DASHER" LP2 AND TP2 PRINTERS
User's Manual

SPECIFICATIONS

General

Print Rate
Print Method
Character Style
Character Size
Character Fonts

Paper Forms

180 characters per second (logic seeking, bidirectional)

Serial 9-wire, impact through ribbon
7×9 dot matrix

Height: $\quad 2.67 \mathrm{~mm}\left(0.105^{\prime \prime}\right)$
Width: $1.93 \mathrm{~mm}\left(0.076^{\prime \prime}\right)$ (normal width characters)

American, British, French, German, Spanish and Swedish

Pin-feed, fan-fold, 1 to 6 parts.

Width: 10.2 cm to 38.1 cm (4' to $15^{\prime \prime}$)
Hole spacing: $1.27 \mathrm{~cm}\left(0.5^{\prime \prime}\right)$ centers (nom.)
Maximum form thickness: $0.625 \mathrm{~mm}\left(0.025^{\prime \prime}\right)$
Form weight: 5.45 Kg (12 lbs.) paper
3.63 Kg (8 lbs.) carbon

Form crimps: tab type only
Fabric ribbon, cartridge type, continuous loop.

Electrical

Parallel Interface (LP2 Printers)

Serial Interface (TP2 Printers)

Power Requirements

Power Dissipation

Power Cable

External I/O Cables (max. length)

Compatible with 8-bit line printer interfaces which include STROBE, DEMAND, and READY signals.

Plug compatible with either 20 mA current loop or EIA RS-232C voltage interface. Available with. MODEM interface.

120, 220/240 volts ac (nom.), 47 to 63 Hz .

Idle: 140 Watts (typical) Running: 300 Watts (typical)
$1.8 \mathrm{~m}(6 \mathrm{ft}$.
Parallel interface: 7.4 meters (25 feet) Serial interface:
$20 \mathrm{~mA}-457$ meters (1,500 feet) EIA - 7.6 meters (50 feet)

Mechanical

Dimensions Height: $85.7 \mathrm{~cm}\left(33.75^{\prime \prime}\right)$
Depth: $53.3 \mathrm{~cm}\left(21^{\prime \prime}\right)$
Width: $67.3 \mathrm{~cm}\left(26.5^{\prime \prime}\right)$
Weight $\quad 27 \mathrm{~kg}$ (60lbs.)

Electro-Mechanical

Printhead Drive	Lead screw driven by permanent magnet stepping motor
Print Wire	Pulse Width: 400 microseconds Actuating voltage: 48 VDC (primary) 12 VDC (secondary)
Ribbon Drive	Solenoid Current: 4 Amps (max.) Cable drive; bidirectional input, unidirectional output clutch box
Paper Feed	Pin-feed tractors driven by permanent magnet stepping motor and timing belt, eight 7.5 deg
	steps per line at 6 lines per inch spacing.

Environmental

Temperature Ranges	Operating: 10 deg C to 40 deg C (50 degF to 104 deg) Storage: -40 deg C to 60 degC (-40 degF to 140 degF)
Humidity Ranges	Operating: 10% to 90% (non-condensing) Storage: 5% to 95% (non-condensing)
Maximum Altitude	15,250 meters ($50,000 \mathrm{ft}$.)

DASHER" ${ }^{\text {" }}$ LP2 AND TP2 PRINTERS
 User's Manual

PREFACE

This manual is a guide to installing and using your DASHER ${ }^{\text {rM }}$ LP2 or TP2 Printer. It covers programming, interfacing and cabling, installation, and architecture. For information about operating your printer, see the DASHER ${ }^{\top M}$ LP2 and TP2 Printers Operator's Manual, No. 014-000093.

NOTICE

Data General Corporation (DGC) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and maintenance of DGC equipment and software. The drawings and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC prior written approval nor be implied to grant any license to make, use, or sell equipment manufactured in accordance herewith.

DGC reserves the right to make changes without notice in the specifications and materials contained herein and shall not be responsible for any damages (including consequential) caused by reliance on the materials presented, including but not limited to typographical or arithmetic errors, company policy and pricing information. The information contained herein on DGC software is summary in nature. More detailed information on DGC software is available in current released publications.

NOVA, INFOS and ECLIPSE are registered trademarks of Data General Corporation, Westboro, Massachusetts. DASHER and microNOVA are trademarks of Data General Corporation, Westboro, Massachusetts.

THIRD EDITION

(First Printing December 1979)

First Edition

(First Printing March 1978)

Second Edition

(First Printing January 1979)

Ordering No. 014-000094
© Data General Corporation, 1978,1979
All Rights Reserved
Printed in the United States of America
Rev. 03, December, 1979

CONTENTS

INTRODUCTION

BASIC ELEMENTS
 FEATURES AND OPTIONS

Standard Features On All Models

Optional Features

PROGRAMMING

INTRODUCTION

CODE RECEPTION

Printing Character Codes
Control Codes
Escape Sequences
Horizontal Tabs
Vertical Tabs (Option on S models)
Elongated Printing
Underscoring
Plotting
Resetting the Printer (Master Reset)
Compressed Printing (Option)
Down Line Loaded Character Set
PLOTTING
An Example
DOWN-LINE-LOADING A CHARACTER SET
Character Sets
Defining a Character Set
Loading A Character Set
An Example
Selecting Your Character Set
Example Continued
SUMMARY OF PROGRAMMING RULES

CHAPTER III

INTERFACING AND CABLING

LP2-TP2 INTERFACING
Parallel Interface
Serial Interface
Local Copy
Printer Busy Signal
MODEM Control Signals
Auto-answer/Auto-disconnect Feature
CABLING
Parallel Interface I/O Cables
Serial Interface I/O Cables
INSTALLATION

CHOOSING A SITE

UNPACKING
TAILORING
Jumpering the Main Control PC Board
Jumpering the Options PC Board
Serial Interface Configuration Jumpers
Local Copy Select Jumpers
Software Busy Jumpers
MODEM Configuration Jumpers
OPERATIONAL CHECK-OUT
Offline Check-out
Online Check-out
FAULT DETECTORS
Power Line Circuit Breaker
RDY (Ready) Light
FAULT Light
Head Fault Light
RUN Light
Overvoltage Fault
Undervoltage Fault

CHAPTER V

APPENDIX A

APPENDIX B

ARCHITECTURE

INTRODUCTION

THE MICROPROCESSOR
MEMORY
PRINTHEAD AND CARRIAGE ASSEMBLY
The Printhead
The Carriage
Position Transducers
PAPER FEED ASSEMBLY
Sensing Paper Movement
THE CONTROL PANELS
THE KEYBOARD AND NUMERIC PAD
THE PARALLEL INTERFACE
SERIAL INTERFACE
Reception
Transmission
Control
POWER SUPPLY
ASCII - 128 CHARACTER CODES
INTERNATIONAL CHARACTER SETS

DASHER LP2 AND TP2 PRINTERS

CHAPTER I

INTRODUCTION

BASIC ELEMENTS

All DASHER"LP2 and TP2 printers are capable of printing at speeds of up to 180 characters per second. Printing is bidirectional and incorporates a "logic seeking" algorithm. This algorithm determines the shortest route to a character, reducing the time that would normally be spent performing unnecessary carriage returns.

The printing mechanism contains a nine-wire printhead which forms 7×9 dot-matrix characters. A leadscrew assembly moves the printhead to ensure precise printhead positioning. Movable, pin-feed tractors accommodate 1 to 6 part forms ranging from 4 to 15 inches in width.

The printers are equipped with either a parallel or serial interface. DASHER LP2 printers are equipped with a parallel interface which allows you to attach them to a system in place of a line printer. DASHER TP2 printers are equipped with a serial interface which allows you to attach them to an asynchronous communications line. Both EIA RS-232C or 20 mA current loop connections are provided on serial interface models. In addition, these models may be used in conjunction with Bell 103, 202, and 212 compatible MODEMs.

FEATURES AND OPTIONS

DASHER LP2 and TP2 printers include the following features:

- Horizontal and vertical tabbing
- Plotting
- Underscoring
- Elongated printing
- 6 or 8 lines/inch spacing
- Automatic form feed (option on S models)
- Down line loaded character set
- Compressed printing (option)
- Alternate character set (option)

In addition, the switch selectable view mode allows you to see the last characters printed by moving the printhead out of the way if there is a pause in printing.
You may purchase your printer with one of six international character fonts: American, British, French, German, Spanish and Swedish. The model 1192 option allows TP2 printers to have two such character fonts.

The following table lists the various models of DASHER LP2 and TP2 printers along with the available options.

DASHER LP2 AND TP2 PRINTERS

PRINTERS		ADDITIONAL FEATURES INCLUDED (NOT COMMON TO ALL MODELS)	ADDITIONAL FEATURES AVAILABLE AS OPTIONS	
MODEL *	DESCRIPTION		MODEL *	DESCRIPTION
6073 (S) 6074	Receive-only printer Receive-only printer	Automatic form feed Parallel interface Automatic form feed Parallel interface Compressed print	..	
6075	Receive-only printer	Automatic form teed Serial interface	1192-X	Alternate Character Set
(S)6076	Receive-only printer	Automatic form feed Serial interface Compressed print	1192-X	Alternate Character Set
6077	Keyboard send receive terminal	Automatic form feed Serial interface Keyboard Numeric pad	1192-X	Alternate Character Set
(S)6078	Keyboard send, receive terminal	Automatic form feed Serial interface Numeric pad Compressed print Keyboard	1192-X	Alternate Character Set
6086	Receive-only printer	Automatic form feed Parallel interface NOVA ECLIPSE programmed I O controller Paper holder	1192-X	Alternate Character Set
6087	Receive-only printer	Automatic form feed Parallel interface Compressed print NOVA ECLIPSE programmed I O controller Paper holder		
6088	Receive-only printer	Automatic form feed Parallel interface NOVA ECLIPSE data channel controller Paper holder		
6089	Receive-only printer	Automatic form feed Parallel interface Compressed print NOVA ECLIPSE data channel controller Paper holder		
S6073	Receive-only printer	Parallel interface	S1146	Quantity 5 of Automatic form feed
S6075	Receive-only printer	Serial interface	$\begin{gathered} \text { S1146 } \\ \text { S1192-X } \end{gathered}$	Quantity 5 of Automatic form feed Quantity 5 of 1192-x
S6077	Keyboard send/receive terminal	Serial interface Keyboard	S1146 S1147 S1 192-X	Quantity 5 of Automatic form feed Quantity 5 of Numeric pad Quantity 5 of 1192-x
			1149A 1149B 1149C S1149A 1127 A S1127A	Box of 12 ribbon cartridges (for all models) Quantity 5 of 1149A Quantity 50 of 1149A Quantity 5 of 1149A Paper holder Quantity 5 of 1127A

* Model numbers with an S prefix are available to Data General

Corporation's independent resellers. Consult your salesman. In ordering
alternate character sets use the following designators in place of X :

$$
\begin{array}{ll}
\mathbf{A}=\text { Standard ASCII Font } & \mathrm{D}=\text { German Character Font } \\
\mathbf{B}=\text { UK Character Font } & \mathrm{F}=\text { Swedish Character Font }
\end{array}
$$

$\mathrm{C}=$ French Character Font $\mathrm{G}=$ Spanish Character Font

DG-05510

Standard Features on All Models

Horizontal Tabbing - Allows you to set or clear horizontal tabs anywhere in the 132 character line. Any number of tabs may be set using just one escape sequence.

Vertical Tabbing - Allows you to move quickly to any line in your form. You can set all the vertical tabs for a form using just one escape sequence (automatic form feed option must be installed).

Plotting - Allows you complete control over 7 of the 9 individual print wires. The 7-bit codes received by your printer directly determine which of these seven printhead wires will fire to form a particular column. While in plot mode, there is no interline spacing so you can print continuous graphs.

6 or 8 Lines/Inch - Allows you to select the interline spacing you want on your form. The selection is made by a switch located on the Secondary Control Panel.

Elongated Printing - Allows you to print characters at twice the width of normal characters (normal $=10$ characters/inch; elongated $=5$ characters/inch). You can switch to elongated printing at any time for as long as you like.

Underscoring - Allows you to underline characters, strings, or complete lines. The underscore is printed at the same time as the character so your printer doesn't waste time scanning a line twice to fill in the underscores.

Down Line Loaded Character Set - Allows your system to load a character set into your printer. You may design your own character set with up to 118 printable characters.

Optional Features

Parallel Interface - Allows you to connect your printer to systems equipped with a parallel ASCII line-printer interface. The parallel interface transfers 8 bits of information at a time. In addition, it sends signals which inform the system when the printer is powered-up and online as well as when the printer's buffer can accept characters.

Serial Interface - Allows you to connect your printer to asynchronous communications equipment. This interface transfers a serial data stream in either direction between your printer and a communications system. The interface has eight different transfer rates from 110 to 4800 baud. In addition, there are a number of jumper selectable data formats.

NOVA/ECLIPSE Programmed I/O Controller - Allows you to connect your printer to a Data General system previously without a line printer interace. The controller communicates with a NOVA or ECLIPSE CPU via programmed I/O instructions. It resides on a 15 -inch square circuit board which plugs into any I/O slot of a NOVA or ECLIPSE computer chassis.

NOVA/ECLIPSE Data Channel Controller - Allows you to connect your printer to a Data General system previously without a line printer interface. The controller communicates with a NOVA or ECLIPSE CPU via the data channel. It resides on a 15 -inch square circuit board which plugs into any I/O slot of a NOVA or ECLIPSE computer chassis.

Automatic Form Feed - Allows you to advance the paper to the top of the next form in one operation. This option must be installed if you want to use vertical tabbing. Included is the automatic perforation skip-over feature which allows you to skip the perforation between forms.

Compressed Print - Allows you to print 132 characters/line on $81 / 2$-inch wide paper instead of 14-inch paper.

	CHARACTERS PER INCH	
	REGULAR	ELONGATED
Normal	10	5
Compressed	16.5	8.25

Alternate Character Set - Allows you to print characters from a second and completely independent character set. This second character set may be any one of the five international character fonts. You may switch from one character set to the other on a character by character basis.

Ribbon Cartridges - Replacement fabric-type, continuous-feed ribbon cartridges for use on all model printers.

Paper Holder - Collects and stacks fan-fold style forms from your printer.

This is an example of the UASHER LF2 arid TP2 pririters capabilities. The lext you are reading is printed using normul width characters at 6 lines per iricn vertacas spocirig.
This is an example of the HASHER LH2 and TH2 printers, capanilities: The text you are readiny $1 s$ printed using normal width characters at 8 lines per inch vertical spacirg.
rnis is artevampleof themASHEF

 6 1. i. ries per irach verti.cai. spacirig-

This is an example of the DASHER LP2 and TP2 printers' cupaonitities. The text you ore reading is printeo using compressed width chorocters at o infes per inch vertical spacing.

This is an example of the fasher LF2 and TPZ printers' capabilities. The text you ore reoding 15 printed using compressea width characters at 8 lines per inch vertical spacing.

This is on example of the DASHER LF2 and TP2
printers' capabilities. The text you are readirig is printed using elongated compressed width characters at 6 lines per inch vertical spacing.

This is an example of the fIASHER LP2 and TF2
printers capabilities. The text yoy are reading is pririted using elongated compressed width characters at giniries per irich verticai spacing.

Coppressed Print ungetscorea
Reguiar Frim, bricerscorea
Compressed Elongated Frint Urderscored

DG-04833

INTERNATIONAL CHARACTER SET EXAMPLES

```
Tmese are the cmaracter sets avalimbie on
HASHER qF2 anda TES primbers.
THE U.S. CHARACTERE SET TS:
ARCDEF GHI JKLMNOFQRSTUUWXYZ
abcedefghi 1k, maopur= buv\omega\uz
```



```
The FRENLH cmumacter set
ABCMEEGHJ, KLMNOEQRST LUWXY?
abcidefobu ,k lmmogar=tuvw:y:
```



```
The GE kmeN charmater set
ABCOEFGHI_MN MNOFUESTUOWXYZ
akcuefgha IN fmmomut: tu*w.uz
```



```
The SumgmeH chamwoter =et 1:= 
GEGTHEFGHIUKLRNUFDEST UUWXYZ
abcdefgna wal mraopar = tuvw<y%
1.234567890! е###u%*()-_=t"uma0e::
The 11.N:. chumacte!
GECDE GHI.M&L mNOPDRSTDuWXYZ
```



```
MAMA GLNEbal- Cosy
Westwaro, ma

\section*{CHAPTER II \\ PROGRAMMING}

\section*{INTRODUCTION}

Your DASHER LP2 or TP2 printer receives information from a computer or communications line. DASHER TP2 Printers can transmit as well as receive information. This information is represented by 7-bit ASCII codes. The 128 characters in the standard ASCII set consist of 96 upper and lower case alphanumeric, punctuation, and graphic characters as well as 32 control codes. If your printer receives an alphanumeric code, it prints the corresponding character. If it receives a valid control code, it performs the specific function defined by the code. If, however, your printer receives one of the control codes it does not use, it ignores that code.

\section*{CODE RECEPTION}

Your printer can store up to 3000 characters in its buffer. Characters enter the buffer from either a parallel interface (DASHER LP2 Printers) or a serial interface (DASHER TP2 Printers). Both types of interfaces are able to signal the computer or communications system that the buffer is full.

The parallel interface controls a special hardware signal which tells the computer system when there is room in the buffer for a character. This is consistent with most line printer interfaces. As a result, the programmer need not worry about overflowing the buffer when programming a DASHER LP2 printer.

The serial interface is equipped with a number of methods of preventing the buffer from overflowing. It can tell the communications system to stop transmitting data via a hardware signal (for local connections), by transmitting special control characters (full duplex), or by transmitting a break code (MODEMs only). Chapter III discusses how these particular methods are used.

While receiving codes, the printer scans those codes already in the buffer to determine the fastest way to print each line. If the buffer becomes filled, the printer uses one of the methods discussed above to stop the system from transmitting codes. As soon as there is room in the buffer, the printer can accept additional codes.

Your printer responds to three types of information:
- Printing Character Codes - which result in a character being printed.
- Control Codes - single codes which control special functions.
- Escape Sequences - sequences of codes (beginning with an escape) which control certain functions.

The table in Appendix A provides a concise summary of the ASCII codes, their octal and decimal values, and how a DASHER LP2 or TP2 printer responds to them.

\section*{Printing Character Codes}

The printing characters include all the upper and lower case alphanumeric characters as well as graphic, punctuation, and space characters. Up to 132 characters may be printed on each line. If more than 132 characters are received without a line terminator, they are not printed. Newlines ( \(012_{8}\) ), Vertical Tabs \(\left(013_{8}\right)\), Form Feeds ( \(014_{8}\) ), and Carriage Returns \(\left(015_{8}\right)\) are all considered line terminators.

\section*{Control Codes}

Your printer recognizes a number of control codes it receives as commands to perform specific operations. In addition to recognizing control codes, DASHER TP2 printers can transmit a number of control codes. The control codes and their effects are listed in the accompanying table.

\section*{DASHER LP2 AND TP2 PRINTER CONTROL CODES}
\begin{tabular}{|c|c|c|c|}
\hline NAME & MNEMONIC & \[
\begin{aligned}
& \text { CONTROL } \\
& \text { CODE } \\
& \text { (OCTAL) }
\end{aligned}
\] & EFFECT \\
\hline & & & (Codes received) \\
\hline Bell & BEL & 007 & Sounds audible tone. \\
\hline Back Space & BS & 010 & Print head moves back one character position. (Only when online) \\
\hline Horizontal Tab & HT & 011 & Print head moves to next horizontal tab stop. If no tab is set, the command is ignored. \\
\hline Newline (Line Feed) & NL & 012 & \begin{tabular}{l}
Terminates the present line, advances the paper one line, and either: \\
a) determines the fastest way to print the next line (if it is complete), or b) performs a carriage return and prints any characters from left to right.
\end{tabular} \\
\hline Vertical Tab & VT & 013 & Paper advances to next tab stop. If no tab is set, the command is ignored. \\
\hline Form Feed & FF & 014 & Paper advances to the top of the next form. If the automatic form feed option is not installed, the command is ignored. \\
\hline Carriage Return & CR & 015 & Carriage returns to the left-hand margin. \\
\hline Shift Out & so & 016 & Selects alternate character set. (Model 1192 Option) \\
\hline Shift in & SI & 017 & Selects standard character set. \\
\hline Escape & ESC & 033 & Denotes the beginning of a command sequence. \\
\hline & & & (Codes transmitted)* \\
\hline Device Code 1 & DC1 & 021 & ** Indicates that the character buffer has room for more characters. \\
\hline Device Code 3 & DC3 & 023 & ** Indicates that the character buffer is full. \\
\hline
\end{tabular}

\footnotetext{
* On DASHER TP2 printers only.
** When jumpered (see Chapter IV, Installation).
}

\section*{Escape Sequences}

A number of functions on your printer may be controlled by special sequences of codes called escape sequences.
- Horizontal and vertical tabbing
- Elongated characters
- Underscoring
- Plotting
- Resetting the printer
- Compressed printing (option)
- Down line loading a character set

An Escape code ( \(033_{8}\) ), if enabled, defines the beginning of these sequences while subsequent codes define the particular function to be performed. If no valid code follows the Escape code (or an option is not installed), the Escape code is ignored and subsequent codes produce the standard effect. If the Escape disable switch on the secondary control panel is in the disable position, all escape codes are ignored and subsequent codes are printed.

\section*{Horizontal Tabs}

You may set a horizontal tab anywhere from the second to the last (132nd) character position. The printhead advances to the next horizontal tab stop following the reception of a Horizontal Tab (CTRL-I) control code ( \(011_{8}\) ) and at least one printing character code. If you haven't set any horizontal tabs and CTRL-I is received, the command has no effect. The following escape sequences set and clear horizontal tabs:
\begin{tabular}{|c|c|}
\hline ESCAPE SEQUENCE (OCTAL CODES) & EFFECT ON PRINTER \\
\hline \[
\left\lvert\, \begin{aligned}
& \text { ESC } 1 \\
& (033061)
\end{aligned}\right.
\] & Sets a horizontal tab at the current printhead position. \\
\hline \[
\begin{aligned}
& \text { ESC } 2 \\
& (033062)
\end{aligned}
\] & Clears a horizontal tab from the current printhead position. \\
\hline \begin{tabular}{l}
ESC E \# \# ... NULL \\
(033 105 \# ... 000)
\end{tabular} & Sets horizontal tabs at each character position specified by an octal number (\#). A tab may be set anywhere from the second character position ( \(\#=002_{8}\) ) to the last character position \(\left(\#=204_{8}=132_{10}\right)^{*}\). All previously set horizontal tabs are cleared. \\
\hline ESC E NULL
\[
(033105000)
\] & Clears all horizontal tabs. \\
\hline
\end{tabular}
*See Appendix A for decimal/octal equivalents.
Note: If your computer or communications system only supplies 7 data bits to the printer, you should use the ESC 1 sequence to set horizontal tabs. The ESC E sequence will only be able to set tabs to the 128 th column position.

\section*{Vertical Tabs (Option on S Models)}

The automatic form feed option (if installed in your printer) provides vertical tabbing. You may set a vertical tab anywhere from one line after the top of a form to the line preceding the top of the next form. The automatic form feed option keeps track of the number of lines per form and your present line position. However, if you have Perforation Skip-over enabled (see the "Operator's Manual"), you must remember that you have, in effect, fewer lines per form.

When a printer equipped with the automatic form feed option receives a Vertical Tab (CTRL-K) control code \(\left(013_{8}\right)\), it advances the paper to the beginning of the next line on which a vertical tab is set. If no vertical tab is set between the current line position and the top of the next form, the Vertical Tab code acts like a Carriage Return. The escape sequences described below set and clear vertical tabs. Vertical tabs may only be set or cleared immediately after a line terminator - i.e., Newline ( \(012_{8}\) ), Vertical Tab \(\left(013_{8}\right)\), Form Feed \(\left(014_{8}\right)\), or Carriage Return \(\left(015_{8}\right)\).
\begin{tabular}{|c|c|}
\hline ESCAPE SEQUENCE (OCTAL CODE) & EFFECT ON PRINTER \\
\hline \[
\begin{array}{|l|}
\hline \text { ESC } 5 \\
(033065)
\end{array}
\] & Sets a vertical tab at the current line position. \\
\hline \[
\begin{array}{|l|}
\hline \text { ESC } 6 \\
\text { (033 066) }
\end{array}
\] & Clears a vertical tab from the current line position. \\
\hline \begin{tabular}{l}
ESC F \# \# ... NULL \\
(033 106 \# \# ... 000)
\end{tabular} & Sets a vertical tab at the positions specified by the octal numbers (\#). These numbers may be anywhere from 1 to the maximum line length of the form you are using (no form can be more than 99 lines long). All previously set vertical tabs are cleared. \\
\hline ESC F NULL
(033 106000 ) & Clears all vertical tabs. \\
\hline
\end{tabular}

\section*{Elongated Printing}

You can print elongated (double width) characters in either the normal mode or the compressed mode. Elongated characters may be selected anywhere within a line. However, they are printed at a slower speed ( 24 cps ). You should note that only 66 elongated characters will fit on a regular 132-character line. You can mix normal and elongated characters in a single line, but you must keep in mind that elongated characters are twice the width of normal characters. The escape sequences which control this feature are given below:


\section*{Underscoring}

You may underscore characters, words, or complete lines by turning the underscore feature on and off. The underscore is printed at the same time as the character. Normal width and elongated characters may be underscored in both the Normal and the Compressed printing modes. You select and disable underscoring as follows:
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
ESCAPE \\
SEQUENCE \\
(OCTAL CODE)
\end{tabular} & \multicolumn{1}{|c|}{ EFFECT ON PRINTER } \\
\hline \hline \begin{tabular}{l} 
ESC a \\
\((033 ~ 141)\)
\end{tabular} & \begin{tabular}{l} 
Starts underscoring. Subsequent print positions are \\
underscored until the command sequence turning off \\
the feature is received. \\
ESC b \\
\((033 ~ 142)\)
\end{tabular} \\
\begin{tabular}{l} 
Stops underscoring. Subsequent print positions are \\
not underscored.
\end{tabular} \\
\hline
\end{tabular}

\section*{Plotting}

\section*{See Plotting Page II-5.}

\section*{Resetting the Printer (Master Reset)}

A software Master Reset (ESC c; \(033_{8} 143_{8}\) ) allows you to reset and reinitialize your printer according to the settings of the secondary control panel. In addition, it clears the character buffer, clears any horizontal or vertical tabs, turns off underscoring and turns off elongated printing.

\section*{Compressed Printing (Option)}

If your printer is equipped with the compressed printing option, you can print either normal or compressed width characters. While in normal mode, you can print 132 normal width characters on regular 132 -column paper. In compressed mode, you can print 132 compressed characters on 80 -column paper. However, you may issue the escape sequences to change the print mode only after a line terminator, i.e., Newline \(\left(012_{8}\right)\), Vertical Tab \(\left(013_{8}\right)\), Form Feed ( \(014_{8}\) ), or Carriage Return ( \(015_{8}\) ). Both escape sequences are ignored unless they are issued at the proper time. These escape sequences are given below:
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
ESCAPE \\
SEQUENCE \\
(OCTAL CODE)
\end{tabular} & \multicolumn{1}{|c|}{ EFFECT ON PRINTER } \\
\hline \hline ESC \(>\) & \begin{tabular}{l} 
Switches the printer from normal printing to the \\
compressed printing mode. \\
\((033076)\) \\
ESC ? \\
\((033077)\)
\end{tabular} \\
\begin{tabular}{l} 
Switches the printer back from the compressed \\
printing mode to normal mode.
\end{tabular} \\
\hline
\end{tabular}

\section*{Down Line Loaded Character Set}

See Down Line Loading A Character Set Page II-7.

\section*{PLOTtING}

Plotting is a standard feature on all model printers. In plot mode, 7 of the printhead's 9 firing wires, (the bottom 7 wires) are under the user's direct control. The seven wires print in vertical columns. Each column is printed separately. Your printer plots from left to right at 172 columns per second. You may plot up to 1320 columns per line.

To plot, you enter plot mode and send a 7 -bit code (from 0 - 177) to your printer. Instead of interpreting these 7-bits as an ASCII code and printing the corresponding 7 -column character, the printer interprets the code as a command to print one column. Each bit of the code determines if a particular wire will be fired. The relationship between a seven bit code and the printhead wires which are fired is shown in the accompanying illustration. A " 1 " in a bit position fires the corresponding print-wire.

You enter plot mode by issuing a line terminator, i.e., Newline \(\left(012_{8}\right)\), Vertical Tab \(\left(013_{8}\right)\), Form Feed ( \(014_{8}\) ), or Carriage Return ( \(015_{8}\) ), followed by ESCape d \(\left(033_{8} 144_{8}\right)\). This escape sequence must be issued after a line terminator; otherwise it will be ignored. After entering plot mode, you
issue the series of 7 -bit codes which define the columns you wish to plot. These columns WILL NOT be plotted until after you terminate the current line. To terminate a line, you must deselect plot mode (issue an ESC e: \(033_{8}\), \(145_{8}\) ) and issue a line terminator. If the next line is to be plotted, issue a Newline \(\left(012_{8}\right)\) immediately after deselecting plot mode. The printer will produce a line feed with NO interline spacing. However, inserting any code between the plot deselect sequence and the Newline code causes the printer to produce normal ( 6 or 8 lpi) interline spacing. To plot another line, enter plot mode, issue the codes to be plotted, exit plot mode, and issue a line terminator.
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
ESCAPE \\
SEQUENCE \\
(Octal Code)
\end{tabular} & EFFECT ON PRINTER \\
\hline \begin{tabular}{l} 
ESC d \\
O33 144 \\
ESC e \\
\((033 ~ 145)\)
\end{tabular} & Selects plot mode. \\
\hline
\end{tabular}

You may plot any code except the ASCII code for ESCape ( \(033_{8}\) ). This code can only be used in the sequence which deselects plot mode. Do not issue any other escape sequences while the printer is in plot mode.

If you are in normal mode when you enter plot mode, the printer plots with the same spacing between columns as normal width characters. However, if you are in compressed mode, the printer plots with the same spacing as compressed characters.


\section*{An Example}

Suppose you wanted to plot a 14 by 14 dot matrix square at the left hand margin. You must determine the codes you need and the order in which to send them. The codes for the square we want to make are shown below.


The sequence you would use to plot this square is:
\begin{tabular}{|c|c|}
\hline OCTAL CODE & EFFECT \\
\hline 012 & Newline \\
\hline 033 & Enter plot \\
\hline 144 & mode \\
\hline 177 & Prints column 1, first line \\
\hline 100 (12 times) & Prints columns 2-13, first line \\
\hline 177 & Prints column 14, first line \\
\hline 033 & Exit \\
\hline 145 & Plot Mode \\
\hline 012 & Newline \\
\hline 033 & Enter \\
\hline 144 & Plot Mode \\
\hline 177 & Prints column 1, second line \\
\hline 001 (12 times) & Prints columns 2-13, second line \\
\hline 177 & Prints column 14, second line \\
\hline 033 & Exit Plot \\
\hline 145 & Mode \\
\hline 012 & Newline \\
\hline
\end{tabular}

The image which results from this plot sequence is more of a rectangle than a square because successive horizontal print positions overlap.

\section*{DOWN-LINE-LOADING A CHARACTER SET}

Your DASHER LP2 and TP2 printers allow you to define your own character set. You can define a character set which prints up to 1187 x 9 dot matrix characters. Once you have defined each character in your character set, you load the set into a printer's memory via an escape sequence. Two additional escape sequences allow you to select and deselect the character set.

The Down-Line-Load Character Set feature is very handy if you want to design your own character set or if you must be able to print in a number of different character fonts. When the printer is powered down or a Master Reset is performed, a down-line-loaded character set must be reloaded.

NOTE Your computer or communications system must be set up to transmit 8 data bits at a time in order to down line load and select a character set.

\section*{Character Sets}

Your printer accepts up to 127 different 7 bit character codes. By convention, the first 32 codes ( \(0-40_{8}\) ) are control codes which do not print any characters. The remaining 95 characters \(\left(40_{8}-176_{8}\right)\) are printing characters.

When you down line load a character set, you may define any printing character except for control codes which perform specific functions on LP2 and TP2 printers. These codes include \(7_{8}-17_{8}\), and \(33_{8}\). The functions of these codes are summarized in the table entitled DASHER LP2 and TP2 Printer Control Codes (page II-2). Therefore, a down line loaded character set can define 118 individual characters. The codes for which characters may be defined include \(0-7{ }_{8}, 20_{8}-32_{8}\), and \(34_{8}-176_{8}\).

\section*{Defining A Character Set}

Each character in a character set is defined using a \(7 x\) 9 dot matrix. The following diagram shows the relative print-wire locations and column positions available to form one character. Information on how characters are actually printed may be found in Chapter V.


You select the dots to be printed via the seven 9-bit firing codes. A " 1 " in the firing code indicates that the corresponding wire will be fired when that column is printed. A " 0 " in the firing code indicates that the corresponding wire will not be fired. The one restriction in selecting firing codes is that print wires may not be consecutively fired (i.e., the same bit may not be a " 1 " in two successive firing codes).

Once the firing codes for a character are determined, they must be put into a format which allows them to be loaded into the printer. The printer uses eight memory locations to store one character. The first memory location MUST contain all zeros. The following seven memory locations each contain one 9 -bit firing code that determines which of the 9 wires in the printhead will fire to form one column of a character. A character's firing codes are ordered in memory with the first column in the lowest memory location and the seventh column seven locations above the first. For example, the firing codes for the character "B" would be organized as shown in the following diagram:


Since each character requires eight memory locations, the total amount of memory space used in the printer is equal to eight times the number of characters in your character set. A character set can be anywhere from one character to 128 characters long. However, remember that 9 of these codes cannot be printed.

\section*{Loading A Character Set}

Your printer contains a 2,00016 -bit word memory. The memory locations in which a character set may be loaded range from \(2000_{8}-3770_{8}\). The locations specified by this range can store exactly 127 characters.

The fifteen bit address of the location in the printer's memory where a character set will begin loading is called the Starting Word Address. (This address must be between \(2000_{8}\) and \(3770_{8}\).) A character set is loaded into a printer's memory, sequentially, from the Starting Word Address as shown in the following diagram:


You load a character set into a DASHER LP2 or TP2 printer via an escape sequence. In addition to the data containing the character set's firing codes, the escape sequence transfers the following information:
- Byte Count - specifying the number of bytes that are being transferred. The Byte Count is twice the number of words needed to store the character set.
Byte Count \(=\underset{\text { Characters }}{\text { Number of }} \times \underset{\text { character }}{8 \text { words per }} \underset{\text { w }}{\text { Nutes }} \underset{\text { word }}{\text { per }}\)
- Starting Byte Address - specifying the location in the printer's memory where the first character in the character set will start loading. The Starting Byte Address is twice the Starting Word Address (16-bit address) where loading begins.
- Negated Checksum - a number used by the printer at the end of the load sequence to determine if any data errors occurred during the load.

The one byte Negated Checksum is obtained by summing all the data bytes, ignoring any carry, and taking the 2's complement of that sum. This sum does not include the Byte Count or the Starting Byte Address, just the bytes containing the firing codes.

You must transmit data to a printer one byte (8-bits) at a time. You cannot load a character set if you have a DASHER TP2 printer with a serial interface set up to receive only 7 data bits at a time. The following table gives the escape sequence for loading a character set into an LP2 or TP2 printer.

CHARACTER SET LOADING ESCAPE SEQUENCE
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c} 
ESCAPE \\
SEQUENCE
\end{tabular}} & \begin{tabular}{c} 
OCTAL \\
VALUE
\end{tabular} & \begin{tabular}{c} 
NUMBER \\
OF BYTES
\end{tabular} \\
\hline \hline ESCape & 033 & 1 BYTE \\
\(Y\) & 131 & 1 BYTE \\
BYTE COUNT & --- & 2 BYTES \\
\begin{tabular}{l} 
STARTING BYTE \\
ADDRESS
\end{tabular} & --- & 2 BYTES \\
DATA & \(\cdots-\) & 2 BYTES \\
DATA & --- & 2 BYTES \\
\(\cdot\) \\
\(\cdot\) & --- & 2 BYTES \\
DATA & -- & 1 BYTE \\
NEGATED \\
CHECKSUM & & \\
\hline
\end{tabular}

Since the printer can only receive 8 -bits at a time, the firing codes, the byte count, and the starting byte address (which are in a 16 -bit format) must be divided into bytes before they are transmitted to the printer. A left-hand byte is always transmitted before a right-hand byte.

\section*{An Example}

Suppose you want to load a printer with a character set consisting of one character, the character " B ". Proceed as follows:
1) Determine a starting address for the load. We will use \(2000{ }_{8}\).

Starting Word Address \(=2000_{8}\)
2) Calculate the Starting Byte Address.

Starting Byte Address \(=2 \times\) Starting Word Address
\[
\begin{aligned}
& =2 \times 2000_{8} \\
& =4000_{8} \text { right byte } \\
& =\underbrace{0000100000000000_{2}}_{\text {left byte }}
\end{aligned}
\]

Divide this into two bytes, left hand byte first: 0108
3) Calculate the Byte Count.
\begin{tabular}{rl} 
Byte Count & \(=\)\begin{tabular}{c} 
Number of \(\times 8\) words per \(\times 2\) bytes \\
character
\end{tabular} \\
& \(=1 \times 8 \times 2\) \\
& \(=1610\) \\
per \\
word
\end{tabular}

Divide this into two bytes, left-hand byte first: \(000_{8}\) 0208
4) Determine the data bytes and the Negated Checksum.

From the illustration "Firing Codes for the Character B" we know the 16-bit firing codes. These are broken into bytes, left-hand byte first. The 2's complement of the sum of these bytes forms the checksum byte.

Therefore, the Down-Line-Load sequence for the character set is:
033 Escape Sequence for Down-Line-Load initiation
131
000 Byte Count
020
010 Starting Byte Address
000
000 Firing Codes for a "B"
000
001
004
000
370
001
004
000
040
001
004
000
040
000
330
341 Negated Checksum

\section*{Selecting Your Character Set}

A down-line-loaded character set is selected and deselected via escape sequences. These escape sequences are given below:

DOWN-LINE-LOAD CHARACTER SET SELECT /DESELECT
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
ESCAPE SEQUENSE \\
(OCTAL)
\end{tabular} & \multicolumn{1}{|c|}{ FUNCTION } \\
\hline \hline ESC N SCSA & SELECTS A DOWN-LINE-LOADED \\
\((033116 \cdots-\cdots)\) & CHARACTER SET GIVEN A STARTING \\
& CHARACTER SET ADDRESS (SCSA). THE \\
& SCSA IS A 15-BIT OR TWO BYTE \\
ESC 0 & ADDRESS. \\
(O33 117) & DESELECTS A DOWN-LINE-LOADED \\
CHARACTER SET. \\
\hline
\end{tabular}

The value used for the Starting Character Set Address (SCSA) depends on how you have defined your character set. If you have defined a character set which begins with a character for \(0_{8}\), then the Starting Character Set Address is equal to the Starting Word Address previously described. However, if you have loaded a subset of a possible 128 characters (118 printing characters) where the first character is not \(0_{8}\), then the SCSA must be adjusted. In this case, the SCSA may be calculated in decimal as follows:
Starting
\begin{tabular}{l} 
Character \\
Set Address
\end{tabular}\(=\)\begin{tabular}{l} 
Starting \\
Word \\
Address
\end{tabular}\(-\)\begin{tabular}{l} 
First \\
Character \\
Code Loaded
\end{tabular} \(\mathrm{Cl}_{8}\)

\section*{Example Continued}

In order to select the character set containing the character " \(B\) " (previously described), you must determine which character code should cause the printer to respond with a "B". If \(000_{8}\) should generate a "B", then the Starting Character Set Address would be calculated as follows:


Divide this into two bytes, left-hand byte first: 0028

Therefore, you would use the following escape sequence (octal) to select the character set;

\author{
033 Down-Line-Load 116 Character Set Select \\ 002 Starting Character \\ 000 Set Address
}

However, if a \(040_{8}\) code issued to the printer should generate a "b", then you calculate the Starting Character Set Address as follows:

\[
0008
\]

In this case, you would use the following escape sequence to select the character set:

033 Down-Line-Load
116 Character Set Select
003 Starting Character
000 Set Address

\section*{SUMMARY OF PROGRAMMING RULES}

The following escape sequences may be issued anywhere within a line:
- Horizontal tab set or clear at current printhead position
- Underscore on or off
- Elongated character(s) select or deselect
- Alternate character set select or deselect (if installed).

The following escape sequences may only be issued after a line terminator (Newline, Vertical Tab, Form Feed, or Carriage Return):
- Horizontal setting and clearing of multiple tabs.
- Vertical tab set or clear
- Plot mode enter
- Compressed print select or deselect
- Down line character set load and select

The number of normal width characters plus twice the number of elongated characters within a line must not exceed 132.

\title{
CHAPTER III \\ INTERFACING AND CABLING
}

\section*{LP2-TP2 INTERFACING}

Your DASHER LP2 or TP2 printer is equipped with either a parallel interface or a serial interface. The parallel interface is available on DASHER LP2 receive-only printers. The serial interface is available on DASHER TP2 receive-only and keyboard-sendreceive printers.

\section*{Parallel Interface}

You may connect a DASHER LP2 printer equipped with a parallel interface to any system containing a 7 or 8-bit line printer port. This interface requires eight data lines and a STROBE line from the computer. In addition, a DEMAND line tells the computer when the printer wants another character while a READY line notifies the system when the printer is powered up and online. The electrical and timing requirements for this interface are given below:

PARALLEL INTERFACE REQUIREMENTS
\begin{tabular}{|c|l|}
\hline SIGNAL & \multicolumn{1}{c|}{ CHARACTERISTICS * } \\
\hline \hline Data Lines & \begin{tabular}{l} 
High \(=\) a logical 1. \\
Low \(=\) a logical 0.
\end{tabular} \\
\hline\(\overline{\text { STROBE }}\) & \begin{tabular}{l} 
Duration: \(0.5-10 \mu \mathrm{~s}\) \\
Data lines are sampled on falling edge of STROBE.
\end{tabular} \\
\hline DEMAND & \begin{tabular}{l} 
High \(=\) Requesting Data \\
Low \(=\) Busy
\end{tabular} \\
\hline READY & \begin{tabular}{l} 
High \(=\) Printer powered up and ON LINE. \\
Low \(=\) Printer NOT READY.
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
- High = 2.4-5.0 Voits Low \(=0.0-0.4\) Volts
}

\section*{Serial Interface}

You may connect a DASHER TP2 printer equipped with a serial interface to a communications system via either 20 mA current loop or EIA RS-232C connections. The interface receives and transmits data in serial data bursts which consist of a start bit, 7 or 8 data bits, an optional parity bit, and 1 or 2 stop bits. You select the particular data format via jumpers (see Chapter IV, Tailoring the Options PC Board).


The electrical requirements for current loop connections are given in the following table:
\begin{tabular}{|l|l|l|}
\hline & \begin{tabular}{l} 
TERMINAL \\
TRANSMITTING
\end{tabular} & \begin{tabular}{l} 
TERMINAL \\
RECEIVING
\end{tabular} \\
\hline \hline \begin{tabular}{l} 
MARK \\
SENSE
\end{tabular} & \begin{tabular}{l}
\(V \max =40 \mathrm{~V}\) \\
\(I \max =40 \mathrm{~mA}\)
\end{tabular} & \(V \max =40 \mathrm{~V}\) \\
\hline \begin{tabular}{l} 
SPACE \\
SENSE
\end{tabular} & \(1=10-60 \mathrm{~mA}\) & \(1<5 \mathrm{~mA}\) \\
\hline
\end{tabular}

\section*{Local Copy}

You can configure your DASHER TP2 terminal for local copy communication. Normally, your terminal prints characters only when received from the communications line. In local copy mode, it prints characters received from the communications line as well as characters generated by the keyboard (a character is transmitted to the communication system at the same time it is printed). This feature allows the system designer to cut down on communication overhead since the software does not have to "echo" each character to the printer.

\section*{Printer Busy Signal}

Under normal circumstances, you can operate a DASHER TP2 printer at 1200 baud without the use of a busy signal. However, if your printer receives a large number of mechanical operations (e.g., Newlines) or escape sequences at 1200 baud, or it is set up to receive data at a higher baud rate, you should use a busy signal.

The function of a busy signal is to tell the transınitting device to stop sending data so that the printer's character buffer does not overflow (i.e., lose data). The DASHER TP2 printer's serial interface has two different methods for telling the transmitting device to stop sending information.

The first method uses a hardware busy signal provided in both EIA and current loop configurations. This method is designed for use with local connections to a processor (i.e., not through a MODEM). The signal is labeled RTS on the EIA connector (J29) and BUSY and -BUSY on the Current Loop connector (J28).

If the hardware busy signal is asserted, the BUSY signal is driven low. This notifies the controller that it should stop sending data because the buffer is nearly full. After the printer's buffer reaches half empty, the BUSY signal is driven high. This notifies the controller that it can resume transmitting data.

The second method, called X/ON X/OFF, requires your printer to transmit one of two codes to the transmitting device, telling it to start or stop sending data. A DC3 \(\left(023_{8}\right)\) control code is transmitted when the buffer is nearly full while a DC1 control code \(\left(021_{8}\right)\) is transmitted when the buffer is empty. This method requires a full duplex connection with the proper software handler at the processor end of the communications line. Communication may or may not be through a MODEM.

\section*{MODEM Control Signals}

The serial interface supports Bell model 103, 202, und 212 compatible asynchronous MODEMs. The signals used by DASHER TP2 printers and their functions are given below:
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ SIGNAL } & TYPE & \multicolumn{1}{c|}{ FUNCTION } \\
\hline Transmit data & \begin{tabular}{l} 
EIA or \\
Current \\
Loop \\
EIA or \\
Current \\
Loop \\
EIA
\end{tabular} & \begin{tabular}{l} 
Carries data transmitted by the DASHER \\
TP2 printer.
\end{tabular} \\
Data Set Ready \\
Carries data received by the DASHER TP2 \\
printer. \\
Input to printer. When high, indicates that \\
the MODEM is powered-up, ready, and \\
that a call has been received. \\
Ready
\end{tabular}\(\quad\)\begin{tabular}{l} 
Output from printer. When high, \\
indicates that the printer is \\
powered up, ready, and aware that \\
the MODEM is ready. \\
Request To \\
Send
\end{tabular} EIA \begin{tabular}{l} 
Output from printer. When low, \\
indicates to the MODEM that the \\
printer would like to transmit some \\
data. \\
Input to printer. When high, indicates \\
that the MODEM is ready to transmit \\
data it receives from the printer.
\end{tabular}

If you are operating at a rate above 1200 baud, you should use a full duplex MODEM along with the software "busy" control codes mentioned above. The auto-answer/auto-disconnect feature may be enabled or disabled at your discretion. When disabled, Data Terminal Ready remains high at all times.

\section*{Auto-answer/Auto-disconnect Feature}

Your printer's serial interface supports MODEMs capable of automatically answering incoming calls. However, if the printer does not receive any data for 30 seconds, it automatically directs the MODEM to go on-hook (i.e., hang-up). This protects you against wrong numbers and bad connections. During normal communication, the auto-disconnect feature protects against bad or lost data by placing the MODEM on-hook if no data is received for 30 seconds or more.

The MODEM alerts the terminal to a call by placing Data Set Ready low. The printer, if ready, responds by placing Data Terminal Ready high. At this point, data received on the Receive data line will be printed. The printer places the MODEM on-hook by allowing Data Terminal Ready to go low.

\section*{CABLING}

You connect your printer to a computer or communications system using an I/O adapter cable. The various cables available are described below.

\section*{Parallel Interface I/O Cables}

Five I/O adapter cables are available for 6073 and 6074 model printers. Each cable is attached to the printer by a 36 -pin Amphenol connector, 25 -pin Cannon connector, a 50 -pin edge connector, or a 100 -pin edge connector.


If you are making your own cable, it should not exceed 25 feet ( 7.4 meters) in length.

\section*{Serial Interface I/O Cables}

Serial interface \(I / O\) cables come in a number of configurations. You can connect your printer to a system using either DASHER TP1/DASHER TP2 Series compatible cables, a MODEM cable, or a custom cable to which you may attach your own connector.

Cables using the EIA interface may be no longer than 50 feet ( 15.2 meters) while cables using the current loop interface may be up to 1500 feet ( 457 meters) long. The various cables which may be used with the serial interface are listed with their pin assignments in the accompanying diagram.


DASHER TP2 PRINTER EXTERNAL CABLES
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{CABLE CONNECTS} & \multirow[b]{2}{*}{REMARKS} & \multirow[b]{2}{*}{CABLE NUMBER} & \multirow[b]{2}{*}{WIRE LIST} \\
\hline TP2 CONNECTOR & \begin{tabular}{l}
DGC \\
COMPUTER/CONTROLLER
\end{tabular} & & & \\
\hline EIA & \[
\begin{aligned}
& \text { NOVA } 800,830,840 \text {, } \\
& 1200
\end{aligned}
\] & - & 005007889 & 008002002 \\
\hline EIA & \begin{tabular}{l}
NOVA 2,3,4,820,1210. \\
1220; ECLIPSE S100, \\
S200, S230, C300, C330. \\
S130, C150. AP130; \\
MICRONOVA
\end{tabular} & WHEN TP2 PRINTER IS A SECONDARY DEVICE (OR ANY DEVICE ON MICRONOVA) & 005007888 & 008002003 \\
\hline EIA & NOVA \(2,3,4,820,1210\), 1220.ECLIPSE S 100 , S200,S230,C300,C330, S130,C150,AP 130.ULM & WHEN TP2 PRINTERIS THE PRIMARY CONSOLE. MAY BE SECONDARY CONSOLE WITH ULM. & 005010603 & 008002507 \\
\hline EIA & M/600, S250, C350 & - & 005010707 & 008002542 \\
\hline EIA & ALM-8 & - & 005008181 & 008002033 \\
\hline CURRENT LOOP /EIA & ALM-16 & COMMUNICATION MUST TAKE PLACE AT OR BELOW 1200 BAUD & 005007636 & 008000971 \\
\hline EIA & MODEM & USED WITH SIMPLE MANUAL ANSWER MODEMS & 005007637 & 008000973 \\
\hline MODEM & MODEM & USED WITH AUTOANSWER, AUTO-DISCONNECT MODEMS & 005009912 & 008002188 \\
\hline
\end{tabular}
\(D G-05751\)

\section*{CHAPTER IV \\ INSTALLATION}

\section*{CHOOSING A SITE}

The illustration below gives you the necessary information for choosing a site for your DASHER LP2 or TP2 printer.


\section*{UNPACKING}

After you have chosen the site, uncrate the printer and remove the shipping restraints as shown in the diagram.


\section*{TAILORING}

How you tailor your printer depends on the model printer you have and the system to which you are connecting it. We tell you below how to jumper the main control PC board and the options PC board (if installed). Though most of these wire jumpers are installed at the factory, you should make sure they are all installed where necessary before proceeding to the operational check-out.

\section*{Jumpering the Main Control PC Board}

The main control board has a number of jumpers as shown below. Install jumpers indicated ir the table below. The figure below illustrates the approximate location of each jumper (most of them are numbered on the PC board).

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{JUMPER} & \multicolumn{4}{|c|}{MAIN PC BOARD REVISION NUMBER} \\
\hline & \multicolumn{3}{|c|}{LP2 PRINTERS} & \multirow[t]{2}{*}{TP2 PRINTER 107001367-00} \\
\hline & 107000897-01 & 107000897-02 & 107001367-00 & \\
\hline W1 & in & in & IN & IN \\
\hline W3 & IN & IN & IN & in \\
\hline W5 & IN & \(\underline{1 N}\) & IN & OUT \\
\hline W6 & IN & IN & in & OUT \\
\hline W7 & IN & IN & IN & IN \\
\hline W8 & OUT & OUT & --- & --- \\
\hline W9 & in & in & --- & --- \\
\hline W10 & IN & IN & \(\underline{1 N}\) & \(\mathbb{N}\) \\
\hline W11 & OUT & OUT & OUT & OUT \\
\hline W12 & --- & IN & IN & IN \\
\hline W13 & --- & IN & in & IN \\
\hline W14 & -.. & IN & in & IN \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|}
\hline JUMPER & POSITION & COMMENT \\
\hline \multirow{3}{*}{ W2 } & \(\mathbb{I N}\) & PRINTERS EQUIPPED WITH COMPRESSED PRINT OPTION \\
\cline { 2 - 3 } & OUT & PRINTERS NOT EQUIPPED WITH COMPRESSED PRINT OPTION \\
\hline \multirow{3}{*}{ W4 } & \(\mathbb{N}\) & PRINTERS EQUIPPED WITH AN ALTERNATE CHARACTER GENERATOR \\
\cline { 2 - 4 } & OUT & \begin{tabular}{l} 
PRINTERS NOT EQUIPPED WITH AN ALTERNATE CHARACTER GENERATOR \\
(ALL LP2 PRINTERS)
\end{tabular} \\
\hline
\end{tabular}

\section*{Jumpering the Options PC Board}

The options PC board is installed on all DASHER TP2 printers. You insert the various jumpers on this board as described below. Their relative positions are shown in the accompanying illustration.


Jumpers W5, W6, W13, W14, W17, and W18 should be installed as indicated by the following table:
\begin{tabular}{|l|l|l|}
\hline JUMPER & \begin{tabular}{l} 
JUMPER \\
POSITION
\end{tabular} & \begin{tabular}{c} 
DASHER \\
LP2
\end{tabular} \\
\hline \hline W5 & OUT & IN \\
W6 & IN & OUT \\
W13 & IN & OUT \\
W14 & OUT & IN \\
W17 & IN & OUT \\
W18 & OUT & IN \\
\hline
\end{tabular}

\section*{Serial Interface Configuration Jumpers}

Jumpers W19 - W23 select the parity, number of data bits, and number of stop bits for the serial interface.
\begin{tabular}{|c|c|c|c|c|c|}
\hline SELECTS: & JUMPER & \multicolumn{4}{|c|}{POSITION} \\
\hline PARITY & \[
\begin{aligned}
& \text { W19 } \\
& \text { W23 }
\end{aligned}
\] & \(\left.\begin{array}{l}\text { IN } \\ \text { OUT }\end{array}\right\}\) EVEN & IN & \} ODD & \(\left.\begin{array}{c}\text { OUT } \\ -\end{array}\right\} \begin{aligned} & \text { NO } \\ & \text { PARITY }\end{aligned}\) \\
\hline STOP BITS & W20 & \multicolumn{4}{|c|}{\(\mathbb{N}=1 \quad\) OUT \(=2\)} \\
\hline DATA BITS & \[
\begin{aligned}
& \text { W21 } \\
& \text { W22 }
\end{aligned}
\] & \multicolumn{2}{|l|}{\[
\left.\begin{array}{l}
\text { OUT } \\
\text { IN }
\end{array}\right\} \begin{aligned}
& 7 \text { DATA } \\
& \text { BITS }
\end{aligned}
\]} & \multicolumn{2}{|r|}{\[
\left.\begin{array}{l}
\text { OUT } \\
\text { OUT }
\end{array}\right\} \begin{aligned}
& 8 \text { DATA } \\
& \text { BITS }
\end{aligned}
\]} \\
\hline
\end{tabular}

For non-modem full-duplex connections insert W7-W10 as follows:
\begin{tabular}{|c|c|}
\hline Jumper & Position \\
\hline W7 & IN \\
W8 & IN \\
W9 & OUT \\
W10 & OUT \\
\hline
\end{tabular}

\section*{Local Copy Select Jumpers}

Jumpers W15 and W16 enable local copy mode. When enabled, a character generated by the keyboard is printed locally at the same time it is transmitted to the communications line (for more detail see Chapter III, Interfacing).
\begin{tabular}{|c||c|c|}
\hline JUMPER & \begin{tabular}{l} 
LOCAL COPY \\
ENABLE
\end{tabular} & \begin{tabular}{l} 
LOCAL COPY \\
DISABLE
\end{tabular} \\
\hline \hline W15 & \begin{tabular}{l} 
OUT \\
W16
\end{tabular} & \(\mathbb{I N}\)
\end{tabular}

\section*{Software Busy Jumpers}

Jumpers W11 and W12 enable and disable the automatic transmission of a software BUSY code. If enabled, DC3 \(\left(023_{8}\right)\) is transmitted when the print buffer is nearly filled. A DC1 \(\left(021_{8}\right)\) is transmitted when the buffer becomes half empty.
\begin{tabular}{|c|c|c|}
\hline Jumper & \begin{tabular}{l} 
Software \\
Busy Enable
\end{tabular} & \begin{tabular}{l} 
Software Busy \\
Disable
\end{tabular} \\
\hline \hline W11 & OUT & \(\mathbb{N}\) \\
W12 & \(\mathbb{N}\) & OUT \\
\hline
\end{tabular}

\section*{MODEM Configuration Jumpers}

Jumpers W1 - W4 and W8 - W9 determine what signals are used when your printer is connected to a MODEM. Jumpers W1 - W4 select either EIA or 20 mA current loop connections for the receive data and transmit data pins supplied on the \(25-\) pin MODEM connector cable. Jumpers W8 - W9 enable or disable your printer's auto-answer and auto-disconnect feature.
\begin{tabular}{|c|c|c|}
\hline JUMPER & AUTO-ANSWER AUTO-DISCONNECT DISABLE & AUTO-ANSWER AUTO-DISCONNECT ENABLE \\
\hline \[
\begin{aligned}
& \text { W8 } \\
& \text { W9 }
\end{aligned}
\] & IN OUT & OUT \\
\hline
\end{tabular}
\begin{tabular}{|c||l|l|}
\hline JUMPER & EIA & \begin{tabular}{l} 
20 mA CURRENT \\
LOOP
\end{tabular} \\
\hline \hline W1 & IN & OUT \\
W2 & OUT & IN \\
W3 & OUT & \(\mathbb{N}\) \\
W4 & IN & OUT \\
\hline
\end{tabular}

If interfaced to a modem, jumpers W7 and W10 select a full- or half-duplex connection.

When a half-duplex connection is selected, the printer drives RTS (Request To Send) to the high state. This requests a line turn-around from the modem so that the printer can transmit data. The modem should respond by placing CTS (Clear To Send) in the high state; thus allowing the printer to transmit its data.

When a full-duplex connection is selected, the RTS signal remains at the high state; thus ensuring that the CTS signal is asserted by the modem. This allows the terminal to transmit data at any time.
\begin{tabular}{|c|c|c|}
\hline JUMPER & \begin{tabular}{c} 
FULL DUPLEX \\
CONNECTION
\end{tabular} & \begin{tabular}{c} 
HALF DUPLEX \\
CONNECTION
\end{tabular} \\
\hline \hline\(W 7\) & OUT & \(\mathbb{N}\) \\
\hline\(W 10\) & \(\mathbb{N}\) & OUT \\
\hline
\end{tabular}

\section*{OPERATIONAL CHECK-OUT}

We recommend you check out your printer before beginning to use it. This check-out consists of two parts: (1) an offline check-out after you unpack and tailor your printer, and (2) an online check-out after you connect it to your system. Before conducting these check-outs, familiarize yourself with the Operator's Manual (014-000093).

\section*{Offline Check-out}

After you unpack and tailor your printer:
- Plug the 12-pin end of the power cord into the unit's power socket just above the circuit breakers on the back of the pedestal column;
- Plug the 3-pin end into the ac line supply outlet;
- Load paper and a ribbon cartridge as described in the Operator's Manual;
- If your printer has automatic form feed which you will be using, activate it by following the procedure outlined in the Operator's Manual.

You are now ready to conduct the Offline Check-out.

\section*{Offline Check-Out}
\begin{tabular}{|c|c|}
\hline PROCEDURE & EXPECTED RESULT \\
\hline Turn the power ON, switch the unit OFF LINE, and switch VIEW off. & The fan spins and the RDY (READY) glows. The printhead returns to column one. \\
\hline * Type a line of text without a NEWLINE. & The text is printed as you type. \\
\hline * Press the CARRIAGE RETURN key. & The printhead moves to the left-hand margin of the same line. \\
\hline * Press the NEWLINE key. & The paper advances one line. \\
\hline * Type more text followed by a NEWLINE. & The text is printed as you type and the printhead moves to the left-hand column of the next line. \\
\hline Press the FEED switch to the single line feed position several times (on KSR models press the LF FF key several times). & The paper advances one line each time you press the switch. \\
\hline Hold the FEED switch in the continuous line feed position (on KSR models hold down the LF/FF key). & \begin{tabular}{l}
- If the automatic form feed option is installed, the paper is advanced to the top of the next form. \\
- If the automatic form feed option is not installed, continuous line feeds are generated until you release the key.
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
* Applies to testing KSR terminals only
}

CONTINUED

\section*{Offline Check-Out}

CONTINUED
\begin{tabular}{|c|c|}
\hline PROCEDURE & EXPECTED RESULT \\
\hline * Move the VIEW switch to the ON position and type a line of text, pausing several places to the left of column 126 for at least 1.2 seconds. & The text is printed as you type. At each pause, the printhead moves 6 columns to the right of the last character printed. \\
\hline *Type a full line of text, pausing to the right of column 126 for at least 1.2 seconds. & The text is printed as you type. At the pause, the printhead moves 6 columns to the left of the last character printed. \\
\hline *Move the VIEW switch to the OFF position and repeat the two preceding steps. & The text is printed as you type. The printhead does not move clear of the text during pauses in typing. \\
\hline "Press an alphanumeric key and the RPT key simultaneously. & The alphanumeric character is printed repeatedly until you release one of the keys. \\
\hline Check the form feed option as follows: & \\
\hline Advance the paper to the top of the next form. Set the line count thumbwheels to the line count corresponding to the length of the form you are using. Press and release the TOF INIT pushbutton and press the FEED switch to the continuous line feed position (hold the LF/FF switch down on KSR models). & The paper advances to the top of the next form. \\
\hline
\end{tabular}

\footnotetext{
* Applies to testing KSR terminals only.
}

\section*{Online Check-out}

Before you can conduct the online checkout, you need to connect your printer to a computer or communications system as follows:
- Plug the printer end of the I/O adapter cable or custom cable (see Cabling, Chapter III, for information about cables) into the appropriate connecter on the back side of the pedestal column as shown below.
- Connect the other end to the system.


If you have an RO model printer, load a program into your system that transmits ASCII characters to the printer. If you have a KSR terminal, load a program into your system that transmits codes received from your keyboard back to the printer. Now you are ready to conduct the online check-out.

\section*{Online Check-Out}

\begin{tabular}{|c|c|}
\hline PROCEDURE & EXPECTED RESULT \\
\hline \begin{tabular}{l}
Type in (or transmit) a word or two followed by: \\
- ESC CTRL-1 (033 061) (sets horizontal tab) \\
- NEWLINE (015) \\
- CTRL-I (011)
\end{tabular} & The text is printed as you type (or transmit), a horizontal tab is set at the end of the text, the printhead returns to the beginning of the next line and tabs out to the position where the tab was set lafter the last character typed on the line above). \\
\hline \begin{tabular}{l}
Type in (or transmit): \\
- some text \\
- ESC < (033 074) \\
- more text \\
\(-\mathrm{ESC}=(033075)\) \\
- more text
\end{tabular} & \begin{tabular}{l}
- The text is printed. \\
- Nothing happens. \\
- The text is printed in elongated width characters. \\
- Nothing happens. \\
- The text is printed in normal width characters.
\end{tabular} \\
\hline \begin{tabular}{l}
Type in (or transmit): \\
- some text \\
- ESC a (033 141) \\
- some text \\
- ESC b (033 142) \\
- some text
\end{tabular} & \begin{tabular}{l}
- The text is printed. \\
- Nothing happens. \\
- The text printed is underscored. \\
- Nothing happens. \\
- The text is printed without an underscore.
\end{tabular} \\
\hline Type in (or transmit): ESC c (033 143) & The printer reinitializes itself according to the settings of the Secondary Control Panel (see Operator's Manual). The printhead returns to the left-hand margin. *The present line becomes the top of form. \\
\hline \begin{tabular}{l}
"Type in (or transmit): \\
- NEWLINE (012) \\
- ESC > (033 076) \\
- some text \\
- NEWLINE (012) \\
- ESC ? (033 077) \\
- more text
\end{tabular} & \begin{tabular}{l}
- Printhead returns to left-hand margin. \\
- Nothing happens. \\
- Text is printed in compressed width characters. \\
- Printhead returns to left-hand margin. \\
- Nothing happens. \\
- Text is printed in normal width characters.
\end{tabular} \\
\hline \multicolumn{2}{|l|}{* If the Automatic Form Feed is installed.} \\
\hline \multicolumn{2}{|l|}{**If the Compressed Printing option is installed.} \\
\hline
\end{tabular}
* If the Automatic Form Feed is installed.
**If the Compressed Printing option is installed.

This completes the check-out of your printer. If you did not get the expected result, check the input power, the cabling connections, the jumpers on the main and options PC boards, and the coding of the program transmitting or echoing characters to your printer. (It may also be helpful at this time to check the Troubleshooting Guide in the Operator's Manual.) Repeat the appropriate checkout procedures. If your printer still does not function correctly, you may be able to isolate, and even correct, the problem using the built-in fault detectors described below. If these detectors are no help, contact the nearest field service representative for assistance.

\section*{FAULT DETECTORS}

A circuit breaker and a system of fault interlocks protect your printer. They disable the operation of your printer in the event of a component malfunction or an unsafe condition. Several of the faults incorporate indicator lights to facilitate troubleshooting. There are four such indicator lights: two are on the primary control panel - the RDY and the FAULT light; one is on the power supply board - the Head Fault light; and one is on the main control PC board - the RUN light.


\section*{Power Line Circuit Breaker}

A circuit breaker protects your unit from overcurrent situations. There is usually a good reason for a circuit breaker tripping; therefore, we recommend that you call a qualified service representative in the event of a problem.

A portion of the circuit breaker pops out in the event of a short. You reset a breaker (with the power switch Off) by pressing in the cylinder. If this breaker will not reset, wait 5 minutes and try again. DO NOT FORCE breaker reset or damage may result.


\section*{RDY (Ready) Light}

The RDY light indicates the status of the printer's character buffer as well as the existance of any fault conditions. The light operates only when the printer is online. Normally, the light goes off when the character buffer is filled. The light comes on again when the buffer becomes half empty. The RDY light also goes off if a fault exists, warning you that you can no longer operate your printer. Sometimes you can correct the problem by simply depressing the MST RST switch located on the Secondary Control Panel.

\section*{FAULT Light}

A fault occurs as a result of one of a number of conditions: your printer is out of paper, the paper has not advanced the appropriate number of lines, the ribbon cartridge has jammed, or there is a checksum error on a Down-Line-Loaded character set.

A switch in the paper path senses the absence of paper. If the printer is out of paper, it goes offline after the next NEWLINE and the Fault light glows. The light also glows if the paper does not advance the expected number of lines. The usual cause of this is a paper jam (see the Operator's Manual on "Loading Paper"). If the ribbon cartridge has jammed, stalling the carriage assembly, a new ribbon cartridge must be installed. In all cases, the MST RST button must be pressed following the correction of a fault condition.

\section*{Head Fault Light}

When off, this light indicates that the print head is operating normally. If on, the printer's power supply has been shut down due to excessive current in the printhead. The power should be shut off and you should call a service representative.

\section*{RUN Light}

When lit, this light indicates that your printer has executed its power-up and initialization sequence properly. If you are experiencing trouble with your printer and this light is not lit after powering-up the unit and/or pressing the MST RST button on the secondary control panel, you should turn it off and call a service representative.

\section*{Overvoltage Fault}

An overvoltage fault occurs when the +16 vdc regulated output from the power supply increases above +20 vdc . All positive voltages drop to zero causing the printer to shut down completely (all indicator lights go off). Following shut-down, the unit attempts to power up and reinitialize.

\section*{Undervoltage Fault}

If the +5 vdc regulated output from the power supply drops to less than 4 volts, all the printer's control functions stop and all the indicator lights go off. Following shut-down, the unit attempts to power up and reinitialize.


\title{
CHAPTER V ARCHITECTURE
}

\section*{INTRODUCTION}

Your printer is controlled by Data General's 16 -bit microNOVA microprocessor. The microprocessor directs communication between a number of a DASHER LP2 or TP2 printer's basic subsystems. These subsystems include:
- Memory
- Printhead and carriage assembly
- Paper feed assembly
- Control panels
- Keyboard and numeric pad
- Parallel interface or serial interface

Information is transferred between these subsystems and the microprocessor along a bidirectional 16 -line bus. The diagram on the opposite page illustrates how this bus connects the different portions of the printer.

\section*{THE MICROPROCESSOR}

The microprocessor-based design eliminates costly hard-wired logic and provides the printer with greater power and flexibility. Its programmable nature makes possible many of the printer's special features such as horizontal tabbing, vertical tabbing, and elongated characters.

The microprocessor's main function is to control the printer's various subsystems. The manner in which these subsystems are controlled is determined by the microprocessor's program.

\section*{MEMORY}

The memory subsystem stores the microprocessor's program and variables, characters received from the computer, and special codes used by the microprocessor to fire the printhead.

Your printer has two types of memory: read-only memory and random-access memory. Read-only memory is used exclusively for storing programs. This type of memory cannot be altered by the microprocessor. Its contents are not lost when you power-down your printer. Random-access memory is used to store program data and incoming characters.

A third storage device, the character generator, is really a read-only memory which contains special codes used by the microprocessor to fire the printhead. These codes, called firing codes, are nine bits long. The character generator contains all the firing codes necessary to print all the characters in a particular character set. (The various character sets are described in Appendix B.)

\section*{PRINTHEAD AND CARRIAGE ASSEMBLY}

The printhead and carriage assembly is the mechanism which prints characters. The following diagram illustrates the various components of this subsystem.


\section*{The Printhead}

The printhead forms a character in seven segments as it moves across the paper. Each segment is formed by firing a subset of the 9 printhead wires. These wires force the ribbon against the paper forming a 7 by 9 dot matrix character. The microprocessor fires these print wires by obtaining a 9 -bit code from the character generator and transmitting that code to the printhead. The illustration below shows how a character is formed during a left to right print sequence.

Since printing is bidirectional, a character may also be formed by starting with its right column. In this case, the microprocessor issues the firing codes in reverse order.


\section*{The Carriage}

The microprocessor controls the horizontal motion of the printhead by issuing commands to the drive circuitry of the carriage mechanism. This mechanism consists of a stepping motor and lead screw assembly (to which the printhead carriage is attached). When the microprocessor steps this motor (tells it to rotate a fixed amount), the lead screw turns, moving the printhead a fixed distance. Since the stepping motor may be stepped clockwise or counter-clockwise, the printhead may be moved either right or left.

\section*{Position Transducers}

The microprocessor determines when the print-wires should be fired by monitoring the printhead position transducers. These transducers locate the exact printhead firing position for each of the seven columns which form a character.

Another transducer informs the microprocessor when the printhead has reached the left-hand margin (home position). This transducer is used to initialize the printhead's horizontal alignment.

\section*{PAPER FEED ASSEMBLY}

The paper feed assembly controls the vertical movement of paper past the printhead. Like the carriage mechanism, the paper feed assembly uses a stepping motor. This motor turns the tractors which move the paper by the printhead. The microprocessor directly controls how much paper is fed through the printer by stepping this motor a selected number of times. In fact, the difference between selecting 6 lines/inch or 8 lines/inch spacing is reflected in the number of steps the microprocessor issues to the stepping motor for a line feed.

\section*{Sensing Paper Movement}

A transducer, like the head position transducer, notifies the microprocessor each time it senses paper movement. If the transducer detects that the paper feed motor has taken a different number of steps than were issued by the microprocessor, a fault is generated, indicating a problem in the paper feed assembly.

A switch informs the microprocessor when paper runs out. If this occurs, the microprocessor generates a fault.


\section*{THE CONTROL PANELS}

There are two control panels which you may use to control your printer. The primary control panel contains a number of lights and switches used to display status information and control commonly used functions. The secondary control panel contains switches which configure the printer and select its various options. The microprocessor monitors the primary control panel and the MST RST switch on the secondary cojtrol panel constantly. However, it only monitors the other switches on the secondary control panel when the printer is offline. When the microprocessor detects a change in a switch position on either control panel, it proceeds accordingly, displaying the change in the indicator lights if applicable.

\section*{THE KEYBOARD AND NUMERIC PAD}

The keyboard and numeric pad are input devices which allow you to communicate with your communications system. Like other subsystems, the microprocessor monitors the keyboard and numeric pad. When the operator presses a key, the microprocessor retreives the keyed character's 7-bit ASCII code. If the printer is offline, the microprocessor immediately processes the character (either printing it or performing the associated control function). If the printer is online, the microprocessor transmits the 7 -bit code to the communications line via the serial interface.

\section*{THE PARALLEL INTERFACE}

A parallel interface transfers data from a computer to the microprocessor. Eight data lines transfer data from the computer to the interface 8 bits at a time. A demand line informs the computer when your interface is able to accept data. A second status line, Ready, informs the computer whether your printer is powered up and online.

The microprocessor continually checks the interface to see if any data is present. If it finds that a byte has arrived, the microprocessor retrieves this byte from the interface and stores it in memory for processing. The parallel interface can accept data at a rate up to 5,000 characters/second until the alloted storage area in memory is filled. At this point, the microprocessor processes half of the stored characters before it accepts any additional characters.

\section*{SERIAL INTERFACE}

The serial interface transfers data in either direction between the printer and a communications system. This interface, available on both RO Printer and KSR terminals in a number of jumper selectable serial formats. In additions, you may select one of eight different information transfer rates (110, 150, 300, \(600,1200,1800,2400\), and 4800 baud).

\section*{Reception}

The serial interface assembles data in an 8-bit buffer as it is received, notifying the microprocessor when the complete byte is present. The microprocessor then retreives the byte and stores it in memory for processing.

\section*{Transmission}

When the microprocessor wishes to transmit a character, it first checks the serial interface to see if it is busy transmitting a character. When the interface is idle, the microprocessor transfers the byte (character) to the interface.

\section*{Control}

In addition to transmitting and receiving data, the microprocessor controls and reads the status of a MODEM through the serial interface. The interface includes signals which allow you to use MODEMs with auto-answer and auto-disconnect features.

\section*{POWER SUPPLY}

The printer's power supply provides six different dc supply voltages from either 120 volt or 220/240 volt ac power sources ( \(47-63 \mathrm{~Hz}\) ). The design uses pulse-width modulation to regulate the output voltages. In addition, overvoltage and overcurrent detection protect the supply against fluctuations in line voltage.

\title{
APPENDIX A ASCII - 128 CHARACTER CODES
}
\begin{tabular}{|c|c|c|c|c|}
\hline NAME OR MNEMONIC & ACTION TAKEN BY PRINTER & \[
\begin{gathered}
\text { ASCII } \\
\text { CODE } \\
\text { (OCTAL) }
\end{gathered}
\] & DECIMAL EQUIVALENT & \begin{tabular}{l}
KEYS ** PRESSED \\
TO GENERATE CODE
\end{tabular} \\
\hline NUL & None & 000 & 000 & CTRLO \\
\hline SOH & None & 001 & 001 & CTRL A \\
\hline STX & None & 002 & 002 & CTRL B \\
\hline ETX & Reserved & 003 & 003 & CTRLC \\
\hline EOT & Reserved & 004 & 004 & CTRLD \\
\hline ENO & None & 005 & 005 & CTRLE \\
\hline ACK & Reserved & 006 & 006 & CTRLF \\
\hline BEL & Sounds audible tone & 007 & 007 & CTRL G \\
\hline BS & Back Space (online only) & 010 & 008 & CTRL H•BS•SHIFT BS•CTRL BS \\
\hline HT & Horizontal Tab & 011 & 009 & CTRL 10 TAB•SHIFT TAB \({ }^{\text {c }}\) CTRL TAB \\
\hline NL & Newline (Line Feed) & 012 & 010 & CTRL J•LF \(\bullet\) SHIFT LF \(\bullet\) CTRL LF \\
\hline VT & Vertical Tab* & 013 & 011 & CTRLK \\
\hline FF & Form Feed * & 014 & 012 & CTRLI. \\
\hline CR & Carriage Return & 015 & 013 & CTRL M \({ }^{\text {CR }}\)-SHIFT CR•CTRL CR•(NP) \\
\hline So & Selects Alternate Character Set & 016 & 014 & CTRLN \\
\hline SI & Selects Standard Character Set & 017 & 015 & CTRL O \\
\hline DLE & None & 020 & 016 & CTRLP \\
\hline DC1 & None & 021 & 017 & CTRL 0 \\
\hline DC2 & None & 022 & 018 & CTRLR \\
\hline DC3 & None & 023 & 019 & CTRLS \\
\hline DC4 & None & 024 & 020 & CTRL T \\
\hline NAK & None & 025 & 021 & CTRL U \\
\hline SYN & None & 026 & 022 & CTRL V \\
\hline ETB & None & 027 & 023 & CTRL W \\
\hline CAN & None & 030 & 024 & CTRL \(X\) \\
\hline EM & None & 031 & 025 & CTRL Y \\
\hline SUB & None & 032 & 026 & CTRL 2 \\
\hline ESC & Begins Command Seq. & 033 & 027 & CTRL [•ESC•SHIFT ESC•CTRLESC \\
\hline FS & None & 034 & 028 & CTRL! \\
\hline GS & None & 035 & 029 & CTRL \(\rightarrow\) \\
\hline RS & None & 036 & 030 & CTRL \\
\hline US & None & 037 & 031 & \({ }^{\text {CTRL }}\) - \\
\hline SP & Space & 040 & 032 & SPACE BAR \\
\hline
\end{tabular}

\footnotetext{
- MODELS EQUIPPED WITH THE AUTOMATIC FORM FEED OPTION
- CTRL denotes control key.

NP denotes keys appearing on numeric pad as well as keyboard.
}
\begin{tabular}{|c|c|c|c|c|}
\hline NAME OR MNEMONIC & ACTION TAKEN BY PRINTER & \[
\begin{gathered}
\text { ASCII } \\
\text { CODE } \\
\text { (OCTAL) } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { DECIMAL } \\
\text { EQUIVALENT }
\end{gathered}
\] & \begin{tabular}{l}
KEY(S) PRESSED \\
TO GENERATE
\end{tabular} \\
\hline Exclamation & Prints ! & 041 & 033 & SHIFTI OR CTRL SHIFT \\
\hline Quotation Mark & Prints " & 042 & 034 & SHIFT' OR CTRL SHIFT'' \\
\hline Number Sign & Prints \# & 043 & 035 & SHIFT\# OR CTRL SHIFT\# \\
\hline Dollar Sign & Prints \$ & 044 & 036 & SHIFT\$ OR CTRL SHIFT\$ \\
\hline Percent Sign & Prints \% & 045 & 037 & SHIFT\% OR CTRL SHIFT\% \\
\hline Ampersand & Prints \& & 046 & 038 & SHIFT\& OR CTRL SHIFT\& \\
\hline Apostrophe & Prints \({ }^{\text {' }}\) & 047 & 039 & SHIFT' OR CTRL SHIFT/ \\
\hline Open Parenthesis & Prints 1 & 050 & 040 & SHIFT ( OR CTRL SHIFT( \\
\hline Close Parenthesis & Prints) & 051 & 041 & SHIFT) OR CTRL SHIFT) \\
\hline Asterisk & Prints \({ }^{\text {- }}\) & 052 & 042 & SHIFT* OR CTRL SHIFT* \\
\hline Plus Sign & Prints + & 053 & 043 & SHIFT + OR CTRL SHIFT+ \\
\hline Comma & Prints, & 054 & 044 & , OR CTRL, \\
\hline Hyphen (Minus Sign) & Prints - & 055 & 045 & - OR CTRL- \\
\hline Period (Decimal Point) & Prints & 056 & 046 & . OR CTRL.(NP) \\
\hline Slash & Prints / & 057 & 047 & / OR CTRL/ \\
\hline Zero & Prints 0 & 060 & 048 & O OR CTRL O(NP) \\
\hline One & Prints 1 & 061 & 049 & 1 OR CTRL 1 (NP) \\
\hline Two & Prints 2 & 062 & 050 & 2 OR CTRL 2 (NP) \\
\hline Three & Prints 3 & 063 & 051 & 3 OR CTRL 3(NP) \\
\hline Four & Prints 4 & 064 & 052 & 4 OR CTRL 4(NP) \\
\hline Five & Prints 5 & 065 & 053 & 5 OR CTRL 5(NP) \\
\hline Six & Prints 6 & 066 & 054 & 6 OR CTRL 6(NP) \\
\hline Seven & Prints 7 & 067 & 055 & 7 OR CTRL 7 (NP) \\
\hline Eight & Prints 8 & 070 & 056 & 8 OR CTRL 8 (NP) \\
\hline Nine & Prints 9 & 071 & 057 & 9 OR CTRL 9(NP) \\
\hline Colon & Prints : & 072 & 058 & SHIFT : OR CTRL SHIFT: \\
\hline Semicolon & Prints : & 073 & 059 & ; OR CTRL; \\
\hline Less Than & Prints < & 074 & 060 & SHIFT < OR CTRL SHIFT < \\
\hline Equal Sign & Prints = & 075 & 061 & \[
=\text { OR CTRL= }
\] \\
\hline Greater Than & Prints > & 076 & 062 & SHIFT > OR SHIFT > \\
\hline Question Mark & Prints ? & 077 & 063 & SHIFT? OR CTRL SHIFT? \\
\hline Commercial At & Prints @ & 100 & 064 & SHIFT@ OR CTRL SHIFT@ \\
\hline A & Prints A & 101 & 065 & SHIFT A \\
\hline B & Prints B & 102 & 066 & SHIFT B \\
\hline C & Prints C & 103 & 067 & SHIFT C \\
\hline D & Prints D & 104 & 068 & SHIFT D \\
\hline E & Prints E & 105 & 069 & SHIFT E \\
\hline F & Prints F & 106 & 070 & SHIFT F \\
\hline G & Prints G & 107 & 071 & SHIFT G \\
\hline H & Prints H & 110 & 072 & SHIFTH \\
\hline I & Prints 1 & 111 & 073 & SHIFT I \\
\hline \(J\) & Prints J & 112 & 074 & SHIFT J \\
\hline K & Prints K & 113 & 075 & SHIFT K \\
\hline L & Prints L & 114 & 076 & SHIFT L \\
\hline M & Prints M & 115 & 077 & SHIFT M \\
\hline N & Prints \(N\) & 116 & 078 & SHIFT N \\
\hline O & Prints O & 117 & 079 & SHIFT O \\
\hline P & Prints P & 120 & 080 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline NAME OR MNEMONIC & ACTION TAKEN BY PRINTER & \[
\begin{gathered}
\text { ASCII } \\
\text { CODE } \\
\text { (OCTAL) } \\
\hline
\end{gathered}
\] & DECIMAL EQUIVALENT & \begin{tabular}{l}
KEY(S) PRESSED \\
TO GENERATE
\end{tabular} \\
\hline Q & Prints Q & 121 & 081 & SHIFT Q \\
\hline R & Prints R & 122 & 082 & SHIFT R \\
\hline S & Prints \(S\) & 123 & 083 & SHIFT S \\
\hline T & Prints \(T\) & 124 & 084 & SHIFT T \\
\hline U & Prints U & 125 & 085 & SHIFT U \\
\hline V & Prints V & 126 & 086 & SHIFT V \\
\hline W & Prints W & 127 & 087 & SHIFT W \\
\hline X & Prints \(X\) & 130 & 088 & SHIFT \(X\) \\
\hline Y & Prints \(Y\) & 131 & 089 & SHIFT \(Y\) \\
\hline Z & Prints Z & 132 & 090 & SHIFT Z \\
\hline Opening Bracket & Prints [ & 133 & 091 & [ \\
\hline Back Slash & Prints \(\\) & 134 & 092 & 1 \\
\hline Close Bracket & Prints ] & 135 & 093 & 1 \\
\hline Circumflex & Prints 1 & 136 & 094 & \(\wedge\) \\
\hline Underline & Prints - & 137 & 095 & SHIFT _ \\
\hline Accent Grave & Prints \({ }^{\text {- }}\) & 140 & 096 & 1 \\
\hline a & Prints a & 141 & 097 & A \\
\hline \(b\) & Prints b & 142 & 098 & B \\
\hline c & Prints c & 143 & 099 & C \\
\hline d & Prints d & 144 & 100 & D \\
\hline e & Prints e & 145 & 101 & E \\
\hline \(f\) & Prints f & 146 & 102 & F \\
\hline g & Prints g & 147 & 103 & G \\
\hline h & Prints h & 150 & 104 & H \\
\hline i & Prints i & 151 & 105 & 1 \\
\hline j & Prints \({ }^{\text {j }}\) & 152 & 106 & \(J\) \\
\hline k & Prints k & 153 & 107 & K \\
\hline 1 & Prints 1 & 154 & 108 & L \\
\hline m & Prints m & 155 & 109 & M \\
\hline n & Prints n & 156 & 110 & N \\
\hline 0 & Prints o & 157 & 111 & 0 \\
\hline \(p\) & Prints \(p\) & 160 & 112 & P \\
\hline q & Prints q & 161 & 113 & Q \\
\hline r & Prints r & 162 & 114 & R \\
\hline S & Prints s & 163 & 115 & S \\
\hline t & Prints t & 164 & 116 & T \\
\hline \(u\) & Prints u & 165 & 117 & U \\
\hline \(v\) & Prints v & 166 & 118 & V \\
\hline w & Prints w & 167 & 119 & W \\
\hline x & Prints x & 170 & 120 & X \\
\hline \(y\) & Prints \(y\) & 171 & 121 & Y \\
\hline \(z\) & Prints 2 & 172 & 122 & z \\
\hline Open Baroque Parenthesis & Prints \(\{\) & 173 & 123 & \{ \\
\hline Vertical Mark Parenthesis & Prints & 174 & 124 & SHIFT: \\
\hline Close Baroque Parenthesis & Prints \(\}\) & 175 & 125 & SHIFT \(\}\) \\
\hline TILDE & Prints \({ }^{-}\) & 176 & 126 & SHIFT \\
\hline DELETE & None & 177 & 127 & DEL SHIFT DEL CTRL DEL CTRL SHIFT DEL \\
\hline
\end{tabular}

\section*{APPENDIX B INTERNATIONAL CHARACTER SETS}

There are six 96 -symbol character sets available with your DASHER LP2 or TP2 printer. They correspond to standard ASCII code specifications in the following six countries: France, Germany, Spain, Sweden, the United Kingdom, and the United States.

Each character is defined by a 7-bit ASCII code. Control codes, 000-037 octal are not printed. The codes from 040-177 octal define the 96 -symbol character set. The dot-matrix patterns your printer produces for each code are shown on the following pages. We illustrate the American font in its entirety. However, of the remaining five fonts, we provide only those patterns which differ from the American font.
AMERICAN USAGE


\section*{AMERICAN USAGE}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(130_{8}\) & 1318 & \(132_{8}\) & \(133_{8}\) & \(134_{8}\) & 1358 & 1368 & 1378 \\
\hline  &  &  &  &  &  &  & \[
\begin{aligned}
& \frac{x+8}{x+x} \\
& \frac{x+\infty}{x+\infty}
\end{aligned}
\] \\
\hline \(140_{8}\) & \(141_{8}\) & \(142_{8}\) & 1438 & 1448 & \(145_{8}\) & 1468 & 1478 \\
\hline  &  &  &  &  &  &  &  \\
\hline
\end{tabular}




\footnotetext{
DG-04808
}

\section*{FRENCH USAGE}


GERMAN USAGE


SPANISH USAGE

\(D G-06753\)

\section*{SWEDISH USAGE}


\section*{BRITISH USAGE}


DG-04810

\section*{SALES AND SERVICE OFFICES}
Alabama: Birmingham
Arizona: Phoenix, Tucson
Arkansas: Little Rock
California: El Segundo, Fresno, Palo Alto, Sacramento, San Diego,
San Francisco, Santa Ana, Santa Barbara, Van Nuys
Colorado: Englewood
Connecticut: North Branford
Flor:da: Ft. Lauderdale, Orlando, Tampa
Georgia: Norcross
Idaho: Boise
Illinois: Peoria, Schaumburg
Indiana: Indianapolis
Kentucky: Louisville
Louisiana: Baton Rouge
Maryland: Baltimore
Massachusetts: Springfield, Wellesley, Worcester
Michigan: Southfield
Minnesota: Richfield
Missouri: Kansas City, St. Louis
Nevada: Las Vegas
New Hampshire: Nashua
New Jersey: Cherry Hill, Wayne
New Mexico: Albuquerque
New York: Buffalo, Latham, Melville, Newfield, New York,
Rochester, Syracuse, White Plains
North Carolina: Charlotte, Greensboro
Ohio: Columbus, Dayton, Brooklyn Heights
Oklahoma: Oklahoma City, Tulsa
Oregon: Portland
Pennsylvania: Blue Bell, Carnegie
Rhode Island: Rumford
South Carolina: Columbia
Tennessee: Knoxville, Memphis
Texas: Austin, Dallas, El Paso, Ft. Worth, Houston
Utah: Salt Lake City
Virginia: McLean, Norfolk, Richmond, Salem
Washington: Kirkland
West Virginia: Charleston
Wisconsin: West Allis

Australia: Melbourne, Victoria
France: Le Plessis Robinson
Italy: Milan, Padua, Rome
The Netherlands: Rijswijk
New Zealand: Auckland, Wellington
Sweden: Gothenburg, Malmoe, Stockholm
Switzerland: Lausanne, Zurich
United Kingdom: Birmingham, Dublin, Glasgow, London, Manchester
West Germany: Filderstadt, Frankfurt, Hamburg, Munich, Ratingen,
Rodelheim
N

Alabama: Birmingham
Arizona: Phoenix, Tucson

California: El Segundo, Fresno, Palo Alto, Sacramento, San Diego,
San Francisco, Santa Ana, Santa Barbara, Van Nuys
Colorado: Englewood
Connecticut: North Branford
Flor:da: Ft. Lauderdale, Orlando, Tampa
Idaho: Boise
Illinois: Peoria, Schaumburg
ndiana: Indianapolis
Kentucky: Louisville
siana: Baton Rouge
Massachusetts: Springfield, Wellesley, Worcester
gan: Southfield
Minnesota: Richfield

Nevada: Las Vegas
New Hampshire: Nashua
New Mexico: Albuquerque
New York: Buffalo, Latham, Melville, Newfield, New York,
hester, Syracuse, White Plains
North Carolina: Charlotte, Greensboro
Heights
Oregon: Portland
Pennsylvania: Blue Bell, Carnegie
Rhode Island: Rumford
South Carolina: Columbia
Texas: Austin, Dallas, El Paso, Ft. Worth, Houston
Utah: Salt Lake City
Virginia: McLean, Norfolk, Richmond, Salem
Washington: Kirkland
irginia. Charlest

Australia: Melbourne, Victoria
France: Le Plessis Robinson
Milan, Padua, Rome
The Netherlands: Rijswijk
New Zealand: Auckland, Wellington
Sweden: Gothenburg, Malmoe, Stockholm
Switzerland: Lausanne, Zurich
West Germany: Filderstadt, Frankfurt, Hamburg, Munich, Ratingen
Rodelheim

MANUFACTURER'S REPRESENTATIVES \& DISTRIBUTORS

Argentina: Buenos Aires
Costa Rica: San Jose
Ecuador: Quito
Egypt: Cairo
Finland: Helsinki
Greece: Athens
Hong Kong: Hong Kong
India: Bombay
Indonesia: Jakarta
Iran: Tehran
Israel: Givatayim
Japan: Tokyo
Jordan: Amman
Korea: Seoul
Kuwait: Kuwait
Lebanon: Beirut
Malaysia: Kuala Lumpur
Mexico: Mexico City
Nicaragua: Managua
Nigeria: Lagos, Ibadan
Norway: Oslo
Peru: Lima
Philippine Islands: Manila
Puerto Rico: Hato Rey
Saudi Arabia: Riyadh
Singapore: Singapore:
South Africa: Johannesburg, Pretoria
Spain: Barcelona, Bilbao, Madrid, San Sebastian, Valencia
Taiwan: Taipei
Thailand: Bangkok
Uruguay: Montevideo
Venezuela: Maracaibo

\section*{ADMINISTRATION, MANUFACTURING RESEARCH AND DEVELOPMENT}

Massachusetts: Cambridge, Framingham, Westboro, Southboro
Maine: Westbrook
New Hampshire: Portsmouth
California: Anaheim, Sunnyvale
North Carolina: Research Triangle Park, Johnston County
Hong Kong: Kowloon, Tai Po
Thailand: Bangkok

\section*{6.DataGeneral}



\begin{tabular}{l|l} 
Qty. Installed & Qty. On Order \\
\hline \hline & \\
\hline
\end{tabular}

\begin{tabular}{ll}
\(\square\) AOS & \(\square\) RDOS \\
\(\square\) DOS & \(\square\) RTOS \\
\(\square\) SOS & \(\square\) Other
\end{tabular}

Specify \(\qquad\)

\begin{tabular}{ll}
\(\square\) Algol & \(\square\) Assembler \\
\(\square\) DG/L & \(\square\) Interactive \\
\(\square\) Cobol & \(\square\) Fortran \\
\(\square\) ECLIPSE Cobol & \(\square\) RPG II \\
\(\square\) Business BASIC & \(\square\) PL/1 \\
\(\square\) BASIC & \(\square\) Other
\end{tabular}

Specify \(\qquad\)
\begin{tabular}{ll}
\(\square\) & Batch (Central) \\
\(\square\) & Batch (Via RJE) \\
\(\square\) & On-Line Interactive
\end{tabular}
\begin{tabular}{lll} 
6. Communications & \(\square\) RSTCP & \(\square\) CAM \\
6. & \(\square\) HASP & \(\square 4025\) \\
\(e^{2}\) & \(\square\) RJE 0 & \(\square\) Other \\
\hline & \(\square\) SAM &
\end{tabular}

Specify \(\qquad\)


ATTN: Users Group Coordinator 4400 Computer Drive Westboro, MA 01581

NO POSTAGE NECESSARY
IF MAILED
IN THE UNITED STATES

\section*{Engineering Publications Comment Form}

Title: \(\qquad\)
Please help us improve our future publications by answering the questions below. Use the space provided for your comments.

Document No. \(\qquad\)
\begin{tabular}{|c|c|c|c|c|}
\hline Yes
\(\square\) & & Is this manual easy to read? & \begin{tabular}{l}
O You (can,cannot) find things easily. \\
O Language (is, is not) appropriate. \\
O Technical terms (are, are not) defined as needed.
\end{tabular} & O Other: \\
\hline & & In what ways do you find this manual usetul? & O Learning to use the equipment
As a reference
As an introduction to the product & O To instruct a class. O Other: \\
\hline \(\square\) & \(\square\) & Do the Ilustrations help you? & \begin{tabular}{l}
O Visuals (are,are not) well designed. \\
O Labels and captions (are, are not) clear. \\
O Other:
\end{tabular} & \\
\hline \(\square\) & \(\square\) & \begin{tabular}{l}
Does the manual tell you all you need to know? \\
What additional information would you like?
\end{tabular} & & \\
\hline & & \begin{tabular}{l}
Is the information accurate? \\
If not please specify with page number and paragraph.)
\end{tabular} & &  \\
\hline
\end{tabular}

Name: \(\qquad\) Title: \(\qquad\)
Company: \(\qquad\) Division: \(\qquad\)
Address: \(\qquad\) City: \(\qquad\)
State: \(\qquad\) Zip: \(\qquad\) Telephone: \(\qquad\)
\(\qquad\)
\begin{tabular}{c} 
FOLD \\
\hline STAPLE \\
FOLD \\
STAPLE
\end{tabular}

\begin{tabular}{c} 
NO POSTAGE \\
NECESSARY \\
IF MAILED \\
IN THE \\
UNITED STATES \\
\hline
\end{tabular}
.```

