective address is computed

from bits 5-15 as described under Effective Address

Calculation.

} o- 0 0 | AC | @| INDEX | DISPLACEMENT
otatat start st ety} et etiotirt iat 13+ 147 16

In the One Accumulator-Effective Address format

instructions, bit 0 is 0, and bits 1-2 contain the

operation code. Bits 3-4 specify the accumulator for

the operation. The effective address is computed from

bits 5-15 as described under Effective Address

Calculation.

AC OP CODE F DEVICE CODE || 0 1
1 1 i I I i 1

8!' 9] 10! 11!' 12113! 14! 15

1

ol 1! 2 statet ety

In the Input/Output format instructions, bits 0-2 are

014-000617-00

r-—— ORGANIZATION OF ARITHMETIC UNIT —4

001, bits 3-4 specify the accumulator for the

operation, bits 5-7 contain the operation code, bits 8-9

specify the control signal to be used, and bits 10-15

contain the device code of the referenced device.

| 1 Acs | ACD | OP CODE | SH C | # SKIP |
0 TOT aTaT eT et aT et 9 10! 11' 12113! 14! 15

In the Arithmetic/Logical Class instructions, bit 0 is

1, bits 1 and 2 specify the source accumulator, bits 3

and 4 specify the destination accumulator, bits 0-7

contain the operation code, bits 8 and 9 specify the

action of the shifter, bits 10 and 11 specify the value

to which the carry bit will be initialized, bit 12

specifies whether or not the result will be loaded into

the destination accumulator, and bits 13-15 specify

the skip test.

ALC Instruction Execution

The ALC instructions use an Arithmetic Logic Unit

(ALU) to process data. The logical organization of the

ALU is illustrated below.

| \7 BITS ¢

FUNCTIONGENERATOR SHIFTER |
| BIT ACS ACD 17 BITS

16 BITS 16 BITS

CARRY

INITIALIZER | SKIP SENSOR |

ACCUMULATORS

iBIT ACDI6 BITS Pl BITS
LOAD/NO LOAD

06-00927

III- 1

INSTRUCTION FORMATS

When an ALC instruction begins execution, it loads

the contents of the carry bit and the contents of the

accumulator(s) to be processed into the ALU. There

are five distinct stages of ALU operation. We will

discuss these stages separately.

Carry

The ALU begins its manipulation of the data by

determining a new value for the carry bit. This new

value is based upon three things: the old value of the

carry, bits 10-11 of the ALC instruction, and the ALC

instruction being executed. The ALU first determines

the effect of the instruction bits 10-11 on the old value

of the carry. The table below shows each of the

mnemonics that can be appended to the instruction

mnemonic, the value of bits 10-11 for each choice, and

the action each one takes.

SYMBOL VALUE |OPERATION

[c] omitted 00 Leave Carry bit unchanged

[c]=Z 01 Initialize Carry bit to O

[c]=O 10 Initialize Carry bit to 1

[c]=C 11 Complement the Carry bit

Function

The ALU next evaluates the effect of the specific

function (bits 5-7) upon the data. For the instructions

Move, AND, and Complement the ALU performs the

function on the data word(s) and saves the result.

The value of the carry is as it was calculated above.

For the instructions Add, Add Complement, Subtract,

Negate, and Increment the result of the function’s

action upon the data word(s) may be larger than 2!° -
1. A carry out results. In this situation, the ALU

saves the low-order 16 bits of the function result, but

it complements the value of the carry calculated

above.

NOTE: At this stage of operation, the ALU does

not load either the saved value of the function

result into the destination accumulator, or the

saved value of the carry into the carry bit.

Shift Operations

Next the ALU performs any specified shift operation

on the 17 bits output from the function generator (16

bits of data plus the calculated value of the carry

bit). Depending on which shift operation is specified

in the instruction, the function generator output can

be rotated left or right one bit, or have its bytes

swapped. The first table below shows the different

shift operations that can be performed, the value of

bits 8-9 for each choice, and the action each choice

takes. The second table shows how each shift

operation works.

INSTRUCTION FORMATS

Data General Corporation

SYMBOL VALUE | OPERATION

[shi omitted 00 Do not shift the result

of the ALC operation

[shJ=. 01 Rotate left the 17-bit

combination of Carry bit

and ALC operation result

[sh]=R 10 Rotate right the 17-bit

combination of Carry bit

and ALC operation result

[sh]=s 11 Swap the two 8-bit halves

of the ALC operation result

without affecting Carry bit

CODED
CHARACTER SHIFTER OPERATION

L Left rotate one place. Bit O is rotated into the

carry position, the carry bit into bit 15.

Lies

R Right rotate one place. Bit 15 is rotated into the

carry position, the carry bit into bit O.

sie

S Swap the halves of the 16-bit result. The carry

bit is not affected.

DG 04423

Skip Tests

The ALU can test the result of the shift operation for

one of a variety of conditions, and skip or not skip the

next instruction depending upon the result of the

test. The table below shows the tests that can be

performed, the value of bits 13-15 for each choice, and

the action each choice takes.

014-000617-00

INSTRUCTIONS SETS

SYMBOL VALUE |OPERATION

[skip] omitted | OOO No skip

[skip]=SKP 001 Skip unconditionally

[skip]=SZC 010 Skip if Carry bit is zero

[skip]=SNC 011 Skip if Carry bit is nonzero

[skip]=SZR 100 Skip if ALC result is zero

[skip]=SNR 101 Skip if ALC result is nonzero

[skip]=SEZ 110 Skip if either ALC result

or Carry bit is zero

[skip]=SBN 111 Skip if both ALC result

and Carry bit is nonzero

Load/No-Load

If the no-load bit (bit 12) is 0, the ALU loads the

result of the shift operation into the destination

accumulator, and loads the new value of the carry

into the carry bit. If the no-load bit is 1, then the

ALU does not load the result of the shift operation

into the destination accumulator, and does not load

the new value of the carry into the carry bit, but all

other operations, such as skip tests, take place. This

no-load option is particularly convenient to use when

you want to test for some condition without

destroying the contents of the _ destination

accumulator. The table below shows how to code the

load/no-load operation.

SYMBOL VALUE |OPERATION

omitted 0 Load the result of the

shift operation into ACD

1 Do not load the ALC

operation result into ACD;

restore Carry bit to value

it had before shifting

NOTE: These instructions must not have both the

No-Load and the Never-Skip options specified at

the same time. These bit combinations are used

by other instructions in the instruction set.

As an example of how to use these tables, assume

that accumulator 3 contains a_ signed, two’s

complement number. Now consider the problem of

determining whether this number is positive or

negative. One way to determine this would be to

place the number zero in another accumulator and

use the Subtract instruction, but this requires an

extra instruction and also destroys the previous

contents of the other accumulator. Another way to

determine the sign of the number in accumulator 3 is

to use the Move instruction and power of the two

accumulator-multiple operation format. With the

Move instruction, the contents of AC3 can be placed

in the shifter and shifted one bit to the left. This

places the sign bit in the carry bit. The carry bit can

then be tested for zero. In order to preserve the

number in AC3, the instruction can prevent the

014-000617-00

output of the shifter from being loaded back into AC3.

The general form of the Move instruction is:

MOV [cl] [shI[#] acs,acdl,skip!]

The general bit pattern of the MOVE instruction is:

1 acs | ACD | 0 1 | SH C # SKIP
4 i 1 i ae 1 1 1

o11)2!' 31 4' 5! 6] 7! 8! 9] 10! 11' 12113! 14! 15

To shift the number in AC3 one bit left without

destroying the number, and skip the next sequential

instruction if the bit shifted into the carry bit is zero,

the following instruction could be coded:

MOVL# 3,3,SZC

This instruction assembles into the following bit

pattern:

INSTRUCTION FORMATS

CODING AIDS

We use certain conventions and _ abbreviations

throughout this chapter to help you properly code

each instruction for Data General’s assembler.

Briefly, they are these:

(1 Square brackets indicate that the enclosed

symbol (e.g., [skip]) is an optional operand or

mnemonic. Code it only if you want to specify

the option.

BOLD Code operands or mnemonics printed in

boldface exactly as shown. For example, code

the mnemonic for the Move instruction: MOV.

italic For each operand or mnemonic in italics,

replace the item with a number or symbol that

provides the assembler value you need for that

item (e.g., the proper accumulator number, an

address, etc.).

We use the following abbreviations throughout this

chapter:

ABBR MEANING

AC Accumulator

ACS Source accumulator

ACD Destination accumulator

FPAC Floating point accumulator

In the instructions that use an effective address, the

following coding conventions are used:

The indirect bit (bit 5) is set to 1 by coding the

symbol @ anywhere in the effective address

operand string.

The index bits are set by coding a comma followed

by one of the digits 0-3 as the last operand of the

operand string. If no index is coded, the bits are set

to 00. The character period (.) can be used to set

the index bits to 01. Period can be read to mean

address of the current instructions. When the

period is used, it is followed by either a plus or a

minus sign followed by the displacement e.g., .+7,

or .-2.

The displacement is coded as a signed number in the

current assembler radix. This radix is the numbering

system in which the programmer supplies numbers

to the assembler. The default radix is Base 8 or octal.

The assembler radix can be changed by using the

RADIX statement.

The assembler available with the NOVA 4 allows the

programmer to place labels on instructions or

locations in memory. When the assembler comes upon

a label in the operand string of an effective address

instruction, it automatically sets the index and

displacement bits to the correct values.

LDA

Data General Corporation

FIXED POINT ARITHMETIC

The fixed point instruction set performs binary

arithmetic on operands in accumulators. The

operands are 16 bits in length and can be either

signed or unsigned. The instruction set provides for

loading, storing, adding, and subtracting.

Load Accumulator

LDA ac, [@ Idisplacementl,index]

| 0 Oo 1 | Ac |e |INDEX | DISPLACEMENT
I 1 L 1 4 4 i

ol1' 2' 37 4' 565' 61 7! 8! 9] 10! 11! 12713! 147 15

Copies a word from memory to an accumulator.

Places the word addressed by the effective address, E,

in the specified accumulator. The previous contents of

the location addressed by EF remain unchanged.

014-000617-00

INSTRUCTIONS SETS

Store Accumulator

STA ac, [@ Jdisplacementl, index]

| 0 1 0 | AC | @| INDEX | ___ DISPLACEMENT
it i i i 1 1 i i i

ol 1! 2!' 3] 4! 5? 6] 7! 8! 9] 10! 11!' 12] 13! 14! 15

Stores the contents of an accumulator into a memory

location.

Places the contents of the specified accumulator in

the word addressed by the effective address, Ek. The

previous contents of the location addressed by E are

lost. The contents of the specified accumulator

remain unchanged.

Add

ADD [cllshil#] acs,acdl,skip!

| 1 acs | aco | 1 1 O| SH c | # skip |

0 TTT atm st et?! et 9 ot a1 12 131 141 15

Performs unsigned integer addition and complements

the carry bit if appropriate.

Initializes the carry bit to the specified value, adds

the unsigned, 16-bit number in ACS to the unsigned,

16-bit number in ACD, and places the result in the

shifter. If the addition produces a carry of 1 out of the

high-order bit, the carry bit is complemented. The

instruction then performs the _ specified shift

operation and places the result of the shift in ACD if

the no-load bit is 0. If the skip condition is true, the

next sequential word is skipped.

NOTE: If the sum of the two numbers being added

is greater than 65,535, the instruction

complements the Carry bit.

014-000617-00

Subtract

SUB [cl] [sh]l#] acs,acdl,skip]

} 1] acs | acd} 1 0 1] SH c | #{ SKIP
ola! 2! 37 4! 5!’ 6f 7! 8! gf 10! 11! 12113!) 14! 15

Performs unsigned integer subtraction and

complements the carry bit if appropriate.

Initializes the carry bit to its specified value. The

instruction subtracts the unsigned, 16-bit number in

ACS from the unsigned, 16-bit number in ACD by

taking the two’s complement of the number in ACS

and adding it to the number in ACD. The instruction

places the result of the addition in the shifter. If the

operation produces a carry of 1 out of the high-order

bit, the instruction complements the carry bit. The

instruction performs the specified shift operation and

places the result of the shift in ACD if the no-load bit

is 0. If the skip condition is true, the instruction skips

the next sequential word.

NOTE: If the number in ACS is less than or equal

to the number in ACD, tthe _ instruction

complements the carry bit.

Negate

NEG [cl [sh]l#] acs,acdl,skip]

| 1 ACS | ACD | 0 Oo 1] SH C | # SKIP
oj 1! 2!' 3] 4! 5! 6] 7% 8! 9] 10! 11' 12] 13! 14! 15

Forms the two’s complement of the contents of an

accumulator.

Initializes the carry bit to the specified value. Places

the two’s complement of the unsigned, 16-bit number

in ACS in the shifter. If the negate operation

produces a carry of 1 out of the high-order bit, the

instruction complements the carry bit. Performs the

specified shift operation and places the result in ACD

if the no-load bit is 0. If the skip condition is true, the

instruction skips the next sequential word.

NOTE: If ACS contains 0, the instruction

complements the carry bit.

IIT- 5

NEG

Add Complement

ADC [cl lsh [#1] acs,acdl,skip]

o
Adds an unsigned integer to the logical complement

of another unsigned integer.

C #Acs | acD | 1 0 0 | SH

io} a1) 12
SKIP |

i 1 i 1 me

1' 2! 3] 4' §!' 6] 7! gp! 9 13! 14! 15

Initializes the carry bit to the specified value, adds

the logical complement of the unsigned, 16-bit

number in ACS to the unsigned, 16-bit number in

ACD, and places the result in the shifter. If the

addition produces a carry of 1 out of the high-order

bit, the carry bit is complemented. The instruction

then performs the specified shift operation, and loads

the result of the shift into ACD if the no-load bit is 0.

If the skip condition is true, the next sequential word

is skipped.

NOTE: If the number in ACS is less than the

number in ACD, the instruction complements the

Carry bit.

Move

MOV [cll[shI/[#] acs,acdl,skip]

1 ACS | ACD 0 1 0] SH | # SKIP
of1' 2!' 31 4! 5! 6] 7! 8! gf] 10! 117 127 13! 147 15

Moves the contents of an accumulator through the

Arithmetic Logic Unit (ALU).

Initializes the carry bit to the specified value. Places

the contents of ACS in the shifter. Performs the

specified shift operation and loads the result of the

shift into ACD if the no-load bit is 0. If the skip

condition is true, the instruction skips the next

sequential word.

INC

III- 6

Data General Corporation

Increment

INC [cllshI[#] acs,acdl,skip]

7
SKIPAcs | aAcD | 0 1 1 | SH aCc | #

1 i , CUS i

1' 2!' 3/ 4% 5' 6[7! g! 9
i

10! 111 12

Increments the contents of an accumulator.

Initializes the carry bit to the specified value.

Increments the unsigned, 16-bit number in ACS by

one and places the result in the shifter. If the

incrementation produces a carry of 1 out of the high

order bit, the instruction complements the carry bit.

Performs the specified shift operation, and loads the

result of the shift into ACD if the no-load bit is 0. If

the skip condition is true, the next sequential word is

skipped.

NOTE: If the number in ACS is 177777, the

instruction complements the carry bit.

014-000617-00

INSTRUCTIONS SETS

LOGICAL OPERATIONS

The logical instruction set performs logical

operations on operands in accumulators. The

operands are i6 bits long and are treated as

unstructured binary quantities. The logical

operations included in this set are: And, and

Complement.

Complement

COMIc] [sh] [#] acs,acdl,skip]

| 1 acs | acD | 0 0 Of SH C # SKIP |
0 1’ 2!' 3) 4!' 5!' 6[7! gt 10! 11/12] 13! 14! 15

Forms the logical complement of the contents of an

accumulator.

Initializes the carry bit to the specified value, forms

the logical complement of the number in ACS, and

performs the specified shift operation. The

instruction then places the result in ACD if the

no-load bit is 0. If the skip condition is true, the next

sequential word is skipped.

014-000617-00

AND

AND [cll[sh]l[#] acs,acdl,skip]

| 1 ACS ACD | 1 1 1 | SH Cc | # SKIP
i i] Jj L 1 i a

o;1' 2' 3] 4! 5! 6] 7! 8! 9] 10! 11' 121 13! 14! 15

Forms the logical AND of the contents of two

accumulators.

Initializes the carry bit to the specified value and

places the logical AND of ACS and ACD in the

shifter. Each bit placed in the shifter is 1 only if the

corresponding bit in both ACS and ACD is one;

otherwise the resulting bit is 0. The instruction then

performs the specified shift operation and places the

result in ACD if the no-load bit is 0. If the skip

condition is true, the next sequential word is skipped.

III- 7

AND

STACK MANIPULATION

An important feature of the NOVA 4 is the stack

manipulation facility. A Last-In/First-Out (LIFO) or

Push-Down stack is maintained by the processor. The

stack facility provides an expandable area of

temporary storage for variables, data, return

addresses, subroutine arguments, etc. An important

byproduct of the stack facility is that storage

locations are reserved only when needed. When a

procedure is finished with its portion of the stack,

those memory locations are reclaimed and are

available for use by some other procedure.

The operation of the stack depends upon the contents

of two hardware registers. The registers and their

contents are described below.

Stack Pointer

The stack pointer is the address of the top of the

stack and is affected by operations that either push

objects onto or pop objects off the stack. A push

operation increments the stack pointer by i and then

places the pushed object in the word addressed by the

new value of the stack pointer. A pop operation takes

the word addressed by the current value of the stack

pointer and places it in some new location and then

decrements the stack pointer by 1.

STACK POINTER STACK POINTER
BEFORE PUSH AFTER POP

STACK POINTER POPPED STACK POINTER

AFTER PUSH BEFORE POP

DG 00561

Frame Pointer

The frame pointer is used to reference an area in the

user stack called a frame. A frame is that portion of

the stack which is reserved for use by a certain

procedure. The frame pointer usually points to the

first available word minus i in the current frame.

The frame pointer is also used by the Return

STACK MANIPULATION

Data General Corporation

instruction to reset the user stack pointer.

Return Block

A return block is defined as a block of five words that

is pushed onto the stack in order to allow convenient

return to the calling program. The format of the

return block, therefore, is determined by how it is

used in the return sequence. The format of the return

block is as follows:

WORD POPPED DESTINATION

1 Bit O placed in the

carry bit.

Bits 1-15 placed in

the program counter.

2 AC3

3 AC2

4 AC1

5 ACO

In the stack, the return block looks like this:

STACK POINTER

AFTER RETURN Sth WORD

POPPED

AC2

AC3

PROGRAM Ist WORD
POPPED

STACK POINTER

BEFORE RETURN
CA

DG 00566

Stack Frames

In order to implement re-entrant subroutines, a new

area of temporary storage must be available for each

execution of a called subroutine. The easiest way to

accomplish this is for the subroutine to use the stack

for temporary storage. A stack frame is defined as

that portion of the stack which is available to the

called routine. In general, the stack frame belonging

to a subroutine begins with the first word in the

stack after the return block pushed by the called

routine and contains all words in the stack up to, and

including, the return calls. Variables and arguments

can be transmitted from the calling routine to the

called routine by placing them in prearranged

014-000617-00

INSTRUCTIONS SETS

positions in the stack frame of the calling routine.

Because the Save instruction sets the frame pointer

to the last word in the return block, these variables

and arguments can be referenced by the called

program as a negative displacement from the frame

pointer. The called routine should ensure that

reference to the stack frome of the calling routine is

made only with the permission of the calling routine.

Stack Protection

During every instruction that pushes data onto the

stack, a check is made for stack overflow. If the

instruction places data in a word whose address is an

integral multiple of 25610, a stack overflow is

indicated. If a stack overflow is indicated, the

instruction is completed, an internal stack overflow

flag is set to 1, and, if the Interrupt On flag is 1, a

stack fault is performed. If the Interrupt On flag is 0,

the stack overflow flag remains set to 1, and as soon

as the interrupt system is enabled, the stack fault is

performed.

When a stack fault is performed: if a program map is

enabled, it is inhibited; the Interrupt On flag is set to

0; the stack overflow play is set to 0; the updated

program counter is stored in physical location 0; and

the processor executes a jump indirect to physical

location 3.

Initialization of the Stack Control Registers

Before the first operation on the stack can be

performed, the stack control registers must be

initialized. The rules for initialization are as follows:

Stack Pointer

The stack pointer must be initialized to the beginning

address of the stack area minus one.

Frame Pointer

If the main user program is going to use the frame

pointer, it should be initialized to the same value as

the stack pointer. Otherwise, the frame pointer can

be initialized in a subroutine by the Save instruction.

014-000617-00

III- 9

STACK MANIPULATION

INSTRUCTIONS

The stack feature of the NOVA 4 computer is

programmed with eight I/O instructions which use

the device code 01. Although the instructions are in

the standard I/O format, the operation of these

instructions is in no way similar to I/O instructions.

Push Accumulator

PSHA ac

jo 1 1] ac [oO 1°10 0 00 0 0 0 1{
oj 1'2!' 31 4! 5! 6] 7! 8! 9 | 10' 11!' 12] 13! 14! 15

Pushes the contents of the specified accumulator onto

the stack, and increments the stack pointer by one.

PSHA

Pop Accumulator

POPA ac

fo 1 1f ac fo 1°41 100000 0 1]
ofl1'2!' 37 4!' 5§' 6] 7! 8g! gf 10! 11' 12113! 14! 15

Pops 1 word off the stack, places it in the indicated

accumulator, and decrements the stack pointer by

one.

Save

SAV

jo 1 1°00 101.0 000000 1]
of1'2!' 3/4! 5! 6[7! 8! 9 f 10! 11!) 12113! 14! 15

Pushes a return block onto the stack. After the fifth

word of the return block is pushed, the value of the

stack pointer is placed in the frame pointer and in

AC3. The format of the five words pushed is as

follows:

WORD PUSHED CONTENTS

ACO

AC1

AC2

Frame pointer before the save

Bit O = carry bit

Bits 1-15 = bits 1-15 of AC3

ahWDND —

Data General Corporation

Move To Stack Pointer

MTSP ac

}o 1 1, ac | oO 1 000 0 0 |
i 1 i 1 1 I

of 1' 2! 3] 4! 5! 6]

0 0 O
I I J 1 i

7!' g! gf 10! 111 12713! 14° 15

Places bits 1-15 of the specified accumulator in the

stack pointer. The contents of the _ specified

accumulator remain unchanged.

Move To Frame Pointer

MTFP ac

| ac [0 0 0 0 0 0 0 00 0 1]

"34! 5' 6f 7! 8! 91] 10! 11! 12] 13! 14! 15

Places bits 1-15 of the specified accumulator in the

frame pointer. The contents of the _ specified

accumulator remain unchanged.

III- 10

MTFP 014-000617-00

INSTRUCTIONS SETS

Move From Stack Pointer

MFSP ac

}o 1 1f/ ac [o 1.0 1 0,00 0,0 0 1]
i 1 i 1 i J i iI i i i i 1

ol1!' 2!' 3] 4! §! 6] 7! 8! gf 10! 11! 12] 13!) 14! 15

Places the contents of the stack pointer in bits 1-15 of

the specified accumulator. Sets bit O of the

accumulator to 0. The contents of the stack pointer

remain unchanged.

Move From Frame Pointer

MFFP ac

jo 1 1] ac }o0 0 0 100000 0 1]
of1!' 2!' 3] 4!' 5! 6] 7! g8! gf] 10! 11! 121 13! 14! 15

Places the contents of the frame pointer in bits 1-15 of

the specified accumulator. Sets bit 0 of the

accumulator to 0. The contents of the specified

accumulator remain unchanged.

PROGRAM FLOW ALTERATION

As stated previously, the normal method of program

execution is sequential. That is, the processor will

continue to retrieve instructions from sequentially

addressed locations in memory until directed to do

otherwise. Instructions are provided in_ the

instruction set that alter this sequential flow.

Program flow alteration is accomplished by placing a

new value in the program counter. Sequential

operations will then continue with the instruction

addressed by this new value. Instructions are

provided that change the value of the program

counter, change the value of the program counter and

save a return address, or modify a memory location

by incrementing or decrementing and skip the next

sequential instruction if the result is zero.

Jump

JMP

| 0 0 0 0 0 | @| INDEX | DISPLACEMENT
ao i 1 i i i i J i 1 1

o;}1'2!' 3) 4' 5!' 6/7! 8! 9f 10! 11' 12] 13!) 14! 15

Computes the effective address, E, and places it in the

program counter. Sequential operation continues

with the word addressed by the updated value of the

program counter.

III- 11

014-000617-00 JMP

Jump To Subroutine

JSR [@]displacementl, index]

| o 000 1 | @| INDEX | ___ DISPLACEMENT
ot iT 21 3Tt 4' 5' 6/7! gt atiotirti2t 13+ 147 15

Increments and stores the value of the program

counter in AC3, and then places a new address in the

program counter.

Computes the effective address, E; then places the

address of the next sequential instruction in AC3.

Places E in the program counter. Sequential

operation continues with the word addressed by the

updated value of the program counter.

NOTE: The instruction computes E before it places

the incremented program counter in AC3.

Increment And Skip If Zero

ISZ [@]displacementl,index]

000 1 0] @} INDEX | DISPLACEMENT
ot TT zt 3/4!) 5' 6] 7! a atiotiitistist iat 46

Increments the addressed word, then skips if the

incremented value is zero.

Increments the word addressed by E and writes the

result back into memory at that location. If the

updated value of the location is zero, the instruction

skips the next sequential word.

Data General Corporation

Decrement And Skip If Zero

DSZ [@]displacementl index]

} oO. 00 1 | @| INDEX | DISPLACEMENT
ODT TITTIES CTT ate tiotntistist ia tis

Decrements the addressed word, then skips if the

decremented value is zero.

Decrements by one the word addressed by E and

writes the result back into that location. If the

updated value of the location is zero, the instruction

skips the next sequential word.

Return

RET

}o 1 1 0 oto 1 1 0 0 0 0 0 ot]

of1!' 2' 3[4!' 5! 61 7! 8! 9 f 10! 11! 12] 13! 14! 15

Places the contents of the frame pointer in the stack

pointer and pops five words off the stack, placing

them in the following locations:

WORD # POPPED DESTINATION

1 Bit O placed in the

carry bit.

Bits 1-15 placed in

the program counter.

2 Bits 1-15 placed in

the frame pointer.

Bits 0-15 placed in

AC3

3 AC2

AC}

5 ACO

Sequential operation continues with the word

addressed by the updated value of the program

counter.

IiI- 12

RET 014-000617-00

INSTRUCTIONS SETS

Trap

TRAP —_ acs,acd,trap number

1/ acs | ACD | __ TRAP NUMBER | 10 0 0 |

of1'2!' 3] 4!' 5!' 6] 7!' 8! g] 10! 11! 12/13! 14! 15

Disables the user map if enabled. Then places the

logical address of this instruction in bits 1-15 of

physical location 46g, sets bit 0 of this location to 0,

and jumps indirect via location 47,. The state of the

Interrupt On flag is unaltered.

BYTE INSTRUCTIONS

The following instructions move bytes to or from

memory locations. Note that when an instruction

moves a byte from memory to an accumulator, it also

clears the high-order half of the destination

accumulator. When an instruction moves a byte from

an accumulator to memory, it leaves unchanged the

other byte contained in that word of memory.

Load Byte

LDB acs,acd

| 0 1 1} ACD | 0 0 1| ACS 000 0 0 1|

o!11!'2!' 37 4' 5! 6] 77 g! g9{ 10! 11! 12] 13! 147 15

Moves a byte from memory (as addressed by a byte

pointer in one accumulator) to the _ second

accumulator.

Places the 8-bit byte addressed by the byte pointer

contained in ACS in bits 8-15 of ACD. Sets bits 0-7 of

ACD to 0. The contents of ACS remain unchanged

unless ACS and ACD are the same accumulator.

III- 13

014-00061 7-00 LDB

Data General Corporation

Store Byte

STB acs,acd

Lo, +1] aco | 3 0 0] ACS 0 0 0 0 0 1{

ola! 2!' 3f 4! 5! 67 7!' 8! 9] 10! 11' 12413!) 14° 15

Moves the right byte of one accumulator to a byte in

memory. The second accumulator contains the byte

pointer.

Places bits 8-15 of ACD in the byte addressed by the

byte pointer contained in ACS. The contents of ACS

and ACD remain unchanged.

III- 14

STB 014-000617-00

Chapter IV

INPUT/OUTPUT

INTRODUCTION

In order for the processor to perform useful work for

the user, there must be some method for the program

to transfer information outside the machine. The

Input/Output (I/O) instruction set provides this

facility. There are eight I/O instructions which allow

the program to communicate with I/O devices,

control certain processor options, and perform

certain processor functions.

The NOVA 4 has a 6-bit device selection network,

corresponding to bits 10-15 in the I/O instruction

format. Each device is connected to this network in

such a way that each device will only respond to

commands with its own device code. Each device also

has two flags, Busy and Done, which control its

operation. When Busy and Done are both 0, the device

is idle and cannot perform any operations. To start a

device, the program must set Busy to 1 and set Done

to 0. When a device has finished its operation, it sets

Busy to 0 and Done to 1. The case of Busy and Done

both set to 1 is a meaningless situation and will

produce unpredictable results.

The format for the I/O instructions is illustrated

below.

[O11] ac | OPN | | F DEVICE CODE

o};1'2' 3] 4! 5§!' 6] 7! 8!
1 1 I 1 I

9] 10! 11'12}13!' 14! 15

Bits 0-2 are 011, bits 3-4 specify the AC, bits 5-7

contain the operation code, bits 8-9 control the Busy

and Done flags in the device, and bits 10-15 specify

the code of the device. The six bits provided for the

device code in the I/O format mean that 64 unique

device codes are available for use. Some of these

device codes, however, are reserved for the CPU and

certain processor options. The remaining device codes

are available for referencing I/O units. Some of the

codes have been assigned to specific devices by Data

General and the assembler recognizes mnemonics for

these devices. A complete listing of device codes, the

014-000617-00

devices assigned to these codes, and the mnemonics

assigned to the devices is available in Appendix A.

OPERATION OF I/O DEVICES

In general, the operation of all I/O devices is done by

manipulation of the Busy and Done flags. In order to

operate a device, the program must first ensure that

the device is not currently performing some

operation. After the program has determined that

the device is available, it can start an operation on

the device by setting Busy to 1 and Done to 0. Once a

device has completed its operation, and set Busy to 0

and Done to 1, it is available for another operation.

The program can determine this condition in one of

two ways. By using the I/O Skip instruction, the

program can test the status of the Busy and Done

flags. Another way is to use the interrupt system that

is standard on the NOVA 4. The interrupt system is

made up of an interrupt request line to which each

I/O device is connected, an Interrupt On flag in the

CPU, and a 16-bit interrupt priority mask. The

Interrupt On flag controls the status of the interrupt

system. If the flag is set to 1, the CPU will respond to

and process interrupts. If the flag is set to 0, the CPU

will not respond to any interrupts. An interrupt is

initiated by an I/O device when it completes its

operation.

Upon completing the operation, the device sets Busy

to 0 and Done to 1. At this time, the device also places

an interrupt request on the interrupt request line,

provided that the bit in the interrupt priority mask

which corresponds to the priority level of the device

is 0. If the mask bit is 1, the device sets Busy to 0 and

Done to i, but does not place an interrupt request on

the interrupt request line.

If the Interrupt On flag is 1 at the time the processor

completes execution of any instruction, the processor

honors any request on the interrupt request line. If

the Interrupt On flag is 0, the CPU does not look at

the interrupt request line; it just goes on to the next

OPERATION OF I/O DEVICES

sequential instruction. The CPU honors an interrupt

request by setting the Interrupt On flag to 0 so that

no interrupts can interrupt the first part of the

interrupt serivce routine. If no program map is

enabled, the CPU places the updated program

counter in physical memory location 0 and executes a

jump indirect to physical memory location 1. It is

assumed that location 1 contains the address, either

direct or indirect, of the interrupt service routine. If

the optional MAP is installed, it is inhibited; the

updated program counter is placed in physical

memory location 0 and the CPU executes a jump

indirect to physical memory location 1.

Once the CPU has transferred control to the

interrupt service routine, it is up to that routine to

save any accumulators that will be used, save the

carry bit if it will be used, determine which device

requested the interrupt, and then service the

interrupt. The determination of which device needs

service can be done by I/O Skip instructions or the

routine can use the =Interrupt§ acknowledge

instruction.

The Interrupt acknowledge instruction returns the

6-bit device code of the device requesting the

interrupt. If more than one device is requesting

service, the code returned is the code of that device

requesting an interrupt which is physically closest to

the CPU on the I/O bus. After servicing the device,

the interrupt routine should restore all saved values,

set the Interrupt On flag to 1, and return to the

interrupted program. The instruction that sets the

Interrupt On flag to 1 (Interrupt enable) allows the

processor to execute one more instruction before the

next interrupt can take place. In order to prevent the

interrupt service routine from going into a loop, this

next instruction should be the instruction that

returns control to the interrupted program. Since the

updated value of the program counter was placed in

location 0 by the CPU upon honoring the interrupt,

all the interrupt routine has to do, after restoring the

AC’s and the carry bit, is to execute an Interrupt

enable instruction, a JMP 0 instruction, and control

will be returned to the interrupted program.

PRIORITY INTERRUPTS

If the Interrupt On flag remains 0 through the

interrupt service routine, the interrupt routine

cannot be interrupted and there is only one level of

device priority. This level is determined by either the

order in which the I/O Skip instructions are issued or

af Interrupt Acknowledge is used) by the physical

location of the devices on the bus. In a system with

devices of widely differing speed, such as a

teletypewriter versus a fixed head disc, the

programmer may wish to set up a multiple level

interrupt scheme. Hardware and instructions are

available that allow the implementation of sixteen

levels of priority interrupts.

DATA CHANNEL -

Data General Corporation

Each of the I/O devices is connected to a bit in the

16-bit priority mask. Devices which operate at

roughly the same speed are connected to the same bit

in the mask. Even though the standard mask bit

assignments have the higher numbered bits assigned

to lower speed devices, no implicit priority ordering is

intended. The manner in which these priority levels

are ordered is completely up to the programmer. The

listing of device codes in Appendix A also contains

the standard Data General mask bit assignments.

The condition of the priority mask is altered by the

Mask out instruction. If a bit in the priority mask is

set to i, then all devices in the priority level

corresponding to that bit will be prevented from

requesting an interrupt when they complete an

operation. In addition, all pending interrupt requests

from devices in that priority level are disabled.

To implement a multiple priority level interrupt

handler, the interrupt handler must be written in

such a way that it may be interrupted without

damage. For this to be possible, the main interrupt

routine must save the state of the machine upon

receiving control. The state of the machine consists of

the four accumulators, the carry bit, and the return

address. This information should be stored in a

unique place each time the interrupt handler is

entered so that one level of interrupt does not overlay

the return information. The interrupt routine must

determine which device requires service and jump to

the correct service routine. This can be done in the

same manner as for a single level interrupt handler.

After the correct service routine has received control,

that routine should save the current priority mask,

establish the new priority mask, and enable the

interrupt system with the Interrupt enable

instruction. After servicing the interrupt, the routine

should disable the interrupt system with the

Interrupt disable instruction, reset the priority mask,

restore the state of the machine, enable the interrupt

system, and return control to the interrupted

program.

DATA CHANNEL

Handling data transfers between external devices

and memory under program control requires an

interrupt plus the execution of several instructions

for each word transferred. To allow greater transfer

rates, the NOVA 4 contains a data channel through

which a device, at its own request, can gain direct

access to memory, using a minimum of processor

time.

When a device is ready to send or receive data, it

requests access to memory via the channel. At the

beginning of every memory cycle the processor

synchronizes any requests that are then being made.

At certain specified points during the execution of an

instruction, the CPU pauses to honor all previously

014-000617-00

INPUT/OUTPUT

synchronized requests. When a request is honored, a

word is transferred directly via the channel from the

device to memory or from memory to the device

without specific action by the program. All requests

are honored according to the relative position of the

requesting devices on the YO bus. That device

requesting data channel service which is physically

closest on the bus is serviced first, then the next

closest device, and so on, until all requests have been

honored. The synchronization of new requests occurs

concurrently with the honoring of other requests, so

if a device continually requests the data channel, that

device can prevent all devices further out on the bus

from gaining access to the channel.

Following completion of an instruction, the processor

handles all data channel requests, and then honors all

outstanding I/O interrupt requests. After all data

channel and I/O interrupt requests have been

serviced, the processor continues with the next

sequential instruction. The data channel is fully

described in the Programmer’s Reference Manual for

Peripherals, DGC number 015-000021.

CODING AIDS

We use certain conventions throughout this chapter

to help you properly code each instruction for Data

General’s assembler. Briefly, they are:

(1/7 Square brackets indicate that the enclosed

symbol (e.g., [skip] is an optional operand or

mnemonic. Code it only if you want to specify

the option.

BOLD Code operands or mnemonics printed in

boldface exactly as shown. For example, code

the mnemonic for the Move instruction: MOV.

For each operand or mnemonic in italics,

replace the item with a number or symbol that

provides the assembler value you need for that

item (e.g., the proper accumulator number, an

address, etc.).

italic

We use the following abbreviations throughout this

chapter:

for F Device Flag Command

ACor AC Accumulator

014-000617-00

IV- 3

The I/O instructions have optional mnemonics that

can be appended to the standard mnemonic. These

optional mnemonics control the Busy and Done flags

of the I/O device addressed by the instruction. They

are described in the following table.

SYMBOL VALUE | OPERATION

[f] omitted 00 Does not alter the

Busy and Done flags

[fl=s 01 Starts the device;

Sets Busy flag to 1

Sets Done flag to O

[f]=C 10 Idles the device;

Sets Busy flag to O

Sets Done flag to O

[f]=P 11 \/O pulse;

effect, if any depends

on the device

The I/O Skip instruction allows you to test the state

of the Busy and Done flags. You can perform any one

of four tests by appending an optional mnemonic to

the SKP mnenomic. The optional mnemonics are

shown in the following table.

SYMBOL VALUE | OPERATION

[t]=BN OO Tests Busy flag for nonzero

[t]=BZ 01 Tests Busy flag for zero

[t]=DN 10 Tests Done flag for nonzero

[t]=DZ 11 Tests Done flag for zero

CODING AIDS

DatainA

DIA/f] ac,device

| 0 1 1] AC | 0 0 1 F DEVICE CODE
of1!'2!' 37 4' §' 6] 7! g! 9] 10! 11' 12113! 14! 15

Transfers data from the A buffer of an I/O device to

an accumulator.

The contents of the A input buffer in the specified

device are placed in the specified AC. After the data

transfer, the Busy and Done flags are set according to

the function specified by F.

The number of data bits moved depends upon the size

of the buffer and the mode of operation of the device.

Bits in the AC that do not receive data are set to 0.

DatainB

DIB/f] ac,device

| 0 1 | AC | 0 1 1] F DEVICE CODE
ol 1!’ 2° 3 4' 5! 6[7! 8! 9] 10! 11! 12113! 14! 15

Transfers data from the B buffer of an I/O device to

an accumulator.

Places the contents of the B input buffer in the

specified device in the specified AC. After the data

transfer, sets the Busy and Done flags according to

the function specified by F.

The number of data bits moved depends upon the size

of the buffer and the mode of operation of the device.

Bits in the AC that do not receive data are set to 0.

DOA

Data General Corporation

Data In C

DIC/f] ac,device

| 0 1 1] Ac | 1 o tf F DEVICE CODE
ol1t!2!' 37 4! 5! 6] 7! 8! 9{ 10! 11! 12] 13! 14! 15

Transfers data from the C buffer of an I/O device to

an accumulator.

Places the contents of the C input buffer in the

specified device in the specified AC. After the data

transfer, sets the Busy and Done flags according to

the specified F.

The number of data bits moved depends upon the size

of the buffer and the mode of operation of the device.

Bits in the AC that do not receive data are set to 0.

Data Out A

DOAI/f] ac,device

| 0 1 1 | AC | 0 1 o| F DEVICE CODE
ol 1! 2' 3/ 4! 5? 6] 7!' 8! 9g] 10! 11' 12113! 14! 15

Transfers data from an accumulator to the A buffer

of an I/O device.

Places the contents of the specified AC in the A

output buffer of the specified device. After the data

transfer, sets the Busy and Done flags according to

the function specified by F. The contents of the

specified AC remain unchanged.

The number of data bits moved depends upon the size

of the buffer and the mode of operation of the device.

IV- 4

014-000617-00

INPUT/OUTPUT

Data Out B

DOB/f] ac,device

;o 1 F DEVICE CODE

of 1' 2! 3] 4! 5! '
1 1 i i I

9/10! 11' 12113! 14! 15

Transfers data from an accumulator to the B buffer of

an I/O device.

Places the contents of the specified AC in the B

output buffer of the specified device. After the data

transfer, sets the Busy and Done flags according to

the function specified by F. The contents of the

specified AC remain unchanged.

The number of data bits moved depends upon the size

of the buffer and the mode of operation of the device.

Data Out C

DOCIf] ac,device

}o 1 1 | AC 1 10 F DEVICE CODE
i I | i J i

ota tat ata et 7!’ gl gg] 10! 11! 12113! 14! 15

Transfers data from an accumulator to the C buffer of

an I/O device.

Places the contents of the specified AC in the C

output buffer of the specified device. After the data

transfer, sets the Busy and Done flags according to

the function specified by F. The contents of the

specified AC remain unchanged.

The number of data bits moved depends upon the size

of the buffer and the mode of operation of the device.

014-000617-00

1/O Skip

SKP/t] device

011 0 01 1 1] T DEVICE CODE
otat2t3tat 5' 6] 7!' 8! gf 10! 11! 12113! 14! 15

If the test condition specified by T is true, the

instruction skips the next sequential word.

No I/O Transfer

NIO [fl ac,device

°| F DEVICE CODE

tt
_ i 1 do Ll

9} 10! 11! 12113! 14! 15

0 0.

st 6

Used when a Busy or Done flag must be changed with

no other operation taking place.

Sets the Busy and Done flags in the specified device

according to the function specified by F.

CENTRAL PROCESSOR FUNCTIONS

I/O instructions with a device code of 77 perform a

number of special functions rather than controlling a

specific device. Device code 77 has been given the

mnemonic CPU. In all but the I/O Skip instruction, I/O

instructions with a device code of 77 use bits 8-9 to

control the condition of the Interrupt On flag. An I/O

Skip instruction with a device code of 77 uses bits 8-9

to either test the state of the Interrupt On flag or to

test the state of the Power Fail flag. The mnemonics

are the same as for the normal J/O instructions. The

table below gives the result of these bits for

instructions with a device code of 77.

CENTRAL PROCESSOR FUNCTIONS

SYMBOL VALUE |OPERATION

[f] omitted 00 Does not alter the

Interrupt On flag

[f]=s O01 Sets Interrupt On flag to 1

[f]=C 10 Clears Interrupt On flag to O

[f]=P 11 Leaves Interrupt On flag

unchanged

[t]=BN 00 Tests Interrupt On flag for nonzero

[t]=BZ 01 Tests Interrupt On flag for zero

[t]=DN 10 Tests Power Fail flag for nonzero

[tl=DZ 11 Tests Power Fail flag for zero

Special Mnemonics

Some of the NOVA 4 I/O instructions which use

device code 77 have special mnemonics which can be

used in place of the standard mnemonics. Note that

the mnemonics for controlling the state of flags

cannot be appended to these special instruction

mnemonics.

Thus, if you want to alter the state of the Interrupt

On flag while performing a Mask Out instruction,

you must use the full mnemonic:

DOBf ac,CPU

instead of the special mnemonic:

MSKO ac

The special mnemonic sets bits 8 and 9 to 00.

INTDS

Data General Corporation

Interrupt Enable

INTEN

NIOS CPU

porta 4d]0 0 O90 QA QO 1 1
1 i I i J I i i i

4' 5! 6[| 7! 8g! g{[10! 11! 121 13! 14! 15

Sets Interrupt On flag to 1.

If the instruction changes the state of the Interrupt

On flag, the CPU allows one more instruction to

execute before the first I/O interrupt can occur.

However, if the instruction is interruptible, then

interrupts can occur as soon as the instruction begins

to execute.

Interrupt Disable

INTDS

NIOC CPU

. 4 i

1 1 0 O dO 90 Q 1 O 1 1 1 1 1 ‘|
| i 1 1 I 1 I 1 1 i di I 1

,7'2' 3] 4' 565! 6] 7! g! gf 10! 11! 12] 13! 14! 15

Sets Interrupt On flag to 0.

IV-6

014-000617-00

INPUT/OUTPUT

Read Switches

READS ac

DIA/[f] ac,CPU

F ee ee ee | 1 |
i 1 E j | 1

rg} 10! 11' 12113!) 14! 15

Places the contents of the virtual console switch

register into an accumulator.

Places the contents of the virtual console switch

register in the specified accumulator. After the

transfer, sets the Interrupt On flag according to the

function specified by F.

NOTE: See Chapter VI for more information about

the virtual console.

Interrupt Acknowledge

INTA

DIB/fl ac,CPU

| 0 1 1} AC | 0 1 1 | F 1 174° «79°21 1 |
Jt I i lL I 1 1 i

ofli1) 2!) 37 4% 5! 6/7! 8! 9 f 10! 11! 12713! 14! 15

Returns device code of an interrupting device.

Places the six-bit device code of that device

requesting an interrupt which is physically closest to

the CPU on the I/O bus in bits 10-15 of the specified

accumulator; sets bits 0-9 to 0. After the transfer, sets

the Interrupt On flag according to the function

specified by F.

014-000617-00

Mask Out

MSKO

DOB/f] ac,CPU

| 0 1 vf ac | 0 0}
obit stat st aT7 —+-s- TT]

—_, — —_
_

—
L

—_
a

—_ be cammnocees
8! 9] 10! 11!) 12}13' 14! 15

Sets the priority mask.

Places the contents of the specified accumulator in

the priority mask. After the transfer, sets the

Interrupt On flag according to the function specified

by F. The contents of the specified AC remain

unchanged.

NOTE: A 7 in any bit disables interrupt requests

at devices which use that bit as a mask.

NOTE: Do not use this instruction when interrupts

are enabled.

Reset

IORST

DIC/f] ac,CPU

| 0

oT

1474 7°21 1|
i % i i =

gf 10! 11! 12} 13! 14! 15

1 1] AC 1 O 1|
i 1 i

1' 2! 3] 4 '6et 7! + TN8

Sets all Busy and Done flags and the priority mask to

0.

Sets the Busy and Done flags in all I/O devices to 0.

Sets the 16-bit priority mask to 0. Sets the Interrupt

On flag according to the function specified by F.

NOTE: The assembler recognizes the mnemonic

IORST as equivalent to the instruction DICC 0,CPU.

If the mnemonic DIC is used to perform this

function, you must code an accumulator to avoid
assembly errors. During execution, the

accumulator field is ignored and the contents of

the accumulator remain unchanged.

IV-7

IORST

Halt

HALT

DOC/f] ac,CPU

fo 1 af ac ft a of fF fa 4 1 4 4 4]
ol 1' 2' 3] 4!' 5! 6] 7!' 8! 9 f 10! 11! 12113! 14! 15

Stops the processor.

Sets the Interrupt On flag according to the function

specified by F, then stops the processor and transfers

control to the virtual console.

CPU Skip

SKP /t/ CPU

Lo 1
lL i 1a +-

1oyovor a a1 |
i i 1 { 1 i

6] 7! 9110! 11! 12] 13! 14! 15

1

5! 8

If the test condition specified by T is true, the next

sequential word is skipped.

See Programmer’s Reference-Peripherals (DGC No.

015-000021) for a complete set of examples on using

the interrupt system.

POWER FAIL

In the NOVA 4, when power is turned off and on

again, the state of the accumulators, the program

counter, and the various flags in the CPU is

indeterminate. The power fail facility, along with the

optional battery-backup facility, provides a “fail-soft”

capability in the event of unexpected power loss.

In the event of power failure, there is a delay of one to

two milliseconds before the processor shuts down.

The power fail facility senses the imminent loss of

power, sets the Power Fail flag, and requests an

interrupt. The interrupt service routine can then use

this delay to store the contents of the accumulators,

the carry bit, and the current priority mask. The

interrupt service routine should also save location 0

IV- 8

SKPDN CPU

Data General Corporation

(to enable return to the interrupted program), put a

Jump to the desired restart location in location 0, and

then execute a Halt. One to two milliseconds is more

than enough time to perform the power fail routine.

When power is restored, the action taken by the

automatic restart portion of the power fail facility

depends upon the position of the lock switch on the

front panel. If the switch is not in the lockposition,

the CPU remains stopped after power is restored. If

the switch is in the lock position and battery backup

is operational, than after power is restored, the CPU

executes a JMP 0 instruction, restarting the

interrupted program. If the switch is in the lock

position and battery backup is notoperational, then

after power is restored the CPU transfers control to

the virtual console.

The power fail facility has no device code and no

interrupt disable bit in the priority mask. It does not

respond to the Interrupt Acknowledge instruction.

The Power Fail flag can be tested by the CPU Skip

instruction.

CPU Skip If Power Fail Flag Is One

SKPDN CPU

po 4 1 0 0 1°74 14 4 0 11 |
4 1 i 4 au 1 4 i ed, 4of +1' 2' 3] 4! 5! motets tasttaeis

If the Power Fail flag is 1 G.e., power is failing), the

instruction skips the next sequential word.

014-000617-00

INPUT/OUTPUT

CPU Skip If Power Fail Flag Is Zero

SKPDZ CPU

fo 1 1 0 0 F 1 1 4 4 4 4 4 1 4 4]
tI 1 i I i 1 i J J j i i] i 1

of; 1! 2!' 3] 4! 5! 6] 7! g! 9} 10! 11! 12113! 14! 15

If the Power Fail flag is 0 G.e., power is not failing),

the instruction skips the next sequential word.

REAL-TIME CLOCK

The Real-Time Clock (RTC) facility on the NOVA 4

generates a sequence of pulses that is independent of

the CPU timing. It will generate I/O interrupts at

any one of four program selectable frequencies. The

Busy and Done flags of the RTC are controlled by bits

8-9 of the I/O instruction. The RTC is device code 14g

and has the mnemonic RTC. The interrupt disable bit

is priority mask bit 13.

Setting Busy allows the next pulse from the clock to

set Done, and the RTC requests an J/O interrupt if its

interrupt disable bit is 0. A Data out A instruction to

select the clock frequency only has to be given once.

After each interrupt, an NIOS instruction will set up

the clock for the next interrupt.

When Busy is first set, the first interrupt can come at

any time up to the clock period. After the first

interrupt has occurred, succeeding interrupts come at

the clock frequency, provided that the program

always sets Busy before the clock period expires.

After power up or I/O reset, the clock is set to the line

frequency.

The RTC frequency is selected by the following

instruction:

014-000617-00

IV-9

Select RTC Frequency

DOATf] acRTC

O 1 1 0 6—O
I i i i me

10' 11/121 13! 14! 15

tf ac | 0 1 Of; F
1 } =r |

ro!l3] 4!' 5! 6{ 7! g! 9

The clock frequency is set according to bits 14-15 of

the specified AC. The contents of the specified AC

remain unchanged. Bits 0-13 of the specified AC are

ignored. The format of the specified AC is as follows:

RTC
L 1 1 1

P44! 1424) 13' 14! 15
4

g8!' 9 | 10

BITS CONTENTS or FUNCTION

0-13

14-15

Reserved for future use. (Set to OQ)

Selects the clock frequency as follows:

00 ac line frequency

O01 10Hz

10 100Hz

11 1000Hz

DOA

Chapter V

PROCESSOR OPTIONS

INTRODUCTION

In this chapter, we discuss the optional equipment for

the NOVA 4. This includes the Multiply/Divide

option, the Floating Point option, and the Memory

Allocation and Protection unit (MAP).

014-000617-00

MULTIPLY/DIVIDE

Multiplication can be performed on the NOVA line

by software routines that utilize the standard

instruction set, but if many of these operations are

required, a loss of efficiency can result. The

multiply/divide option provides the capability of

performing these operations in firmware and

hardware, with a corresponding increase in speed.

The multiply/divide option is part of the CPU. For

compatibility, the instructions for the option are I/O

instructions that reference device code 1. The

assembler recognizes the mnemonics MUL and DIV for

unsigned multiply and divide, and MULS and Divs for

signed multiply and divide.

MULTIPLY/DIVIDE

Unsigned Multiply

MUL

DOCP 2,MDV

[oo 1 110 1 1 0 1°10 0 0 0 0 |
of1!' 2! 3[4! 5! 6[7! 8! 9 f 10! 11' 12113! 14! 15

Multiplies the unsigned contents of two accumulators

and adds the result to the unsigned contents of a

third accumulator. The result is an unsigned 32-bit

integer in two accumulators.

The unsigned, 16-bit number in AC1 is multiplied by

the unsigned, 16-bit number in AC2 to yield an

unsigned, 32-bit intermediate result. The unsigned,

16-bit number in ACO is added to the intermediate

result to produce the final result. The final result is

an unsigned, 32-bit number and occupies ACO and

AC1. Bit 0 of ACO is the high-order bit of the result

and bit 15 of AC1 is the low-order bit. The contents of

AC2 remain unchanged. Because the result is a

double-length number, overflow cannot occur.

Unsigned Divide

DIV

DOCS 2,MDV

}o 1 1 41 0 1°10 0 1.0000 0 1]
of1!' 2! 3/1 4!' 5! 6] 7! g! 9] 10! 111 12113! 14! 15

Divides the unsigned 32-bit integer in two

accumulators by the unsigned contents of a third

accumulator. The quotient and remainder each

occupy one accumulator.

Divides the unsigned 32-bit number contained in ACO

and AC1 by the unsigned, 16-bit number in AC2. The

quotient and remainder are unsigned, 16-bit numbers

and are placed in AC1 and ACO, respectively. The

carry bit is set to 0. The contents of AC2 remain

unchanged.

NOTE: Before the divide operation takes place, the

number in ACO is compared to the number in

ACz2z. If the contents of ACO are greater than or

equal to the contents of AC2, an overflow

condition is indicated. The carry bit is set to 1,

and the operation is terminated. All operands

remain unchanged.

DIVS

Data General Corporation

Signed Multiply

MULS

DOCC 3,MDV

Oo Fottetetet oj 10 0 0 0 0 0 1

olitatatatstet?7t et of iotit 12113) 141 15

Multiplies the signed contents of two accumulators

and adds the result to the signed contents of a third

accumulator. The result is a signed 32-bit integer in

two accumulators.

The signed, 16-bit two’s complement number in ACi

is multiplied by the signed, 16-bit two’s complement

number in ACeg to yield a signed, 32-bit two’s

complement intermediate result. The signed, 16-bit

two’s complement number in ACO is added to the

intermediate result to produce the final result. The

final result is a signed, 32-bit two’s complement

number which occupies ACO and AC1. Bit 0 of ACO is

the sign bit of the result and bit 15 of ACi is the

low-order bit. The contents of ACR remain

unchanged. Because the result is a double-length

number, overflow cannot occur.

Signed Divide

DIVS

DOC 3,MDV

jo 1 4 4 1°41 1°00 000000 1]

of}71!' 2!' 3] 4!' 5! 6) 7! g! 9] 10! 11! 12113! 14! 15

Divides the signed 32-bit integer in two accumulators

by the signed contents of a third accumulator. The

quotient and remainder’ each occupy' one

accumulator.

The signed, 382%-bit two’s complement number

contained in ACO and ACt1 is divided by the signed,

16-bit two’s complement number in AC2. The

quotient and remainder are signed, 16-bit numbers

and occupy ACi and ACO, respectively. The sign of

the quotient is determined by the rules of algebra.

The sign of the remainder is always the same as the

sign of the dividend, except that a zero quotient or a

zero remainder is always positive. The carry bit is set

to 0. The contents of AC2 remain unchanged.

NOTE: If the magnitude of the quotient is such

that it will not fit into AC1, an overflow condition

ls indicated. The carry bit is set to 1, and the

operation is terminated. The contents of ACO

and AC1 are unpredictable.

014-000617-00

PROCESSOR OPTIONS

MEMORY MANAGEMENT

Background to Address Translation

The concept behind the various memory

management feature available with the NOVA 4 is

that of Logical-to-Physical Address Translation. The

amount of memory required by a user’s program is

defined to be his logical address space. This space

may be as large as 32 2-Kbyte pages. The areas of

physical storage assigned to the user are defined to be

his physical address space. The address translation

function that converts addresses in the logical space

to addresses in the physical space is called the

address map for that user. Each user has his own,

unique logical-to-physical address map. In addition,

there is a map for the data channel which can be, but

does not have to be equal to the user map. The

multiprogramming operating system determines

what these maps are to be, and then transmits this

information to the address translation hardware. The

following illustration shows a possible two-user

configuration.

This figure shows a 128Kword physical address space

and its utilization by a two-user multiprogramming

system. The supervisor resides in pages 0-7 of

physical space. The first 16 pages of user #1 reside in

pages 40-55 of physical space. User #2 also has his

32K of logical space split into two areas. Pages 0-15 of

user #2 are in pages 24-39 of physical space and pages

16-31 of user #2 are in pages 56-71 of physical space.

The data channel is capable of servicing both users.

Any data channel reference to pages 0-15 of logical

space will be mapped to pages 0-15 of the logical

space of user #1. Any data channel reference to

logical pages 16-31 will be mapped to pages 0-15 of

the logical space of user #2.

014-000617-00

PHYSICAL USER 2

MEMORY LOGICAL

O O

SUPERVISOR

USER |

LOGICAL 7

0 8

~ I6

IS 230
6 24

Nl

3\

KS
|

DCH

| LOGICAL

3 Bo | 0
40 | |

|

-
[4

- |

| WS

ISS - 16
56

———

Ki

3|

Tl.
72

4

Le
DG 00233

In order to manage memory efficiently, the operating

system makes use of the validity and write protect

features of the address translation hardware, if

possible. The next figure shows a _ two-user

configuration where these features are used.

In the second figure, a “W” in a page means the page

is write-protected. By convention, mapping a logical

page to physical page 127 and write protecting it

makes that page validity protected. Both users have

declared that page 1 of their logical space is to be

write-protected.

Physical page 8 is the logical page 1 for user #1 and

ph sical page 10 is the logical page 1 for user #2. User

#1 is only using 13 pages of his 32 page logical address

space, so logical pages 13-31 have been declared

invalid for him. Any reference by user #1 to logical

pages 13-31 will cause a validity error. User #2 is only

using 21 pages of his logical space, so logical pages

MEMORY MANAGEMENT

21-31 of his logical space have been declared invalid.

Any reference by user #2 to logical pages 21-31 will

result in a validity error.

The address translation hardware resides between

the memory and the CPU, and the memory and the

data channel, and is transparent to all of them. When

either the CPU or the data channel requests a

memory operation, the address translation hardware

intercepts and services the request. The address

translation hardware translates the 15 bit logical

address coming from the CPU or the data channel

into a 17 bit physical address. The memory operation

is then performed using this 17 bit address. The

memory access cycle time is unchanged.

The mapping information needed to service a CPU or

data channel request is given to the address

translation hardware by the operating system

through J/O instructions that reference the address

translation hardware. This information is

transmitted before the supervisor enables either the

user map or the data channel map.

MEMORY MANAGEMENT

Data General Corporation

USER 2

LOGICAL
USER |

LOGICAL

O

|

2

|

2

3

DG 00232

014-000617-00

PROCESSOR OPTIONS

MEMORY ALLOCATION AND

PROTECTION

The NOVA 4 is available with a Memory Allocation

and Protection unit (MAP) which provides memory

mapping and protection features.

The MAP expands the physical address space of a

NOVA 4 to 512Kbytes by performing logical-

to-physical address translation. The maximum

logical address space is 64Kbytes. The MAP allows

four maps (two user maps and two data channel

maps) to be defined at any one time. These maps are

called user map A, user map B, DCH map A, and

DCH map B. Each map consists of 32 2-Kbyte pages.

The selection of which user map is to be used to map

logical addresses coming from the CPU is under

program control. The selection of which data channel

map is to be used is under control of the peripheral

controllers. Those peripheral controllers not

equipped to make this distinction will use data

channel map A by default.

The two user maps and the two data channel maps

are completely independent. Only one user map may

be enabled at a time, but both data channel maps are

enabled at the same time. The mapping of program

addresses and mapping of data channel addresses

may or may not be enabled at the same time

depending upon the supervisor program. If either

user mapping or data channel mapping is disabled

then, for that function, the physical address space is

equal to the logical address space and only the lowest

64 Kbytes of memory are accessible.

The instructions for the MAP are in the standard I/O

format. The MAP takes two device codes: 2 and 3.

The mnemonic for device code 2 is MAP. The

mnemonic for device code 3 is MAP1.

014-000617-00

Device code 2 has a Done flag which is set to 1 by the

MAP any time address translation is enabled and not

inhibited. Device code 2 also has a Busy flag which is

set when a Data Channel error occurs. Device code 3

does not have a Busy or a Done flag.

The flag control commands for device code 2 are as

follows:

f=s Reserved for future use.

f=C Clear violation status word.

f=P The second non-data channel memory

address after the issuance of this command is

mapped using the map indicated by the

Single Cycle Select bit in the MAP status

word.

iORST No effect.

The flag control commands for device code 3 are as

follows:

f=s Reserved for future use.

f=C Disables the user map and data channel map

portions of the MAP. Initializes all internal

MAP logic. For diagnostic use only.

=p Reserved for future use. |

liORST No effect.

See the table under I/O Coding Aids for bit patterns

of the flag control commands.

MEMORY ALLOCATION AND PROTECTION

Load MAP

DOB/f] ac,MAP

00001 0 |

9110! 11! 12] 13! 14! 15

Transfers the contents of the specified AC to the

MAP. Leaves the contents of the specified AC

unchanged. The format of the AC is as follows:

[seu LOGICAL ae wP} VP PHYSICAL
i J 1

of1'2!' 31 4! §7 67 7! g8! 9] 10! 11! 12413! 14! 15

BITS |NAME CONTENTS or FUNCTION

0 SEL Specifies which type of map

will be loaded by this

instruction, as follows:

0 User map

1 Data channel map

1-5 Logical Logical page number. This is a

number in the range 0-37,.

6 A/B Specifies map A or map B of

the type specified by bit O

as follows:

O Map A

1 Map B

7 WP If 1, write protection is

enabled for this page.

8 VP If 1, validity protection

is enabled for this page

(if bits 7 and 9-15 = 1).

9-15 | Physical Physical page number. This

is a number in the range

0-177g.

MAP

Data General Corporation

Initiate page check

DOAIf] ac,MAP1

fo 1 1] ac | 0 |

ofl 1' 2!' 37 4! 5! 6] 7!

F 0000 1 1 |
i 1 i i i 1

rg} 10! 11! 12113! 14! 158

Transfers the contents of the specified AC to the

MAP for later use by the Page check instruction.

Leaves the contents of the specified AC unchanged.

The format of the AC is as follows:

[SEL LOGICAL | A/B
I 1 i i

ol 1'2!' 3] 4! §! 6] 7

BITS | NAME CONTENTS or FUNCTION

O SEL Selects type of map as follows:

0 User map

1 Data channel map

1-5 Logical Logical page number. This is

a number in the range 0-37,

and is the number of the logical

page being checked.

6 A/B Selects map A or Map B of the

type selected by bit O, as

follows:

0 Map A

1 Map B

7-15 --- Reserved for future use.

Should be O.

014-000617-00

PROCESSOR OPTIONS

Read MAP status

DIA/f] ac,MAP

Page check

DIA/f] =ac,MAP1

fo 1 1{ AC {oo 1{
ol1!'2!' 3] 4!' 5!' 6[717 8

F {0 0 0 0 1 1]0 0 0 4 jo 1 1/ ac [o 0 1] F

9110) 11! 121 13) 14! 15 '

0 0 0 0 1 of
| j ij J i,

of 1' 2! 3] 4! §!' 6] 7! 8
7a at i)

9} 10' 11' 12113! 14! 15

Places the physical page number corresponding to the

logical page number specified in the last Initiate page

check instruction into bits 9-15 of the specified AC.

Places the 16-bit MAP status word in the specified

AC. The format of the AC is as follows:

The format of the AC is as follows: umiocH| Pa |swejsas| Aplin | 1/0 | WP AB |

Of 4' 2' 31 4!' 5! 6] 7! 8! gf 10l 110127135 147 15

[Set LOGICAL ee We} VP PHYSICAL
t | q 1 I | qT tT 4 { l

OE TERE SE AEE SL TE BE STON WET 181 41 18 BITS |NAME CONTENTS or FUNCTION

BITS |NAME CONTENTS or FUNCTION O UM If 1, user mapping is enabled.

1 DCM lf 1, data channel mapping is

O SEL Map select bit from last enabled.

Initiate page check 2 PMI If 1, user mapping is inhibited.
instruction. Takes precedence over bit O.

1-5 | Logical Logical page number from last 3-8 | --- Reserved for future use. Set to O.

Initiate page check 9 SC/WP If 1, single cycle write
Instruction. .

protection is enabled.
6 A/B A/B select bit from last 10 SC/AB Single cycle map.

Initiate page check Map A

instruction. _— 1 Map B

y WP If 1, write protection s 11 AIP lf 1, auto increment/decrement
enabled for this page. i,

_ a protection is enabled.

8 VP If 1, validity protection is 12. | IND If 1, defer protection is enabled.
enabled for this page (if
bits 7 and 9-15 = 1). 13 /O If 1, I/O protection is enabled.

9-15 | Physical Physical page number 14 WP If 1, write protection is

corresponding to logical enabled.

page number in bits 0-6. 15 A/B User map select bit:

0 Map A

1 Map B

014-000617-00 MAP

Write MAP Status

DOATf] ac,ac,MAP

Lot tf] ac fos of
|o/|/1'2' 3] 4' 5§!' 6] 71° 8

0000 1 0 |
I 1 i i L

9] 10' 11' 12] 13! 14! 15

Places the contents of the specified accumulator in

the MAP status word and sets the User Map Inhibit

bit in the MAP status word to 0.

The instruction changes some of the bits in the MAP

status word immediately, and changes others at the

next indirect memory reference. The table below

shows these differences.

The format of the specified AC is as follows:

U/M ocH| jswrisaay AIP [IND VO | WP} ave |
i J) I i 1 i

ol1' 2!' 3] 4!' 5! 6[7! g! 9] 10! 11' 127137 147 15

BITS |NAME CONTENTS or FUNCTION

O UM" lf 1, user mapping will

be enabled.

1 DCH lf 1, data channel mapping

will be enabled.

2-8 --- Reserved for future use.

Should be set to 0.

9 SC/WP If 1, single cycle write

protection will be enabled.

10 SC/AB Selects the map for single cyle

operations as follows:

0 Map A

1 Map B

11 AIP* If 1, auto increment/decrement

protection will be enabled.

12 IND* If 1, indirect protection

will be enabled.

13 \/O* If 1, 1/O protection will

be enabled.

14 WP* lf 1, write protection will

be enabled.

15 A/B Selects user map as follows:

0 Map A

1 Map B

These bits are set at the next indirect memory reference.

MAP

Data General Corporation

Read Violation Data

DIB[f] ac,MAP

{o 1 1f ac fo 1 1f F [0 0 0 0 1 0

ofl 1' 2!' 3] 4! §!' 6] 7! 8! 9] 10! 11! 121137 147 15

Places the MAP violation status bits in the specified

AC, along with the logical page in which the violation

occurred. The format of the AC is as follows:

ANY LOGICAL |sc vv Al | IND VOlW ae |
11 1 1 I i

ofi1'2!' 31 4!' 5! 6| 7! g! gf 10! 1117 127137 147 15

BITS |NAME CONTENTS or FUNCTION

0 ANY Violation flag. Set to 1 if any

of bits 10-14 = 1.

1-5 Logical Number of logical page in which

violation occurred.

6-8 --- Reserved for future use.

Set to 0.

9 SC If 1, single cycle was enabled

during violation.

10 VV lf 1, validity violation.

11 AlV If 1, auto increment/decrement

violation.

12 IND If 1, defer violation.

13 VO If 1, 1/0 violation.

14 WP If 1, write violation.

15 A/B Map specifier bit:

0 Map A

1 Map B

014-000617-00

PROCESSOR OPTIONS

Read Violation Address

DIB/f] ac,MAP1

}o 1 1|

ol 1

0 0 0 0 1 1]AC | 0 1 1 | F
i i i 1

| 10' 11' 12] 13! 14! 15
i i i hl

ro! 3] 4! §!' 6| 7! 8 9

Places the logical address of the instruction that

caused the violation in bits 1-15 of the specified AC.

Sets bit 0 to zero.

Map Single Cycle

NIOP MAP

}o 1 100000 1 1 0000 1 0
of} 1'2' 3) 4!' 5§' 6] 7! g8! 9f 10! 11!' 12] 13! 14! 15

Enables the user map for one memory reference and

maps the first memory reference of the next LDA or

STA instruction. After the memory cycle is mapped,

the instruction returns the map to the state it was in

when the Map Single Cycle instruction was executed.

NOTE: The LDA or STA instruction cannot use an

indirect memory reference, and must immediately

follow the Map Single Cycle instruction.

014-000617-00

Clear Violation

NIOC MAP

| 0 1 1°00 000 1 000 0 0 1 0]

oj} 1' 2!' 3] 4!' 5!' 6] 7! 8! 9] 10! 11' 121 13! 14! 15

Clears the MAP violation status word and the Busy

flag for device code 2, which indicates data channel

errors.

Clear MAP

NIOC MAP1

}o 1 1°00 000 1000001 1]

of1'2' 3] 4' 5! 6] 7! g8! 9] 10! 11!) 12113! 14! 15

Disabled the user and data channel maps and

initializes all internal MAP logic.

NOTE: For diagnostic use only.

MAP

SUPERVISOR PROGRAMMING FOR

THE NOVA 4

Setting Up for Translation

The information that allows the MAP to translate

addresses comes from the multiprogramming

supervisor. The instructions are Load MAPand Write

MAP status.

By using the Load MAP instruction, the supervisor

gives the MAP a physical address for the beginning of

a page of logical address space. Thirty-two Load MAP

instructions are required to completely define the

map for one logical space.

Although the floating point processor available with

the NOVA 4 is an I/O device and operates through

the data channel, all floating point operations are

processed using the currently enabled user map.

After defining the maps that will be used, the

supervisor gives the MAP information regarding how

and when the maps are to be enabled via the Write

MAP status instruction. This instruction also defines

which protect features are to be enabled. Each

protect feature described in the Write MAP status

instruction can be_ enabled separately and

independently of the others.

If a Write MAP status instruction is issued with bit 0

of the specified accumulator set to 1, then address

translation will begin with the memory reference

after the next defer cycle. This provides a convenient

method for the supervisor to transfer control to the

user program after the maps have been defined. One

way of transferring this control is as follows:

;ENOUGH LOAD MAP

; INSTRUCTIONS TO

; DEFINE ALL THE

; MAPS THAT WILL

we ; BE USED.

LDA O,STAT ;

DOA 0, MAP ;WRITE MMPU STATUS

vs ;RESTORE USER’S

; ACCUMULATORS.

;--USE NO

; INDIRECTION.

“ENABLE INTERRUPTS

;ADDRESS IN

; USERPC WILL BE

; MAPPED.

“STATUS WORD:

; ENABLE USER

; MAPPING,

; ENABLE DCH

; MAPPING.

; SINGLE CYCLE MAP

; FOR USER A

; MAP ADDRESSES

; FOR USER A.

;STARTING ADDRESS.

INTEN

JMP @USERPC

STAT: 140000

USERPC:

Data General Corporation

Note that a defer instruction must appear after the

Write MAP status instruction and before the next

Write MAP status instruction for the second

instruction to take effect.

MAP Protection Processing

When a map violation is detected, interrupts are

inhibited, and address translation is disabled. The

contents of physical location 46, are lost and the

supervisor directs the CPU to jump indirect to

location 47g. The supervisor can then determine the

type of violation using the Read violation data

instruction.

The Read violation address instruction can be used to

find the instruction that caused the problem.

NOTE: Location 46, is normally where the return

address is found after a Trap instruction has

been executed. If the trap is caused by a MAP

violation, however, location 469 should be ignored

and the Read violation instruction used instead.

The MAP performs checking only for those

protection features that are enabled. The five types of

protection and how they are handled by the MAP are

discussed below.

I/O Protection

If I/O protection is enabled in the NOVA 4 MAP, it

protects all I/O devices except those using device

codes 1, 74, 75, and 76. Device code 1 is generally

assigned to the NOVA 4 multiply/divide option, and

device codes 74-76 are generally assigned to the

optional Floating Point Unit. The I/O devices using

these device codes are not protected by I/O protection

under any circumstances.

When I/O protection is enabled, the MAP decodes all

I/O instructions to see if the referenced device is user

protected. If it is, the MAP does not allow the

execution of the instruction. Instead, it stores the

logical address of the instruction in the Violation

address register, disables I/O interrupt requests,

enters the supervisor mode, and directs the CPU to

jump indirect to location 47g.

Validity Protection

By convention, validity protection cannot be disabled.

A logical page is validity protected by mapping the

page to physical page 2551;0(377,), and setting the

validity protect and write protect bits to 1.

NOTE: It is not necessary for physical page 25549

to exist. Validity protection is indicated by

setting the physical page bits to 3779 and setting

the write protect bit to 1. Since validity protection

prevents the writing of the page, the existence of

the physical page is not required.

V- 10

SUPERVISOR PROGRAMMING FOR THE NOVA 4 014-000617-00

PROCESSOR OPTIONS

The MAP checks all CPU requests for invalid

addresses. If the address is found to be valid, the MAP

proceeds with the required translation. If the address

is invalid, the MAP stores the logical address of the

instruction in the Violation address register. The

MAP then disables I/O interrupt requests, enters the

supervisor mode, and directs the CPU to jump

indirect to location 478.

Runaway Defer Protection

If runaway defer protection is enabled, the MAP

checks memory references to see if they are part of a

defer cycle. If the MAP detects 15 consecutive defer

cycle memory requests, it traps.

Upon receiving the 15 requests, the MAP stores the

address of the instruction that started the defer loop

in the Violation address register. The MAP then

disables the I/O interrupt requests, enters the

supervisor mode, and directs the CPU to jump

indirect to location 47g.

Write Protection

If write protection is enabled, the MAP monitors all

modify memory requests and determines whether or

not that logical page is write-protected. If the page is

not write-protected, the MAP allows the operation to

proceed. If the page is write-protected, the MAP

stores the instruction address in the Violation

address register. The MAP then disables I/O

interrupt requests, enters the supervisor mode, and

directs the CPU to jump indirect to location 47g. Any

write to memory is inhibited.

Single cycle write protection works in the same way

as normal write protection, but it can be enabled

separately.

014-000617-00

Auto-Increment/Decrement Protection

If auto-increment/decrement protection is enabled,

any indirect reference to memory locations 20-373

will be considered a violation and will therefore trap.

The system then stores the logical address of the

instruction that caused the violation in the Violation

address register, disables I/O interrupt requests,

enters the supervisor mode, and directs the CPU to

jump indirect to location 47g.

Device Interrupt Processing

The MAP has been designed to allow for orderly

processing of I/O interrupt requests by a supervisor

program. When an I/O device requests an interrupt,

the MAP sets the Program Map Inhibit bit in the

MAP status word to 1. This immediately disables the

translating of user addresses. That is, the Interrupt

On flag is set to 0, the updated program counter is

placed in physical memory location 0, and the CPU

executes a jump indirect to physical memory location

1. A similar process occurs for stack overflow, normal

trap instructions, and MAP violation traps.

To return control after an I/O interrupt, the

supervisor can follow the method outlined previously

(see Setting Up for Translation). The Interrupt enable

instruction should be placed immediately before the

JMP_ USERPC instruction.

V- ii

SUPERVISOR PROGRAMMING FOR THE NOVA 4

FLOATING POINT UNIT

In addition to performing fixed point arithmetic, the

NOVA 4 can perform floating point arithmetic if it is

equipped with the floating point unit. This feature

provides the capability to perform rapid and

convenient arithmetic operations on numbers with a

much larger range than would be feasible using the

fixed point arithmetic instruction set. The precision

with which these numbers can be manipulated

exceeds the precision readily available with the fixed

point instruction set.

Floating Point Unit Registers

There are three _ registers available to the

programmer in the Floating Point Unit (FPU).

These are the Floating Point accumulator (FPAOQ),

the Floating Point Status Register (FPSR), and the

Temporary Buffer (TEMP). FPAC and TEMP are

used for computations and FPSR is used to control

and monitor the operation of the FPU.

FPAC and TEMP can both contain either single or

double precision floating point numbers. FPSR is a

16-bit register containing bits that reflect the current

status of FPAC and the FPU. The format of FPSR is

as follows:

FLOATING POINT UNIT

Data General Corporation

rc[Any OVE] UNF| DVZ| MOF| GTZ] EQZ
o1}1' 2! 3] 4! §' 6

TZ] ior | |
| J 1 i 1

7' g! gf] 10! 11/12) 13! 14! 15

BITS | NAME CONTENTS or FUNCTION

0 ANY

1 OVF

Indicates that any of bits 1-4 are set.

Overflow Indicator--while processing

a floating point number, an exponent

overflow occurred; the result is correct

except the exponent is 128 too small.

2 UNF Underflow Indicator - while processing

a floating point number, an exponent

underflow occurred; the result is

correct except that the exponent is

128 too large.

3 DVZ Divide by Zero - while processing a

floating point number, a zero divisor

was detected; division was aborted

and the operands remain unchanged.

4 MOF Mantissa Overflow - during a

FSCL instruction, a left shift

was required.

5 GTZ Greater Than indicator;

the operand in FPAC is

positive and the mantissa is

different from zero.

6 EQZ Equal indicator; the

operand in FPAC is equal to true zero.

This bit examines only the mantissa

and sign of FPAC.

Less Than indicator; the

operand in FPAC is less than zero.

7 LTZ

8-12 | ---

13 1OF

Reserved for future use.

Interrupt off bit; the

FPU will not interrupt the program

for an exponent overflow, exponent

underflow, or divide by zero.

14-15] --- Reserved for future use.

Interrupt Enable and Disable

To provide maximum flexibility, the FPU has an

interrupt disable bit in the status register (bit 13),

and is maskable via the Mask out instruction (bit 5 of

the priority mask). If both these bits are set to 0, the

FPU will signal an interrupt for exponent overflow,

exponent underflow, or divide by zero. These

conditions are represented by bits 1-3 in the status

register. If either or both of the interrupt disable bits

is set to 1, the FPU will not request an interrupt for

any of the above conditions, but will set to one the

representative bit in the status register and bit zero

of the status register. These bits will remain set to 1

until cleared by the programmer. If running with

interrupt disabled, it is the programmer's

responsibility to test the status register periodically

in order to detect errors in floating point processing.

NOTE: The F'PU returns 763 as the device code in

response to the INTA instruction.

V- 12

014-000617-00

PROCESSOR OPTIONS

INSTRUCTION SET

Because the FPU is considered an I/O device by the

CPU, FPU instructions are really I/O instructions

and take the I/O format. The device codes for the

FPU are as follows:

MNEMONIC |DEVICE CODE |MEANING

FPU1 748 Floating Point -

Single Precision

FPU2 158 Floating Point -

Double Precision

FPU3 768 Floating Point Unit -

used for status

instructions and in

diagnostic mode.

When processing a floating point instruction, the

FPU assumes the following:

1. In instructions that refer to operands in memory,

the accumulator specified by AC is assumed to

contain the address of the first word of the storage

that contains or will receive a floating point

number. This area is either 2 or 4 words long,

depending on the precision specified.

In instructions that refer to an operand coming

from memory, the number is assumed to be in the

format described under Number Representation.

The number is assumed to be normalized.

In arithmetic instructions, it is assumed that a

floating point number is already present in FPAC.

014-000617-00

V- 13

Load Floating Point Single

.FLDS ac

DOBP ac FPU1

}o 1 1] ac f1 0 0 1 1144 |

ol1' 2! 3] 4!' 5! 6) 7' BI! 9] 10! 11' 121 13! 14! 15

Moves two words out of memory into a specified

FPAC.

Retrieves the single precision floating point number

starting at the address contained in the specified AC

and places it in FPAC. The low-order 32 bits of FPAC

are set to 0. The operand in memory and the address

in the specified AC remain unchanged.

Load Floating Point Double

.FLDD ac

DOBP ac,FPU2

}o 1 17 ac {1 0 0 4 11°10 44

of/1'2' 31 4!' 5! 61 7!' gp! gf 10! 11! 12] 13!) 14!) 15

Moves four words out of memory into FPAC.

Retrieves the double precision floating point number

starting at the address contained in the specified AC

and places it in FPAC. The operand in memory and

the address in the specified AC remain unchanged.

-FLDD

Store Floating Point Single

.FSRS ac

DOBS ac,FPU1

po 1 af ac [1 0.0 0 1 4 4 4,1 0 0

ol1'2!' 3] 4!' 5!' 617! 8! 9410! 11' 12113! 14! 15

Stores the contents of FPAC into two sequential

memory locations.

Places the floating point number contained in FPAC

in memory beginning at the location addressed by the

contents of the specified AC. Destroys the previous

contents of the addressed memory location and leaves

unchanged the contents of FPAC and the specified

AC. Only the high-order 32 bits of FPAC are stored.

Store Floating Point Double

.FSRD ac

DOBS ac,FPU2

}o 1 tf ac | 1 0 0 1 1 4 1 4-0 44
of 1!' 2' 37 4' 5!' 6| 7! 8! gf 10! 11! 12] 13! 14! 15

Stores the contents of a specified FPAC into four

sequential memory locations.

Places the floating point number contained in FPAC

in memory beginning at the location contained in the

specified AC. Destroys the previous contents of the

addressed memory location and leaves unchanged the

contents of FPAC and the specified AC.

-FAS

Data General Corporation

Add Single

.FAS ac

DOA ac,FPU1

fo 1 1{ ac f[o 1.0 0 01.1 1,1, 0 0]
ol 1! 2' 3/ 4!' 5! 6] 7! 8! 9] 10! 11! 12/13! 14! 15

Retrieves the single precision floating point number

starting at the location addressed by the contents of

the specified AC and adds it to the floating point

number in FPAC, placing the normalized result in

FPAC. Destroys the previous contents of FPAC, and

leaves the contents of the source location and the

address in the specified AC unchanged. Sets the

low-order 32 bits of FPAC to zero.

Floating point addition consists of an exponent

comparison and a mantissa addition. The exponents

of the two numbers are compared, and the mantissa

of the number with the smaller exponent is shifted

right. This mantissa alignment is accomplished by

taking the absolute value of the difference between

the two exponents and shifting the mantissa right

that number of hex digits. The last 8 bits shifted out

are retained as hex guard digits.

If all significant digits are shifted out of the mantissa,

the operation is equivalent to adding the number

with the larger exponent to zero. This requires a shift

of at least 8 hex digits in single precision.

After alignment, the mantissas are added together.

The result of this addition is termed the intermediate

result. The sign of the intermediate result is

determined from the signs of the two operands by the

rules of algebra. If the mantissa addition produces a

carry out of the high-order bit, the mantissa in the

intermediate result is shifted right one hex digit and

the exponent is incremented by one. If this shift

produces an exponent overflow, the OVF bit is set in

the SR, and the instruction is terminated. In this

case, the number in FPAC is correct except that the

exponent is 128 too small.

If there is no mantissa overflow, the mantissa of the

intermediate result is examined for leading hex zeros.

If the mantissa is found to be all zeros, a true zero is

placed in FPAC and the instruction terminates.

If the mantissa is non-zero, the intermediate result is

normalized, and the number placed in FPAC. If the

normalization results in an exponent underflow, the

UNF bit is set in the SR and the instruction is

terminated. The number in FPAC is correct except

that the exponent is 128 too large.

V- 14

014-000617-00

PROCESSOR OPTIONS

Add Double

.FAD ac

DOA ac.FPU2

fo 1 1[ac [o 1,0 0 0,1 1 1°10 14
i 1

of1!' 2!" 3] 4' §' 6] 7!' 8! 9] 10! 11!' 12113! 14! 15

Retrieves the double precision floating point number

starting at the location addressed by the contents of

the specified AC and adds it to the floating point

number in FPAC, placing the normalized result in

FPAC. Destroys the previous contents of FPAC, and

leaves the contents of the source location and the

address in the specified AC unchanged.

Floating point addition consists of an exponent

comparison and a mantissa addition. The exponents

of the two numbers are compared, and the mantissa

of the number with the smaller exponent is shifted

right. This mantissa alignment is accomplished by

taking the absolute value of the difference between

the two exponents and shifting the mantissa right

that number of hex digits. The bits shifted out of the

right end of the mantissa are lost and do not take

part in the addition.

[f all significant digits are shifted out of the mantissa,

the operation is equivalent to adding the number

with the larger exponent to zero. This requires a shift

of at least 14 hex digits in double precision.

After alignment, the mantissas are added together.

The result of this addition is termed the intermediate

result. The sign of the intermediate result is

determined from the signs of the two operands by the

rules of algebra. If the mantissa addition produces a

carry out of the high-order bit, the mantissa in the

intermediate result is shifted right one hex digit and

the exponent is incremented by one. If this shift

produces an exponent overflow, the OVF bit is set in

the SR, and the instruction is terminated. In this

case, the number in FPAC is correct except that the

exponent is 128 too small.

If there is no mantissa overflow, the mantissa of the

intermediate result is examined for leading hex zeros.

If the mantissa is found to be all zeros, a true zero is

placed in FPAC and the instruction terminates.

If the mantissa is non-zero, the intermediate result is

normalized, and the number placed in FPAC. If the

normalization results in an exponent underflow, the

UNF bit is set in the SR and the instruction is

terminated. The number in FPAC is correct except

that the exponent is 128 too large.

014-000617-00

Subtract Single

.FSS ac

DOAS = ac,FPU1

jo 1 1] ac {Oo 1 0 0 1,1 1,141 0 0f
of 1' 2! 3] 4' 5! 6] 7! 8g! 9] 10! 11' 12113! 14! 15

Retrieves the single precision floating point number

starting at the location addressed by the contents of

the specified AC and subtracts it from the floating

point number in FPAC, placing the normalized result

in FPAC. Destroys the previous contents of FPAC,

and leaves the contents of the source location and the

address in the specified AC unchanged. Sets the

low-order 32 bits of FPAC to zero.

Before the operation takes place, the sign bit of the

operand fetched from memory is inverted. After the

inversion, the operation is equivalent to addition.

Subtract Double

.FSD ac

DOAS = ac, FPU2

L° ee Ce

+4 3/4!' 5§!' 6] 7! 8! 9f 10! 11!' 12] 13! 14! 15
Retrieves the double precision floating point number

starting at the location addressed by the contents of

the specified AC and subtracts it from the floating

point number in FPAC, placing the normalized result

in FPAC. Destroys the previous contents of FPAC,

and leaves the contents of the source location and the

address in the specified AC unchanged.

Before the operation takes place, the sign bit of the

operand fetched from memory is inverted. After the

inversion, the operation is equivalent to addition.

V- 15

-FSD

Multiply Single

.FMS ac

DOAP = _ ac,FPU1

Te ee ee ee De 0 |
1 1 i i i 1 i

g8' 9] 10' 11! 12) 13!) 14! 15
1

}o 1 1] AC | 0 10

of ri 2) 3l4' st el
L

\

Retrieves the single precision floating point number

starting at the location addressed by the contents of

the specified AC and multiplies it by the floating

point number in FPAC, placing the normalized result

in FPAC. Destroys the previous contents of FPAC,

and leaves the contents of the source location and the

address in the specified AC unchanged. Ignores the

low-order 32 bits of FPAC during the operation and

sets them to zero in the result. The mantissas of the

two numbers are multiplied together to give the

mantissa of the intermediate result. The exponents of

the two numbers are added together and 64 is

subtracted. This subtraction of 64 maintains the

excess 64 notation. The result of the exponent

manipulation becomes the exponent of _ the

intermediate result. The sign of the intermediate

result is determined from the sign of the two

operands by the rules of algebra.

If the exponent processing produces either overflow

or underflow, the result is held until normalization,

as that procedure may correct the condition. If

normalization does not correct the condition, the

corresponding bit in the SR is set to 1. The number is

correct except that, for exponent overflow, the

exponent is 128 too small, and for exponent

underflow, the exponent is 128 too large.

-FMD

Data General Corporation

Multiply Double

FMD ac

DOAP =. ac,FPU2

}o 1 tf ac }oO 4 0 1 1 1 4 4°14 0 44
of1' 2' 3] 4! 5! 6] 7! 8! gf 10! 11' 12113! 14! 15

Retrieves the double precision floating point number

starting at the location addressed by the contents of

the specified AC and multiplies it by the floating

point number in FPAC, placing the normalized result

in FPAC. Destroys the previous contents of FPAC,

and leaves the contents of the source location and the

address in the specified AC unchanged.

The mantissas of the two numbers are multiplied

together to give the mantissa of the intermediate

result. The exponents of the two numbers are added

together and 64 is subtracted. This subtraction of 64

maintains the excess 64 notation. The result of the

exponent manipulation becomes the exponent of the

intermediate result. The sign of the intermediate

result is determined from the sign of the two

operands by the rules of algebra.

If the exponent processing produces either overflow

or underflow, the result is held until normalization,

as that procedure may correct the condition. If

normalization does not correct the condition, the

corresponding bit in the SR is set to 1. The number is

correct except that, for exponent overflow, the

exponent is 128 too small, and for exponent

underflow, the exponent is 128 too large.

V- 16

014-000617-00

PROCESSOR OPTIONS

Divide Single

.FDS ac

DOA ac,FPU1

0
4. 1 i 1 1 i 1 1 i I i

rat 3] 4! 5! 6] 7! 8! 9] 10! 11! 12113! 14! 15

1 af ac fo 1.0 1 0 1°41 1°10 01

Divides the floating point number in FPAC by the

single precision floating point number starting at the

location addressed by the contents of the specified

AC. Then places the normalized result in

FPAC. Destroys the previous contents of FPAC, and

leaves the contents of the source location and the

address in the specified AC unchanged. Ignores the

low-order 32 bits of FPAC during the operation and

sets them to zero in the result.

The source operand is checked for a zero mantissa. If

the mantissa is zero, the DVZ bit is set in the SR and

the instruction is terminated. The number in FPAC

remains unchanged.

If the mantissa is nonzero, the previous contents of

FPAC are lost. The two mantissas are compared and

if the mantissa of the number in FPAC is greater

than or equal to the mantissa of the source operand,

the mantissa of the number in FPAC is shifted right

one hex digit and the exponent of the number in

FPAC is increased by one. Since all operands are

assumed to be normalized, this guarantees that the

mantissa of the number in FPAC will always be less

than the mantissa of the source operand.

The mantissa in FPAC is then divided by the

mantissa of the source operand and the quotient is

the mantissa of the intermediate result. The

exponent of the source operand is subtracted from

the exponent in FPAC and 64 is added to this result.

This addition of 64 maintains the excess 64 notation.

The result of the exponent manipulation becomes the

exponent of the intermediate result. The sign of the

intermediate result is determined from the sign of the

two operands by the rules of algebra. The result is

normalized and placed in FPAC.

If the exponent processing produces either overflow

or underflow, the result is held until normalization,

as that procedure may correct the condition. If

normalization does not correct the condition, the

corresponding bit in the SR is set to 1. The number in

FPAC is correct except that, for exponent overflow,

the exponent is 128 too small, and for exponent

underflow, the exponent is 128 too large.

014-000617-00

Divide Double

.FDD ac

DOAC- _ ac,FPU2

fo 1 1] ac fo 1 0 10 4 14 1-1 0 44
ofl 1!'2!' 3/14! 5! 6] 7! 8! 9] 10! 11! 12] 13! 14! 15

Divides the floating point number in FPAC by the

double precision floating point number starting at

the location addressed by the contents of the specified

AC. Then places the normalized result in

FPAC. Destroys the previous contents of FPAC, and

leaves the contents of the source location and the

address in the specified AC unchanged.

The source operand is checked for a zero mantissa. If

the mantissa is zero, the DVZ bit is set in the SR and

the instruction is terminated. The number in FPAC

remains unchanged.

If the mantissa is nonzero, the previous contents of

FPAC are lost. The two mantissas are compared and

if the mantissa of the number in FPAC is greater

than or equal to the mantissa of the source operand,

the mantissa of the number in FPAC is shifted right

one hex digit and the exponent of the number in

FPAC is increased by one. Since all operands are

assumed to be normalized, this guarantees that the

mantissa of the number in FPAC will always be less

than the mantissa of the source operand.

The mantissa in FPAC is then divided by the

mantissa of the source operand and the quotient is

the mantissa of the intermediate result. The

exponent of the source operand is subtracted from

the exponent in FPAC and 64 is added to this result.

This addition of 64 maintains the excess 64 notation.

The result of the exponent manipulation becomes the

exponent of the intermediate result. The sign of the

intermediate result is determined from the sign of the

two operands by the rules of algebra. The result is

normalized and placed in FPAC.

If the exponent processing produces either overflow

or underflow, the result is held until normalization,

as that procedure may correct the condition. If

normalization does not correct the condition, the

corresponding bit in the SR is set to 1. The number in

FPAC is correct except that, for exponent overflow,

the exponent is 128 too small, and for exponent

underflow, the exponent is 128 too large.

.FDD

Temporary Buffer Instructions

The Temporary buffer, or TEMP, is a register in the

FPU capable of holding a single or double precision

floating point number. The following instructions use

this register.

-FMTF

Data General Corporation

Move FPAC to TEMP

-FMFT

NIOP FPU2

jo 1 100 000174 14 1 1 41 4 0 44
o{f1'2' 34 4!' 5! 61 7!' 8! gf 10! 11! 12] 13! 14! 15

The double precision floating point number in FPAC

is moved to the TEMP buffer. The number in FPAC

remains unchanged.

If the previous instruction that referred to FPAC was

a single precision instruction, then that instruction

zeroed the low-order half of FPAC and the contents

of FPAC can be handled as a double precision

number.

Move Temp to FPAC

-FMTF

NIOC — FPU2

}o 1 1 0 00001 014 1 1 1 0 44
1 1 yt I I i i fo iL i

of} 1'2!' 3] 4' 5! 6f 7!' g8! gf 10! 11! 124 13!) 14! 15

The double precision floating point number in the

TEMP buffer is moved to FPAC. The number in the

TEMP buffer remains unchanged.

If the previous instruction that referred to the TEMP

buffer was a single precision instruction, then that

instruction zeroed the low-order half of the TEMP

buffer and the contents of the TEMP buffer can be

handled as a double precision number.

V- 18

014-000617-00

PROCESSOR OPTIONS

Add TEMP to FPAC (Single)

.FATS

DOC 0,FPU1

| 0 11001 1 0001 14 14 14 =0 0 |
i i i i i 1 i i i J i i i 1 i

of 1! 2! 3] 4! 5! 6] 7! g! 9] 10! 11' 12113! 14! 15

Adds the floating point number in TEMP to the

floating point number in FPAC and places the

normalized result in FPAC. Leaves unchanged the

number in TEMP. Only the high-order 32 bits of

TEMP and FPAC participate in the operation.

This instruction is identical to the Add single

instruction, except that the second operand comes

from TEMP instead of memory.

Add TEMP to FPAC (Double)

.FFATD

DOC 0,FPU2

}o 1 1.0 0 1 1 0 00 1 1 4°10 1

of 1!' 2! 3] 4! 5! 6] 7! 8! 9] 10! 11! 12113! 14! 15

Adds the floating point number in TEMP to the

floating point number in FPAC and places the

normalized result in FPAC. Leaves unchanged the

number in TEMP.

This instruction is identical to the Add double

instruction, except that the second operand comes

from TEMP instead of memory.

014-000617-00

Subtract TEMP from FPAC (Single)

.FSTS

DOCS _ 0,FPU1

jo 1 10 0 1 1.0 0 14 1 41°14 1 0 0
of 1! 2' 3[4! 5! 6{| 7! 8! 9] 10! 11!' 12113! 14! 15

Subtracts the floating point number in TEMP from

the floating point number in FPAC and places the

normalized result in FPAC. Leaves unchanged the

number in TEMP. Only the high-order 32 bits of

TEMP and FPAC participate in the operation.

This instruction is identical to the Subtract single

instruction, except that the second operand comes

from TEMP instead of memory.

Subtract TEMP from FPAC (Double)

.FSTD

DOCS _ 0,FPU2

fo 1 10 01 1 0 04 4°14 14°10 14
ofl1' 2! 3] 4!' 5! 6] 7! 8! 9] 10! 11' 12] 13! 14! 15

Subtracts the floating point number in TEMP from

the floating point number in FPAC and places the

normalized result in FPAC. Leaves unchanged the

number in TEMP.

This instruction is identical to the Subtract double

instruction, except that the second operand comes

from TEMP instead of memory.

V- 19

.FSTD

Multiply FPAC by TEMP (Single)

MTS

DOCP 0,FPU1

fo 1 10 0 41 1 0 1 4 4 41 4°10 0]
of 1!' 2' 37 4!' §!' 6] 7! 8! 9] 10' 11' 12113! 14! 15

Multiplies the floating point number in FPAC by the

floating point number in TEMP and places the

normalized result in FPAC. Leaves unchanged the

number in TEMP. Only the high-order 32 bits of

TEMP and FPAC participate in the operation.

This instruction is identical to the Multiply single

instruction, except that the second operand comes

from TEMP instead of memory.

Multiply FRAC by TEMP (Double)

MTD

DOCP 0,FPU2

po 1 1°00 1 1 0 4 4 1°14 4°14 0 4)

ol 1'2!' 3/7 4!' 5! 6] 7! 8! 97 10! 11' 12] 13! 14! 15

Multiplies the floating point number in FPAC by the

floating point number in TEMP and places the

normalized result in FPAC. Leaves unchanged the

number in TEMP.

This instruction is identical to the Multiply double

instruction, except that the second operand comes

from TEMP instead of memory.

-FDTD

V- 20

Data General Corporation

Divide FPAC by TEMP (Single)

.FDTS

DOCC _ 0,FPU1

}o 1 1 0,0 1 1 0 10 1 1 1,1 0 0
of 1' 2! 37 4! 5! 6] 7! 8! 9] 10! 11! 12] 13! 14! 15

Divides the floating point number in FPAC by the

floating point number in TEMP and places the

normalized result in FPAC. Leaves unchanged the

number in TEMP. Only the high-order 32 bits of

TEMP and FPAC participate in the operation.

This instruction is identical to the Divide single

instruction, except that the second operand comes

from TEMP instead of memory.

Divide FPAC by TEMP (Double)

FDTD

DOCC 0,FPU2

Jo 1 1 00 41 17°01 0 4 41 4°14 0 44
of1' 2! 3/1 4! 5! 6] 7! g! 9} 10! 11!' 12113! 14! 15

Divides the floating point number in FPAC by the

floating point number in TEMP and places the

normalized result in FPAC. Leaves unchanged the

number in TEMP.

This instruction is identical to the Divide double

instruction, except that the second operand comes

from TEMP instead of memory.

014-000617-00

PROCESSOR OPTIONS

Shift and Logical Instructions

The FPU instructions are included to enable the

programmer to convert numbers from integer

representation to floating point representation and

vice-versa. This section also contains instructions for

logical operations and for working with the Status

Register.

014-000617-00

V- 21

Absolute Value

.FABS

NIOP FPU1

}o 1 1°00 0 00 14 41 14 41 1-1 0 0

ofi1'2!' 31 4!' 5! 6{[7! 8! 9f 10! 11! 121 13! 14! 15

Forces the sign bit of FPAC to zero. Leaves bits 1-63

of FPAC unchanged.

Clear FPAC

.FCLR

NIOS FPU1

}o 1 1.0 00000 1 1 1 1 1 0 0|
oli! 2' 31 4! 5! 6] 7! 8! gf 10' 111 12] 13! 14! 15

Forces all 64 bits of FPAC to zero. That is, the value

of FPAC is forced to true zero.

FCLR

Load Exponent

.FLDX ac

DOBC _ ac, FPU2

| 0 1 1{ ac | 1 001011 1 1 ~0 1 |
Jt l J I I " i i J fol pol

of1!' 2' 37 4!' §!' 6] 7! 8! 9] 10! 11! 12113! 14! 15

Places bits 1-7 of the specified AC in bits 1-7 of

FPAC. Ignores bits 0 and 8-15 of the specified AC.

Leaves unchanged bits 0 and 8-63 of FPAC and the

entire contents of the specified AC.

NOTE: The instruction assumes that the exponent

contained in bits 1-7 of AC is in Excess 64

representation.

Negate

-FNEG

NIOC — FPU1

| 0 1 1.0 0000 101 1 1 1 «0 0 |
_j 1 i i J i i 1 i i | i i i

of14' 2!' 3] 4! §!' 6{ 7! g@! 9410! 11' 12113! 14! 15

Inverts the sign bit of FPAC. Bits 1-63 of FPAC

remain unchanged. If FPAC contains true zero, the

sign bit remains unchanged.

-FHWD

Data General Corporation

Normalize

-FNRM

NIOS FPU2

jo 1 10000001 1 1 1 1 0 14

of1!' 2' 31 4!' 5§!' 6] 7! 8g! 9f 10!' 11! 12113! 14! 15

Normalizes the floating point number in FPAC. Sets

a true zero in FPAC if all the bits of the mantissa are

zero. Sets the UNF flag in the SR if an exponent

underflow occurs. The number in FPAC is then

correct, except that the exponent is 128 too large.

Read High Word

FHWD ac

DIA ac,FPU1

}o 1 1} AC 00 100 1 1 1 1 0 0f

o}1'2!' 3] 4' 5! 6] 7! BF gf 10! 11! 12113! 14! 15

Places the high-order 16 bits of FPAC in the specified

AC, destroys the previous contents of AC, and leaves

unchanged the contents of FPAC.

V- 22

014-000617-00

PROCESSOR OPTIONS

Scale

~FSCL ac

DOB ac,FPU2

rt

| 0 1 1} AC | 1 0

ob TtaT ata ets
1 1

} i i i

10' 11! 12] 13! 14

Shifts the mantissa of the floating point number in

FPAC either right or left, depending upon the

contents of bits 1-7 of the specified AC. Leaves the

contents of AC unchanged.

Treats bits 1-7 of the specified AC as an exponent in

Excess 64 representation. Computes the difference

between this exponent and the exponent in FPAC by

subtracting the exponent in FPAC from the number

contained in bits 1-7 of the specified AC. If the

difference is zero, the instruction is terminated. If the

difference is positive, the instruction shifts the

mantissa contained in FPAC right that number of

hex digits. If the difference is negative, the

instruction shifts the mantissa contained in FPAC

left that number of hex digits and the MOF bit in the

SR is set to 1. After the shift, the contents of bits 1-7

of AC replace the exponent contained in FPAC. Bits

shifted out of either end of the mantissa are lost. If

the entire mantissa is shifted out of FPAC, the

instruction sets F'PAC to true zero.

Read Status

RST ac

DIAC ac,FPU

fo 1 1} ac 00 1 41 0 41 41 1°14 1 Of
4 i 4 4 S 1 4 4 4 i

o}; 1! '3]4a4' 5! 6] 7!' 8! 9] 10! 11! 12} 13! 14! 15

Places the contents of the 16-bit status register (SR)

into the specified AC in the following format and sets

bits 0-4 of the SR to zero.

|ANy OvF|UNF |ovz MOF| GTZ|EQ2| TZ | \OF |
i I J j i

of 1!' 2' 3) 4!' 5! 6] 7' 8! 9} 10! 11!' 12} 13!) 14! 15

BITS |NAME CONTENTS or FUNCTION

0 ANY

1 OVF

Indicates that any of bits 1-4 are set.

Overflow Indicator--while processing

a floating point number, an exponent

overflow occurred; the result is correct

except the exponent is 128 too small.

2 UNF Underflow Indicator - while processing

a floating point number, an exponent

underflow occurred; the result is

correct except that the exponent is

128 too large.

3 DVZ Divide by Zero - while processing a

floating point number, a zero divisor

was detected; division was aborted

and the operands remain unchanged.

4 MOF Mantissa Overflow - during a

.FSCL instruction, a left shift

was required.

5 GTZ Greater Than indicator;

the operand in FPAC is

positive and the mantissa is

different from zero.

6 EQZ Equal indicator; the

operand in FPAC is equal to true zero.

This bit examines only the mantissa

and sign of FPAC.

Less Than indicator; the

operand in FPAC is less than zero.

7 LTZ

Reserved for future use.

Interrupt off bit; the

FPU will not interrupt the program

for an exponent overflow, exponent

underflow, or divide by zero.

8-12 | ---

13. | IOF

14-15] --- Reserved for future use.

V- 23

014-000617-00 .FRST

Write Status

FWST ac

DOA ac,FPU

[o 1 1| AC
1 1

oj} 1! 2! 3] 4
i 1

5' 6|

10 0 0 14 4 = 1 1 O

7' g! 9

1

1 } I i i I I

! 1 10' 11!' 1241131 147 15

Places the contents of the spcified AC in the status

register. Leaves unchanged the contents of the

specified AC.

-FWST

V- 24

Data General Corporation

014-000617-00

Chapter VI

VIRTUAL CONSOLE (VC)

VC is a program which permits you to perform

control panel functions via the operator’s console.

Simple commands which you enter on a terminal

keyboard allow you to examine and/or modify any

processor register or memory location.

VC is supplied by Data General on the NOVA 4 as a

set of read-only memory (ROM) units. They are not

in the normal address space, so they are transparent

to program operation.

The CPU may enter the VC program either upon

power-up, or in response to the RESET switch or the

console BREAK key. Certain conditions must be met

by the state of the console keyswitch and the logic

signal from the power supply which indicates that

the contents of memory have been destroyed since

power-down. The CPU may also execute a self-test

routine to check the processor and the first 16k words

of memory. The following table summarizes the

CPU’s response to various actions.

014-000617-00

VI- 1

Keyswitch Locked Unlocked

MEMORY | DATA DATA DATA DATA

STATE OK LOST OK LOST

Action:

Power-up Restart Self-test Enter VC Self-test

user and (no and

program. enter VC self-test). enter
VC

RESET No No Enter VC Self-test

switch function. function. (no and

self-test). enter
VC

Console No No Enter VC Enter

VC

BREAK key | function. function. (no (no

self-test). self-
test).

If it executes the self-test, VC types the letters OK on

the console. Then it types an octal number, which is

the value of the program counter when VC was

entered. (On power-up, this number is 0.) VC then

types a! on the terminal. This is the prompt; it tells

you that VC is in control and ready to accept a

command.

VIRTUAL CONSOLE (VC)

Command Format

An VC command consists of a single character. Some

commands must be preceded by an argument which is

any octal number. Numbers that are used as memory

addresses may be up to 17 bits long, to support the

MAP. Numbers which are used as data are truncated

to 16 bits.

If you wish to cancel the entire line that you have just

entered, type a K. VC prints a ? followed by a new

line, and also closes the current cell if it is open

(described in detail below). The ? followed by a new

line is also printed if you type a character which VC

does not recognize, or in case VC detects a user error.

Cells

VC operates on cells. A cell is either a physical

memory location, or an internal processor register (

internal cell) such as an accumulator. In order to

examine or modify any cell, you must open it.

Opening a cell causes its contents to be printed, in

octal, on your terminal.

To open an internal cell, use the command nA where

nis one of the numbers listed in the table below.

INTERNAL CELLS

CELLNUMBER OCTAL

0-3 The accumulators ACO through AC3.

4 Return address: the contents of the

program counter when VC

was Called.

5 Stack pointer.

6 Frame pointer.

7 bit 15: Interrupt enable flag:

O = interrupts off.

1 = interrupts on.

10 MAP status word.

11 Switch register: the contents of this

location are placed in an accumulator

when a user program executes

a READS instruction.

12 Bit 15: carry bit.

To open a memory location, use the / command.

Typing n/opens the location addressed by n. Typing /

without an argument opens the cell addressed by the

currently open cell (the current cell).

VIRTUAL CONSOLE (VC)

VI-2

Data General Corporation

Modifying a Cell

Once you have opened a cell, you may change its

contents by simply typing the number whose value is

to be placed in the cell. Terminate the number by

typing a carriage return or newline. If you type a

newline, the next consecutive memory location or

internal cell will be opened. This is convenient when

you need to enter data into several consecutive cells.

Program Control

When VC is entered, it places the contents of the

program counter into the 4A internal cell. Typing P

causes VC to return to the location specifed by 4A.

You can also return to a program by typing nkR. In

this case, the CPU executes an IORST instruction, and

resumes program execution at the location specifed

by n (truncated to 15 bits).

Other commands which VC accepts are listed in the

table below.

Command Function

I Initialize the system: execute an

IORST, and clear the MAP.

nw Perform a program load from device code

n. (Bit O of n must be 1

for a data channel device.)

F Perform a field service cassette load

(for Data General use only).

014-000617-00

APPENDIX A

|/O DEVICE CODES AND DATA GENERAL MNEMONICS

OCTAL

DEVICE PRIORITY

CODE MNEMONIC MASK BIT DEVICE NAME

00 ---- -- Unused

01 MDV -- Multiply/ Divide

02 MAP -- Memory Management Unit

03 MA Pl

05

06 MCAT 12 Multiprocessor adapter transmitter

07 MCAR 12 Multiprocessor adapter receiver

10 TTI 14 TTY input

11 TTO 15 TTY output

12 PTR 11 Paper tape reader

13 PTP 13 Paper tape punch

14 RTC 13 Real-time clock

15 PLT 12 Incremental plotter

16 CDR 10 Card reader

17 LPT 12 Line printer

20 DSK 9 Fixed head disc

21 ADCV 8 A/D converter

22 MTA 10 Magnetic tape

23 DACV -- D/A converter

24 DCM 0 Data communications multiplexor

20

26

27

30 QTY 14 Asynchronous hardware multiplexor

30, SLA 14 Synchronous line adapter

31 IBM1 ,
39 IBM2 13 IBM 360/370 interface

33 DKP 7 Moving head disc

34 CAS 10 Cassette tape

2

se ore 8 11 Multiline asynchronous controller

36 IPB 6 Interprocessor bus--half duplex

37 IVT 6 IPB watchdog timer

40 DPI 8 IPB full duplex input

41 DPO 8 IPB full duplex output

40° SCR 8 Synchronous communication receiver
414 SCT 8 Synchronous communication transmitter
42 DIO 7 Digital I/O

43 DIOT 6 Digital I/O timer |

DG-01932

2Code returned by INTA

3can be set up with any unused even device code equal to 40 or above

4can be set up with any unused odd device code equal to 41 or above

A-1 of 2

APPENDIX A (Continued)

I/O DEVICE CODES AND

DATA GENERAL MNEMONICS

OCTAL

DEVICE PRIORITY

CODE MNEMONIC MASK BIT DEVICE NAME

44 MXM 12 Modem control for MX1/MX2

45

46 MCAT1 12 Second multiprocessor transmitter

47 MCARI1 12 Second multiprocessor receiver

o0 TTI 14 Second TTY input

ol TTO1 15 Second TTY output

O2 PTRI1 11 Second paper tape reader

O03 PTP1 13 Second paper tape punch

04 RTC1 13 Second real-time clock

D0 PLT1 12 Second incremental plotter

06 CDRI1 10 Second card reader

O7 LPT1 12 Second line printer

60 DSK1 9 Second fixed head disc

61 ADCV1 8 Second A/D converter

62 MTAI1 10 Second magnetic tape

63 DACV1 -- Second D/A converter

64

65

66

67

70 QTY1 14 Second asynchronous hardware multiplexor

10, SLAI 14 Second synchronous line adapter

i 13 Second IBM 360/370 interface

73 DKP1 7 second moving head disc

742 FPUL |
79 FPU2 O Floating point

76 FPU |
77 CPU -- Central processor and console functions

*Code returned by INTA

Scan be set up with any unused even device code equal to 40 or above

4 Can be set up with any unused odd device code equal to 41 or above

APPENDIX B

OCTAL AND HEXADECIMAL CONVERSION

To convert a number from octal or hexadecimal to

decimal, locate in each column of the appropriate 16° 167 16° 167 16!
_—oO

table the decimal equivalent for the octal or hex

digit in that position. Add the decimal equivalents 0 0 0 0} 0
1,048,576 | 65,536] 4,096] 256] 16to obtain the decimal number

2,097,152 | 131,072 | 8,192 012 | 32

3,145, 728 | 196,608 | 12, 288 768 | 48

4,194, 304 | 262,144 | 16,384 |1,024) 64

0,242,880 | 327,680 | 20,480 | 1,280 | 80

6,291, 456 | 393, 216 | 24,576 |1,536 | 96

7,340,032 | 458,752 | 28,672 | 1,792 |112

8,388,608 | 524, 288 | 32, 768 | 2,048 | 128

9,437, 184 | 589, 824 | 36, 864 | 2,304 | 144

10, 485, 760 | 655, 360 | 40, 960 | 2,560 | 160

To convert a decimal number to octal or hexa-

decimal:

1. Locate the largest decimal value in the

appropriate table that will fit into the

decimal number to be converted;

2. note its octal or hex equivalent and column

position;

3. find the decimal remainder.

Repeat the process on each remainder. When the

remainder is 0, all digits will have been generated. yim Oo OQOwW PrP OWA DTH PF WwW HY fF OC oO Oot Dm oO PF WW DO KF OO
poe ©

11,534, 336 | 720,896 | 45,056 | 2,816 |176 |11

3? 34 3° g2 | gl | 2 12,582,912 | 786, 432 | 49,152 | 3,072 |192 |12

0 0 0 0 o0 | o| o 13,631, 488 | 851, 968 | 53, 248 | 3,328 | 208 |13

1 | 32,768 | 4,096 512 | 64 1 14,680,064 | 917,504 | 57,344 | 3,584 |224 |14

2 | 65,536 | 8,192 | 1,024 | 128 | 16 | 2 15,728,640 | 983,040 | 61, 440 | 3,840 | 240 |15

3 | 98,304 | 12,228 | 1,536 | 192 | 24 | 3

4 | 131,072 | 16,384 | 2,048 | 256 | 32 | 4

5 | 163,840 | 20,480 | 2,560 | 320 | 40 | 5

6 | 196,608 | 24,576 | 3,072 | 384 | 48 | 6

7 | 229,376 | 28,672 | 3,584 | 448 | 56 |] 7

B-1 of 2

This page intentionally left blank.

B-2

ASCII

APPENDIX C

CHARACTER CODES

To Produce

ton even parity TTY's, these codes are odd parity

C-1 of 4

ASCII Control On TTY Mod 33, 39 Even Parity

Decimal Octal Hex Character Function Cntrl Shift Char 8-bit code

0 000 00 NUL Null 4 Y Pp 00

1 001 01 SOH Start of Heading 4 A 81
2 002 02 STX Start of Text 4 B 82
3 003 03 ETX End of Text 4 C 03
4 004 04 EOT End of Transmission Y D 84

oD 005 05 ENQ Enquiry Y E 05
6 006 06 ACK Acknowledge 4 F 06
7 007 07 BEL Bell Y G 87
8 010 08 BS Backspace 4 H 88
9 011 09 HT Horizontal Tab 4 I 09

10 012 OA NL New Line line feed OA
4 J OA

J line feed gal
11 013 OB VT Vertical Tab 4 K 8B

12 014 OC FF Form Feed / L OC
13 015 OD RT Return return 8D

4 M 8D

Y return op!
14 016 OF SO Shift Out Y N 8E

15 017 OF SI Shift In 4 O OF

16 020 10 DLE Data Link Escape Y Pp 90

17 021 11 DC1 Device Control 1 4 Q 11

18 022 12 DC2 Device Control 2 Y R 12

19 023 13 DC3 Device Control 3 4 S 93

20 024 14 DC4 Device Control 4 / T 14

21 025 19 NAK Negative Acknowledge 4 U 95

22 026 16 SYN Synchronous Idle 4 V 96

23 027 17 ETB End Transmission Block 4 W 17

24 030 15 CAN Cancel ‘ X 18

25 031 19 EM End of Medium 4 Y 99

26 032 1A SUB Substitute 4 Z 9A

27 033 1B ESC Escape esc 1B

4 4 K 1B

28 034 1C FS File Separator Y 4 L 9C

29 035 1D GS Group Separator 4 Y M 1D

30 036 1E RS Record Separator 4 4 N 1E

31 037 1F US Unit Separator Y 4 O OF

32 040 20 SP Space Space AO

33 041 21 4 1 21

34 042 22 " 4 2 22

39 043 23 # 4 3 A3

36 044 24 $ 4 4 24

37 045 20 % 4 D Ad

38 046 26 & 4 6 A6

39 047 27 ' 4 7 27

40 050 28 (4 8 28

41 051 29) / 9 AQ

DG-O1939

APPENDIX C (Continued)

ASCII CHARACTER CODES

To Produce

ASCII On TTY Mod 33, 35 Even Parity

Decimal Octal Hex Character Cntrl Shift Char 8-bit code

42 052 2A * 4: AA

43 053 2B + 4 3 2B

44 054 2C , , 2C

45 055 2D - - 2D

46 056 2E , , 2E

47 057 2F / / AF
48 060 30 0 0 30

49 061 31 1 1 Bl

20 062 32 2 2 B2

D1 063 33 3 3 33

D2 064 34 4 4 B4

3 065 30 5 5 35

24 066 36 6 6 36

D0 067 37 7 7 B7

56 070 38 8 8 B8

57 071 39 9 9 39

28 072 3A : 3A

59 073 3B ; BB

60 074 3C < Ys, 36

61 075 3D = 4 - BD

62 076 3E > 4, BE

63 O77 3F ? Y / 3F

64 100 40 @ Y Pp CO

65 101 41 A A 41

66 102 42 B B 42

67 103 43 C C C3

68 104 44 D D 44

69 105 45 E E Co

70 106 46 F F C6

71 107 47 G G 47

72 110 48 H H 48

73 111 49 I I C9

74 112 4A J J CA

75 113 4B K K 4B

76 114 4C L L CC

77 115 4D M M 4D

78 116 4E N N 4E

79 117 4F O O CF

80 120 90 Pp P 20

81 121 D1 Q Q D1

82 122 D2 R R D2

83 123 3 S S D3

84 124 54 T T D4

DG -O1939

APPENDIX C (Continued)

ASCII CHARACTER CODES

To Produce

ASCII On TTY Mod 38, 35 Even Parity

Decimal Octal Hex Character Cntrl Shift Char 8-bit code

85 125 0 U U 00

86 126 ‘ 56 V V 06

87 127 O7 W W D7

88 130 28 X X D8

89 131 a9 Y Y 29

90 132 oA Z Z oA

91 133 0B [Y KK DB

92 134 oC \ Y LL oC

93 135 oD | Y/Y M DD

94 136 oF A Y N DE

95 137 OF — Y O oF

96 140 60 \ 60

97 141 61 a El

98 142 62 b E2

99 143 63 Cc 63

100 144 64 d E4

101 145 65 e 65

102 146 66 f 66

103 147 67 g E7

104 150 68 h E8

105 151 69 i 69

106 152 6A j 6A

107 153 6B k EB

108 154 6C 1 6C

109 155 6D m ED

110 156 6E n EE

111 157 6F O 6F

112 160 70 p FO

113 161 71 q 71

114 162 72 r 72

115 163 73 Ss F3

116 164 74 t 74

117 165 75 u FO

118 166 76 V F6

119 167 77 Ww 77

120 170 78 X 78

121 171 79 y F9

122 172 TA Z FA

123 173 7B | 7B

124 174 TC FC

125 175 TD t TD
126 176 TE ~ TE

127 177 TF DEL rubout FF

DG-OI939

This page intentionally left blank.

SALES AND SERVICE OFFICES

Alabama: Birmingham

Arizona: Phoenix, Tucson

Arkansas: Little Rock

California: El Segundo, Fresno, Palo Alto, Sacramento, San Diego,

San Francisco, Santa Ana, Santa Barbara, Van Nuys

Colorado: Englewood

Connecticut: North Branford

Florida: Ft. Lauderdale, Orlando, Tampa

Georgia: Norcross

Idaho: Boise

Illinois: Peoria, Schaumburg

Indiana: Indianapolis

Kentucky: Louisville

Louisiana: Baton Rouge

Maryland: Baltimore

Massachusetts: Springfield, Wellesley, Worcester

Michigan: Southfield

Minnesota: Richfield

Missouri: Kansas City, St. Louis

Nevada: Las Vegas

New Hampshire: Nashua

New Jersey: Cherry Hill, Wayne

New Mexico: Albuquerque

New York: Buffalo, Latham, Melville, Newfield, New York,

Rochester, Syracuse, White Plains

North Carolina: Charlotte, Greensboro

Ohio: Columbus, Dayton, Brooklyn Heights

Oklahoma: Oklahoma City, Tulsa

Oregon: Portland

Pennsylvania: Blue Bell, Carnegie

Rhode Island: Rumford

South Carolina: Columbia

Tennessee: Knoxville, Memphis

Texas: Austin, Dallas, El Paso, Ft. Worth, Houston

Utah: Salt Lake City

Virginia: McLean, Norfolk, Richmond, Salem

Washington: Kirkland

West Virginia: Charleston

Wisconsin: West Allis

France: Le Plessis Robinson

Italy: Milan, Padua, Rome

The Netherlands: Rijswijk

New Zealand: Auckland, Wellington

Sweden: Gothenburg, Malmoe, Stockholm

Switzerland: Lausanne, Zurich

United Kingdom: Birmingham, Dublin, Glasgow, London, Manchester

West Germany: Filderstadt, Frankfurt, Hamburg, Munich, Ratingen,

Rodelheim

MANUFACTURER’S REPRESENTATIVES

& DISTRIBUTORS

Argentina: Buenos Aires

Costa Rica: San Jose

Ecuador: Quito

Egypt: Cairo

Finland: Helsinki

Greece: Athens

Hong Kong: Hong Kong

India: Bombay

Indonesia: Jakarta

Iran: Tehran

Israel: Givatayim

Japan: Tokyo

Jordan: Amman

Korea: Seoul

Kuwait: Kuwait

Lebanon: Beirut

Malaysia: Kuala Lumpur

Mexico: Mexico City

Nicaragua: Managua

Nigeria: Lagos, Ibadan

Norway: Oslo

Peru: Lima

Philippine Islands: Manila

Puerto Rico: Hato Rey

Saudi Arabia: Riyadh

Singapore: Singapore:

South Africa: Johannesburg, Pretoria

Spain: Barcelona, Bilbao, Madrid, San Sebastian, Valencia

Taiwan: Taipei

Thailand: Bangkok

Uruguay: Montevideo

Venezuela: Maracaibo

ADMINISTRATION, MANUFACTURING

RESEARCH AND DEVELOPMENT

Massachusetts: Cambridge, Framingham, Westboro, Southboro

Maine: Westbrook

New Hampshire: Portsmouth

California: Anaheim, Sunnyvale

North Carolina: Research Triangle Park, Johnston County

Hong Kong: Kowloon, Tai Po

Thailand: Bangkok

